Every server in SINGA has an Updater instance that updates parameters based on gradients. In this page, the Basic user guide describes the configuration of an updater. The Advanced user guide present details on how to implement a new updater and a new learning rate changing method.
There are many different parameter updating protocols (i.e., subclasses of Updater). They share some configuration fields like
If you are not familiar with the above terms, you can get their meanings in this page provided by Karpathy.
The base Updater implements the vanilla SGD algorithm. Its configuration type is kSGD. Users need to configure at least the learning_rate field. momentum and weight_decay are optional fields.
updater{ type: kSGD momentum: float weight_decay: float learning_rate { ... } }
It inherits the base Updater to implement the AdaGrad algorithm. Its type is kAdaGrad. AdaGradUpdater is configured similar to Updater except that momentum is not used.
It inherits the base Updater to implements the Nesterov (section 3.5) updating protocol. Its type is kNesterov. learning_rate and momentum must be configured. weight_decay is an optional configuration field.
It inherits the base Updater to implements the RMSProp algorithm proposed by Hinton(slide 29). Its type is kRMSProp.
updater { type: kRMSProp rmsprop_conf { rho: float # [0,1] } }
The learning_rate field is configured as,
learning_rate { type: ChangeMethod base_lr: float # base/initial learning rate ... # fields to a specific changing method }
The common fields include type and base_lr. SINGA provides the following ChangeMethods.
The updater should be configured like
learning_rate { base_lr: float linear_conf { freq: int final_lr: float } }
Linear interpolation is used to change the learning rate,
lr = (1 - step / freq) * base_lr + (step / freq) * final_lr
The udapter should be configured like
learning_rate { base_lr: float exponential_conf { freq: int } }
The learning rate for step is
lr = base_lr / 2^(step / freq)
The updater should be configured like
learning_rate { base_lr: float inverset_conf { final_lr: float } }
The learning rate for step is
lr = base_lr / (1 + step / final_lr)
The updater should be configured like
learning_rate { base_lr: float inverse_conf { gamma: float pow: float } }
The learning rate for step is
lr = base_lr * (1 + gamma * setp)^(-pow)
The base Updater class has one virtual function,
class Updater{ public: virtual void Update(int step, Param* param, float grad_scale = 1.0f) = 0; protected: UpdaterProto proto_; LRGenerator lr_gen_; };
It updates the values of the param based on its gradients. The step argument is for deciding the learning rate which may change through time (step). grad_scale scales the original gradient values. This function is called by servers once it receives all gradients for the same Param object.
To implement a new Updater subclass, users must override the Update function.
class FooUpdater : public Updater { void Update(int step, Param* param, float grad_scale = 1.0f) override; };
Configuration of this new updater can be declared similar to that of a new layer,
# in user.proto FooUpdaterProto { optional int32 c = 1; } extend UpdaterProto { optional FooUpdaterProto fooupdater_conf= 101; }
The new updater should be registered in the main function
driver.RegisterUpdater<FooUpdater>("FooUpdater");
Users can then configure the job as
# in job.conf updater { user_type: "FooUpdater" # must use user_type with the same string identifier as the one used for registration fooupdater_conf { c : 20; } }
The base LRGenerator is declared as,
virtual float Get(int step);
To implement a subclass, e.g., FooLRGen, users should declare it like
class FooLRGen : public LRGenerator { public: float Get(int step) override; };
Configuration of FooLRGen can be defined using a protocol message,
# in user.proto message FooLRProto { ... } extend LRGenProto { optional FooLRProto foolr_conf = 101; }
The configuration is then like,
learning_rate { user_type : "FooLR" # must use user_type with the same string identifier as the one used for registration base_lr: float foolr_conf { ... } }
Users have to register this subclass in the main function,
driver.RegisterLRGenerator<FooLRGen, std::string>("FooLR")