View Javadoc
1   /*
2    *  Licensed under the Apache License, Version 2.0 (the "License");
3    *  you may not use this file except in compliance with the License.
4    *  You may obtain a copy of the License at
5    *
6    *       http://www.apache.org/licenses/LICENSE-2.0
7    *
8    *  Unless required by applicable law or agreed to in writing, software
9    *  distributed under the License is distributed on an "AS IS" BASIS,
10   *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11   *  See the License for the specific language governing permissions and
12   *  limitations under the License.
13   *  under the License.
14   */
15  
16  package org.apache.commons.imaging.formats.jpeg.decoder;
17  
18  import static org.apache.commons.imaging.common.BinaryFunctions.read2Bytes;
19  import static org.apache.commons.imaging.common.BinaryFunctions.readBytes;
20  
21  import java.awt.image.BufferedImage;
22  import java.awt.image.ColorModel;
23  import java.awt.image.DataBuffer;
24  import java.awt.image.DirectColorModel;
25  import java.awt.image.Raster;
26  import java.awt.image.WritableRaster;
27  import java.io.ByteArrayInputStream;
28  import java.io.IOException;
29  import java.util.ArrayList;
30  import java.util.Arrays;
31  import java.util.List;
32  import java.util.Properties;
33  
34  import org.apache.commons.imaging.ImagingException;
35  import org.apache.commons.imaging.bytesource.ByteSource;
36  import org.apache.commons.imaging.color.ColorConversions;
37  import org.apache.commons.imaging.common.Allocator;
38  import org.apache.commons.imaging.common.BinaryFileParser;
39  import org.apache.commons.imaging.formats.jpeg.JpegConstants;
40  import org.apache.commons.imaging.formats.jpeg.JpegUtils;
41  import org.apache.commons.imaging.formats.jpeg.segments.DhtSegment;
42  import org.apache.commons.imaging.formats.jpeg.segments.DhtSegment.HuffmanTable;
43  import org.apache.commons.imaging.formats.jpeg.segments.DqtSegment;
44  import org.apache.commons.imaging.formats.jpeg.segments.DqtSegment.QuantizationTable;
45  import org.apache.commons.imaging.formats.jpeg.segments.SofnSegment;
46  import org.apache.commons.imaging.formats.jpeg.segments.SosSegment;
47  
48  public class JpegDecoder extends BinaryFileParser implements JpegUtils.Visitor {
49  
50      private static final int[] BAND_MASK_ARGB = { 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 };
51      private static final int[] BAND_MASK_RGB = { 0x00ff0000, 0x0000ff00, 0x000000ff };
52  
53      /*
54       * JPEG is an advanced image format that takes significant computation to decode. Keep decoding fast: - Don't allocate memory inside loops, allocate it once
55       * and reuse. - Minimize calculations per pixel and per block (using lookup tables for YCbCr->RGB conversion doubled performance). - Math.round() is slow,
56       * use (int)(x+0.5f) instead for positive numbers.
57       */
58  
59      private static int fastRound(final float x) {
60          return (int) (x + 0.5f);
61      }
62  
63      /**
64       * Returns the positions of where each interval in the provided array starts. The number of start positions is also the count of intervals while the number
65       * of restart markers found is equal to the number of start positions minus one (because restart markers are between intervals).
66       *
67       * @param scanPayload array to examine
68       * @return the start positions
69       */
70      static List<Integer> getIntervalStartPositions(final int[] scanPayload) {
71          final List<Integer> intervalStarts = new ArrayList<>();
72          intervalStarts.add(0);
73          boolean foundFF = false;
74          boolean foundD0toD7 = false;
75          int pos = 0;
76          while (pos < scanPayload.length) {
77              if (foundFF) {
78                  // found 0xFF D0 .. 0xFF D7 => RST marker
79                  if (scanPayload[pos] >= (0xff & JpegConstants.RST0_MARKER) && scanPayload[pos] <= (0xff & JpegConstants.RST7_MARKER)) {
80                      foundD0toD7 = true;
81                  } else { // found 0xFF followed by something else => no RST marker
82                      foundFF = false;
83                  }
84              }
85  
86              if (scanPayload[pos] == 0xFF) {
87                  foundFF = true;
88              }
89  
90              // true if one of the RST markers was found
91              if (foundFF && foundD0toD7) {
92                  // we need to add the position after the current position because
93                  // we had already read 0xFF and are now at 0xDn
94                  intervalStarts.add(pos + 1);
95                  foundFF = foundD0toD7 = false;
96              }
97              pos++;
98          }
99          return intervalStarts;
100     }
101 
102     /**
103      * Returns an array of JpegInputStream where each field contains the JpegInputStream for one interval.
