View Javadoc
1   /*
2    * Licensed to the Apache Software Foundation (ASF) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * The ASF licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *      http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.apache.commons.numbers.fraction;
18  
19  import java.util.function.Supplier;
20  import org.apache.commons.numbers.fraction.GeneralizedContinuedFraction.Coefficient;
21  
22  /**
23   * Provides a generic means to evaluate
24   * <a href="https://mathworld.wolfram.com/ContinuedFraction.html">continued fractions</a>.
25   *
26   * <p>The continued fraction uses the following form for the numerator ({@code a}) and
27   * denominator ({@code b}) coefficients:
28   * <pre>
29   *              a1
30   * b0 + ------------------
31   *      b1 +      a2
32   *           -------------
33   *           b2 +    a3
34   *                --------
35   *                b3 + ...
36   * </pre>
37   *
38   * <p>Subclasses must provide the {@link #getA(int,double) a} and {@link #getB(int,double) b}
39   * coefficients to evaluate the continued fraction.
40   *
41   * <p>This class allows evaluation of the fraction for a specified evaluation point {@code x};
42   * the point can be used to express the values of the coefficients.
43   * Evaluation of a continued fraction from a generator of the coefficients can be performed using
44   * {@link GeneralizedContinuedFraction}. This may be preferred if the coefficients can be computed
45   * with updates to the previous coefficients.
46   */
47  public abstract class ContinuedFraction {
48      /**
49       * Defines the <a href="https://mathworld.wolfram.com/ContinuedFraction.html">
50       * {@code n}-th "a" coefficient</a> of the continued fraction.
51       *
52       * @param n Index of the coefficient to retrieve.
53       * @param x Evaluation point.
54       * @return the coefficient <code>a<sub>n</sub></code>.
55       */
56      protected abstract double getA(int n, double x);
57  
58      /**
59       * Defines the <a href="https://mathworld.wolfram.com/ContinuedFraction.html">
60       * {@code n}-th "b" coefficient</a> of the continued fraction.
61       *
62       * @param n Index of the coefficient to retrieve.
63       * @param x Evaluation point.
64       * @return the coefficient <code>b<sub>n</sub></code>.
65       */
66      protected abstract double getB(int n, double x);
67  
68      /**
69       * Evaluates the continued fraction.
70       *
71       * @param x the evaluation point.
72       * @param epsilon Maximum relative error allowed.
73       * @return the value of the continued fraction evaluated at {@code x}.
74       * @throws ArithmeticException if the algorithm fails to converge.
75       * @throws ArithmeticException if the maximal number of iterations is reached
76       * before the expected convergence is achieved.
77       *
78       * @see #evaluate(double,double,int)
79       */
80      public double evaluate(double x, double epsilon) {
81          return evaluate(x, epsilon, GeneralizedContinuedFraction.DEFAULT_ITERATIONS);
82      }
83  
84      /**
85       * Evaluates the continued fraction.
86       * <p>
87       * The implementation of this method is based on the modified Lentz algorithm as described
88       * on page 508 in:
89       * </p>
90       *
91       * <ul>
92       *   <li>
93       *   I. J. Thompson,  A. R. Barnett (1986).
94       *   "Coulomb and Bessel Functions of Complex Arguments and Order."
95       *   Journal of Computational Physics 64, 490-509.
96       *   <a target="_blank" href="https://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf">
97       *   https://www.fresco.org.uk/papers/Thompson-JCP64p490.pdf</a>
98       *   </li>
99       * </ul>
100      *
101      * @param x Point at which to evaluate the continued fraction.
102      * @param epsilon Maximum relative error allowed.
103      * @param maxIterations Maximum number of iterations.
104      * @return the value of the continued fraction evaluated at {@code x}.
105      * @throws ArithmeticException if the algorithm fails to converge.
106      * @throws ArithmeticException if the maximal number of iterations is reached
107      * before the expected convergence is achieved.
108      */
109     public double evaluate(double x, double epsilon, int maxIterations) {
110         // Delegate to GeneralizedContinuedFraction
111 
112         // Get the first coefficient
113         final double b0 = getB(0, x);
114 
115         // Generate coefficients from (a1,b1)
116         final Supplier<Coefficient> gen = new Supplier<Coefficient>() {
117             private int n;
118             @Override
119             public Coefficient get() {
120                 n++;
121                 final double a = getA(n, x);
122                 final double b = getB(n, x);
123                 return Coefficient.of(a, b);
124             }
125         };
126 
127         // Invoke appropriate method based on magnitude of first term.
128 
129         // If b0 is too small or zero it is set to a non-zero small number to allow
130         // magnitude updates. Avoid this by adding b0 at the end if b0 is small.
131         //
132         // This handles the use case of a negligible initial term. If b1 is also small
133         // then the evaluation starting at b0 or b1 may converge poorly.
134         // One solution is to manually compute the convergent until it is not small
135         // and then evaluate the fraction from the next term:
136         // h1 = b0 + a1 / b1
137         // h2 = b0 + a1 / (b1 + a2 / b2)
138         // ...
139         // hn not 'small', start generator at (n+1):
140         // value = GeneralizedContinuedFraction.value(hn, gen)
141         // This solution is not implemented to avoid recursive complexity.
142 
143         if (Math.abs(b0) < GeneralizedContinuedFraction.SMALL) {
144             // Updates from initial convergent b1 and computes:
145             // b0 + a1 / [  b1 + a2 / (b2 + ... ) ]
146             return GeneralizedContinuedFraction.value(b0, gen, epsilon, maxIterations);
147         }
148 
149         // Use the package-private evaluate method.
150         // Calling GeneralizedContinuedFraction.value(gen, epsilon, maxIterations)
151         // requires the generator to start from (a0,b0) and repeats computation of b0
152         // and wastes computation of a0.
153 
154         // Updates from initial convergent b0:
155         // b0 + a1 / (b1 + ... )
156         return GeneralizedContinuedFraction.evaluate(b0, gen, epsilon, maxIterations);
157     }
158 }