104      *
105      * @param scanPayload array to read intervals from
106      * @return JpegInputStreams for all intervals, at least one stream is always provided
107      */
108     static JpegInputStream[] splitByRstMarkers(final int[] scanPayload) {
109         final List<Integer> intervalStarts = getIntervalStartPositions(scanPayload);
110         // get number of intervals in payload to init an array of appropriate length
111         final int intervalCount = intervalStarts.size();
112         final JpegInputStream[] streams = Allocator.array(intervalCount, JpegInputStream[]::new, JpegInputStream.SHALLOW_SIZE);
113         for (int i = 0; i < intervalCount; i++) {
114             final int from = intervalStarts.get(i);
115             int to;
116             if (i < intervalCount - 1) {
117                 // because each restart marker needs two bytes the end of
118                 // this interval is two bytes before the next interval starts
119                 to = intervalStarts.get(i + 1) - 2;
120             } else { // the last interval ends with the array
121                 to = scanPayload.length;
122             }
123             final int[] interval = Arrays.copyOfRange(scanPayload, from, to);
124             streams[i] = new JpegInputStream(interval);
125         }
126         return streams;
127     }
128 
129     private final DqtSegment.QuantizationTable[] quantizationTables = new DqtSegment.QuantizationTable[4];
130     private final DhtSegment.HuffmanTable[] huffmanDCTables = new DhtSegment.HuffmanTable[4];
131     private final DhtSegment.HuffmanTable[] huffmanACTables = new DhtSegment.HuffmanTable[4];
132     private SofnSegment sofnSegment;
133     private SosSegment sosSegment;
134     private final float[][] scaledQuantizationTables = new float[4][];
135     private BufferedImage image;
136     private ImagingException imageReadException;
137     private IOException ioException;
138 
139     private final int[] zz = new int[64];
140 
141     private final int[] blockInt = new int[64];
142 
143     private final float[] block = new float[64];
144 
145     private boolean useTiffRgb;
146 
147     private Block[] allocateMcuMemory() throws ImagingException {
148         final Block[] mcu = Allocator.array(sosSegment.numberOfComponents, Block[]::new, Block.SHALLOW_SIZE);
149         for (int i = 0; i < sosSegment.numberOfComponents; i++) {
150             final SosSegment.Component scanComponent = sosSegment.getComponents(i);
151             SofnSegment.Component frameComponent = null;
152             for (int j = 0; j < sofnSegment.numberOfComponents; j++) {
153                 if (sofnSegment.getComponents(j).componentIdentifier == scanComponent.scanComponentSelector) {
154                     frameComponent = sofnSegment.getComponents(j);
155                     break;
156                 }
157             }
158             if (frameComponent == null) {
159                 throw new ImagingException("Invalid component");
160             }
161             final Block fullBlock = new Block(8 * frameComponent.horizontalSamplingFactor, 8 * frameComponent.verticalSamplingFactor);
162             mcu[i] = fullBlock;
163         }
164         return mcu;
165     }
166 
167     @Override
168     public boolean beginSos() {
169         return true;
170     }
171 
172     public BufferedImage decode(final ByteSource byteSource) throws IOException, ImagingException {
173         final JpegUtils jpegUtils = new JpegUtils();
174         jpegUtils.traverseJfif(byteSource, this);
175         if (imageReadException != null) {
176             throw imageReadException;
177         }
178         if (ioException != null) {
179             throw ioException;
180         }
181         return image;
182     }
183 
184     private int decode(final JpegInputStream is, final DhtSegment.HuffmanTable huffmanTable) throws ImagingException {
185         // "DECODE", section F.2.2.3, figure F.16, page 109 of T.81
186         int i = 1;
187         int code = is.nextBit();
188         while (code > huffmanTable.getMaxCode(i)) {
189             i++;
190             code = code << 1 | is.nextBit();
191         }
192         int j = huffmanTable.getValPtr(i);
193         j += code - huffmanTable.getMinCode(i);
194         return huffmanTable.getHuffVal(j);
195     }
196 
197     private int extend(int v, final int t) {
198         // "EXTEND", section F.2.2.1, figure F.12, page 105 of T.81
199         int vt = 1 << t - 1;
200         if (v < vt) {
201             vt = (-1 << t) + 1;
202             v += vt;
203         }
204         return v;
205     }
206 
207     private void readMcu(final JpegInputStream is, final int[] preds, final Block[] mcu) throws ImagingException {
208         for (int i = 0; i < sosSegment.numberOfComponents; i++) {
209             final SosSegment.Component scanComponent = sosSegment.getComponents(i);
210             SofnSegment.Component frameComponent = null;
211             for (int j = 0; j < sofnSegment.numberOfComponents; j++) {
212                 if (sofnSegment.getComponents(j).componentIdentifier == scanComponent.scanComponentSelector) {
213                     frameComponent = sofnSegment.getComponents(j);
214                     break;
215                 }
216             }
217             if (frameComponent == null) {
218                 throw new ImagingException("Invalid component");
219             }
220             final Block fullBlock = mcu[i];
221             for (int y = 0; y < frameComponent.verticalSamplingFactor; y++) {
222                 for (int x = 0; x < frameComponent.horizontalSamplingFactor; x++) {
223                     Arrays.fill(zz, 0);
224                     // page 104 of T.81
225                     final int t = decode(is, huffmanDCTables[scanComponent.dcCodingTableSelector]);
226                     int diff = receive(t, is);
227                     diff = extend(diff, t);
228                     zz[0] = preds[i] + diff;
229                     preds[i] = zz[0];
230 
231                     // "Decode_AC_coefficients", figure F.13, page 106 of T.81
232                     int k = 1;
233                     while (true) {
234                         final int rs = decode(is, huffmanACTables[scanComponent.acCodingTableSelector]);
235                         final int ssss = rs & 0xf;
236                         final int rrrr = rs >> 4;
237                         final int r = rrrr;
238 
239                         if (ssss == 0) {
240                             if (r != 15) {
241                                 break;
242                             }
243                             k += 16;
244                         } else {
245                             k += r;
246 
247                             // "Decode_ZZ(k)", figure F.14, page 107 of T.81
248                             zz[k] = receive(ssss, is);
249                             zz[k] = extend(zz[k], ssss);
250 
251                             if (k == 63) {
252                                 break;
253                             }
254                             k++;
255                         }
256                     }
257 
258                     final int shift = 1 << sofnSegment.precision - 1;
259                     final int max = (1 << sofnSegment.precision) - 1;
260 
261                     final float[] scaledQuantizationTable = scaledQuantizationTables[frameComponent.quantTabDestSelector];
262                     ZigZag.zigZagToBlock(zz, blockInt);
263                     for (int j = 0; j < 64; j++) {
264                         block[j] = blockInt[j] * scaledQuantizationTable[j];
265                     }
266                     Dct.inverseDct8x8(block);
267 
268                     int dstRowOffset = 8 * y * 8 * frameComponent.horizontalSamplingFactor + 8 * x;
269                     int srcNext = 0;
270                     for (int yy = 0; yy < 8; yy++) {
271                         for (int xx = 0; xx < 8; xx++) {
272                             float sample = block[srcNext++];
273                             sample += shift;
274                             int result;
275                             if (sample < 0) {
276                                 result = 0;
277                             } else if (sample > max) {
278                                 result = max;
279                             } else {
280                                 result = fastRound(sample);
281                             }
282                             fullBlock.samples[dstRowOffset + xx] = result;
283                         }
284                         dstRowOffset += 8 * frameComponent.horizontalSamplingFactor;
285                     }
286                 }
287             }
288         }
289     }
290 
291     private int receive(final int ssss, final JpegInputStream is) throws ImagingException {
292         // "RECEIVE", section F.2.2.4, figure F.17, page 110 of T.81
293         int i = 0;
294         int v = 0;
295         while (i != ssss) {
296             i++;
297             v = (v << 1) + is.nextBit();
298         }
299         return v;
300     }
301 
302     private void rescaleMcu(final Block[] dataUnits, final int hSize, final int vSize, final Block[] ret) {
303         for (int i = 0; i < dataUnits.length; i++) {
304             final Block dataUnit = dataUnits[i];
305             if (dataUnit.width == hSize && dataUnit.height == vSize) {
306                 System.arraycopy(dataUnit.samples, 0, ret[i].samples, 0, hSize * vSize);
307             } else {
308                 final int hScale = hSize / dataUnit.width;
309                 final int vScale = vSize / dataUnit.height;
310                 if (hScale == 2 && vScale == 2) {
311                     int srcRowOffset = 0;
312                     int dstRowOffset = 0;
313                     for (int y = 0; y < dataUnit.height; y++) {
314                         for (int x = 0; x < hSize; x++) {
315                             final int sample = dataUnit.samples[srcRowOffset + (x >> 1)];
316                             ret[i].samples[dstRowOffset + x] = sample;
317                             ret[i].samples[dstRowOffset + hSize + x] = sample;
318                         }
319                         srcRowOffset += dataUnit.width;
320                         dstRowOffset += 2 * hSize;
321                     }
322                 } else {
323                     // FIXME: optimize
324                     int dstRowOffset = 0;
325                     for (int y = 0; y < vSize; y++) {
326                         for (int x = 0; x < hSize; x++) {
327                             ret[i].samples[dstRowOffset + x] = dataUnit.samples[y / vScale * dataUnit.width + x / hScale];
328                         }
329                         dstRowOffset += hSize;
330                     }
331                 }
332             }
333         }
334     }
335 
336     /**
337      * Sets the decoder to treat incoming data as using the RGB color model. This extension to the JPEG specification is intended to support TIFF files that use
338      * JPEG compression.
339      */
340     public void setTiffRgb() {
341         useTiffRgb = true;
342     }
343 
344     @Override
345     public boolean visitSegment(final int marker, final byte[] markerBytes, final int segmentLength, final byte[] segmentLengthBytes, final byte[] segmentData)
346             throws ImagingException, IOException {
347         final int[] sofnSegments = { JpegConstants.SOF0_MARKER, JpegConstants.SOF1_MARKER, JpegConstants.SOF2_MARKER, JpegConstants.SOF3_MARKER,
348                 JpegConstants.SOF5_MARKER, JpegConstants.SOF6_MARKER, JpegConstants.SOF7_MARKER, JpegConstants.SOF9_MARKER, JpegConstants.SOF10_MARKER,
349                 JpegConstants.SOF11_MARKER, JpegConstants.SOF13_MARKER, JpegConstants.SOF14_MARKER, JpegConstants.SOF15_MARKER, };
350 
351         if (Arrays.binarySearch(sofnSegments, marker) >= 0) {
352             if (marker != JpegConstants.SOF0_MARKER) {
353                 throw new ImagingException("Only sequential, baseline JPEGs " + "are supported at the moment");
354             }
355             sofnSegment = new SofnSegment(marker, segmentData);
356         } else if (marker == JpegConstants.DQT_MARKER) {
357             final DqtSegment dqtSegment = new DqtSegment(marker, segmentData);
358             for (final QuantizationTable table : dqtSegment.quantizationTables) {
359                 if (0 > table.destinationIdentifier || table.destinationIdentifier >= quantizationTables.length) {
360                     throw new ImagingException("Invalid quantization table identifier " + table.destinationIdentifier);
361                 }
362                 quantizationTables[table.destinationIdentifier] = table;
363                 final int mSize = 64;
364                 final int[] quantizationMatrixInt = Allocator.intArray(mSize);
365                 ZigZag.zigZagToBlock(table.getElements(), quantizationMatrixInt);
366                 final float[] quantizationMatrixFloat = Allocator.floatArray(mSize);
367                 for (int j = 0; j < mSize; j++) {
368                     quantizationMatrixFloat[j] = quantizationMatrixInt[j];
369                 }
370                 Dct.scaleDequantizationMatrix(quantizationMatrixFloat);
371                 scaledQuantizationTables[table.destinationIdentifier] = quantizationMatrixFloat;
372             }
373         } else if (marker == JpegConstants.DHT_MARKER) {
374             final DhtSegment dhtSegment = new DhtSegment(marker, segmentData);
375             for (final HuffmanTable table : dhtSegment.huffmanTables) {
376                 DhtSegment.HuffmanTable[] tables;
377                 if (table.tableClass == 0) {
378                     tables = huffmanDCTables;
379                 } else if (table.tableClass == 1) {
380                     tables = huffmanACTables;
381                 } else {
382                     throw new ImagingException("Invalid huffman table class " + table.tableClass);
383                 }
384                 if (0 > table.destinationIdentifier || table.destinationIdentifier >= tables.length) {
385                     throw new ImagingException("Invalid huffman table identifier " + table.destinationIdentifier);
386                 }
387                 tables[table.destinationIdentifier] = table;
388             }
389         }
390         return true;
391     }
392 
393     @Override
394     public void visitSos(final int marker, final byte[] markerBytes, final byte[] imageData) {
395         try (ByteArrayInputStream is = new ByteArrayInputStream(imageData)) {
396             // read the scan header
397             final int segmentLength = read2Bytes("segmentLength", is, "Not a Valid JPEG File", getByteOrder());
398             final byte[] sosSegmentBytes = readBytes("SosSegment", is, segmentLength - 2, "Not a Valid JPEG File");
399             sosSegment = new SosSegment(marker, sosSegmentBytes);
400             // read the payload of the scan, this is the remainder of image data after the header
401             // the payload contains the entropy-encoded segments (or ECS) divided by RST markers
402             // or only one ECS if the entropy-encoded data is not divided by RST markers
403             // length of payload = length of image data - length of data already read
404             final int[] scanPayload = Allocator.intArray(imageData.length - segmentLength);
405             int payloadReadCount = 0;
406             while (payloadReadCount < scanPayload.length) {
407                 scanPayload[payloadReadCount] = is.read();
408                 payloadReadCount++;
409             }
410 
411             int hMax = 0;
412             int vMax = 0;
413             for (int i = 0; i < sofnSegment.numberOfComponents; i++) {
414                 hMax = Math.max(hMax, sofnSegment.getComponents(i).horizontalSamplingFactor);
415                 vMax = Math.max(vMax, sofnSegment.getComponents(i).verticalSamplingFactor);
416             }
417             final int hSize = 8 * hMax;
418             final int vSize = 8 * vMax;
419 
420             final int xMCUs = (sofnSegment.width + hSize - 1) / hSize;
421             final int yMCUs = (sofnSegment.height + vSize - 1) / vSize;
422             final Block[] mcu = allocateMcuMemory();
423             final Block[] scaledMCU = Allocator.array(mcu.length, Block[]::new, Block.SHALLOW_SIZE);
424             Arrays.setAll(scaledMCU, i -> new Block(hSize, vSize));
425             final int[] preds = Allocator.intArray(sofnSegment.numberOfComponents);
426             ColorModel colorModel;
427             WritableRaster raster;
428             Allocator.check(Integer.BYTES * sofnSegment.width * sofnSegment.height);
429             switch (sofnSegment.numberOfComponents) {
430             case 4:
431                 // Special handling for the application-RGB case: TIFF files with
432                 // JPEG compression can support an alpha channel. This extension
433                 // to the JPEG standard is implemented by specifying a color model
434                 // with a fourth channel for alpha.
435                 if (useTiffRgb) {
436                     colorModel = new DirectColorModel(32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000);
437                     raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, BAND_MASK_ARGB, null);
438                 } else {
439                     colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
440                     raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, BAND_MASK_RGB, null);
441                 }
442 
443                 break;
444             case 3:
445                 colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
446                 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, new int[] { 0x00ff0000, 0x0000ff00, 0x000000ff },
447                         null);
448                 break;
449             case 1:
450                 colorModel = new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
451                 raster = Raster.createPackedRaster(DataBuffer.TYPE_INT, sofnSegment.width, sofnSegment.height, new int[] { 0x00ff0000, 0x0000ff00, 0x000000ff },
452                         null);
453                 // FIXME: why do images come out too bright with CS_GRAY?
454                 // colorModel = new ComponentColorModel(
455                 // ColorSpace.getInstance(ColorSpace.CS_GRAY), false, true,
456                 // Transparency.OPAQUE, DataBuffer.TYPE_BYTE);
457                 // raster = colorModel.createCompatibleWritableRaster(
458                 // sofnSegment.width, sofnSegment.height);
459                 break;
460             default:
461                 throw new ImagingException(sofnSegment.numberOfComponents + " components are invalid or unsupported");
462             }
463             final DataBuffer dataBuffer = raster.getDataBuffer();
464 
465             final JpegInputStream[] bitInputStreams = splitByRstMarkers(scanPayload);
466             int bitInputStreamCount = 0;
467             JpegInputStream bitInputStream = bitInputStreams[0];
468 
469             for (int y1 = 0; y1 < vSize * yMCUs; y1 += vSize) {
470                 for (int x1 = 0; x1 < hSize * xMCUs; x1 += hSize) {
471                     // Provide the next interval if an interval is read until it's end
472                     // as long there are unread intervals available
473                     if (!bitInputStream.hasNext()) {
474                         bitInputStreamCount++;
475                         if (bitInputStreamCount < bitInputStreams.length) {
476                             bitInputStream = bitInputStreams[bitInputStreamCount];
477                         }
478                     }
479 
480                     readMcu(bitInputStream, preds, mcu);
481                     rescaleMcu(mcu, hSize, vSize, scaledMCU);
482                     int srcRowOffset = 0;
483                     int dstRowOffset = y1 * sofnSegment.width + x1;
484 
485                     // The TIFF-RGB logic was adapted from the original x2,y2 loops
486                     // but special handling was added for TIFF-JPEG RGB colorspace
487                     // and conditional checks were reorganized for efficiency
488                     if (useTiffRgb && (scaledMCU.length == 3 || scaledMCU.length == 4)) {
489                         // The original (legacy) coding for the x2 and y2 loop was:
490                         // for(y2 = 0; y2 < vSize && y1 + y2 < sofnSegment.height; y2++)
491                         // for(x2 = 0; x2 < hSize && x1 + x2 < sofnSegment.width; x2++)
492                         // Here, we pre-compute the limits of the loop to reduce the
493                         // overhead for the loop conditional evaluation.
494                         final int x2Limit;
495                         if (x1 + hSize <= sofnSegment.width) {
496                             x2Limit = hSize;
497                         } else {
498                             x2Limit = sofnSegment.width - x1;
499                         }
500                         final int y2Limit;
501                         if (y1 + vSize <= sofnSegment.height) {
502                             y2Limit = vSize;
503                         } else {
504                             y2Limit = sofnSegment.height - y1;
505                         }
506 
507                         if (scaledMCU.length == 4) {
508                             // RGBA colorspace
509                             // Although conventional JPEGs don't include an alpha channel
510                             // TIFF images that use JPEG encoding may do so. For example,
511                             // we have seen this variation in some false-color satellite images
512                             // from the U.S. National Weather Service. Ordinary JPEG files
513                             // may include an APP14 marker of type Unknowm indicating that
514                             // the scaledMCU.length of 3 should be interpreted as the RGB colorspace
515                             // and the 4-channel variation is interpreted as CYMK. But TIFF files
516                             // use their own tags to specify colorspace and do not include the APP14 marker.
517                             for (int y2 = 0; y2 < y2Limit; y2++) {
518                                 for (int x2 = 0; x2 < x2Limit; x2++) {
519                                     final int r = scaledMCU[0].samples[srcRowOffset + x2];
520                                     final int g = scaledMCU[1].samples[srcRowOffset + x2];
521                                     final int b = scaledMCU[2].samples[srcRowOffset + x2];
522                                     final int a = scaledMCU[3].samples[srcRowOffset + x2];
523                                     final int rgb = a << 24 | r << 16 | g << 8 | b;
524                                     dataBuffer.setElem(dstRowOffset + x2, rgb);
525                                 }
526                                 srcRowOffset += hSize;
527                                 dstRowOffset += sofnSegment.width;
528                             }
529                         } else {
530                             // scaledMCU.length == 3, standard RGB
531                             for (int y2 = 0; y2 < y2Limit; y2++) {
532                                 for (int x2 = 0; x2 < x2Limit; x2++) {
533                                     final int r = scaledMCU[0].samples[srcRowOffset + x2];
534                                     final int g = scaledMCU[1].samples[srcRowOffset + x2];
535                                     final int b = scaledMCU[2].samples[srcRowOffset + x2];
536                                     final int rgb = r << 16 | g << 8 | b;
537                                     dataBuffer.setElem(dstRowOffset + x2, rgb);
538                                 }
539                                 srcRowOffset += hSize;
540                                 dstRowOffset += sofnSegment.width;
541                             }
542                         }
543                     } else {
544                         for (int y2 = 0; y2 < vSize && y1 + y2 < sofnSegment.height; y2++) {
545                             for (int x2 = 0; x2 < hSize && x1 + x2 < sofnSegment.width; x2++) {
546                                 if (scaledMCU.length == 4) {
547                                     final int c = scaledMCU[0].samples[srcRowOffset + x2];
548                                     final int m = scaledMCU[1].samples[srcRowOffset + x2];
549                                     final int y = scaledMCU[2].samples[srcRowOffset + x2];
550                                     final int k = scaledMCU[3].samples[srcRowOffset + x2];
551                                     final int rgb = ColorConversions.convertCmykToRgb(c, m, y, k);
552                                     dataBuffer.setElem(dstRowOffset + x2, rgb);
553                                 } else if (scaledMCU.length == 3) {
554                                     final int y = scaledMCU[0].samples[srcRowOffset + x2];
555                                     final int cb = scaledMCU[1].samples[srcRowOffset + x2];
556                                     final int cr = scaledMCU[2].samples[srcRowOffset + x2];
557                                     final int rgb = YCbCrConverter.convertYCbCrToRgb(y, cb, cr);
558                                     dataBuffer.setElem(dstRowOffset + x2, rgb);
559                                 } else if (mcu.length == 1) {
560                                     final int y = scaledMCU[0].samples[srcRowOffset + x2];
561                                     dataBuffer.setElem(dstRowOffset + x2, y << 16 | y << 8 | y);
562                                 } else {
563                                     throw new ImagingException("Unsupported JPEG with " + mcu.length + " components");
564                                 }
565                             }
566                             srcRowOffset += hSize;
567                             dstRowOffset += sofnSegment.width;
568                         }
569                     }
570                 }
571             }
572             image = new BufferedImage(colorModel, raster, colorModel.isAlphaPremultiplied(), new Properties());
573             // byte[] remainder = super.getStreamBytes(is);
574             // for (int i = 0; i < remainder.length; i++)
575             // {
576             // System.out.println("" + i + " = " +
577             // Integer.toHexString(remainder[i]));
578             // }
579         } catch (final ImagingException imageReadEx) {
580             imageReadException = imageReadEx;
581         } catch (final IOException ioEx) {
582             ioException = ioEx;
583         } catch (final RuntimeException ex) {
584             // Corrupt images can throw NPE and IOOBE
585             imageReadException = new ImagingException("Error parsing JPEG", ex);
586         }
587     }
588 }