Coverage Report - org.apache.commons.codec.digest.Sha2Crypt
 
Classes in this File Line Coverage Branch Coverage Complexity
Sha2Crypt
97%
124/127
92%
37/40
5.4
 
 1  
 /*
 2  
  * Licensed to the Apache Software Foundation (ASF) under one or more
 3  
  * contributor license agreements.  See the NOTICE file distributed with
 4  
  * this work for additional information regarding copyright ownership.
 5  
  * The ASF licenses this file to You under the Apache License, Version 2.0
 6  
  * (the "License"); you may not use this file except in compliance with
 7  
  * the License.  You may obtain a copy of the License at
 8  
  *
 9  
  *      http://www.apache.org/licenses/LICENSE-2.0
 10  
  *
 11  
  * Unless required by applicable law or agreed to in writing, software
 12  
  * distributed under the License is distributed on an "AS IS" BASIS,
 13  
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 14  
  * See the License for the specific language governing permissions and
 15  
  * limitations under the License.
 16  
  */
 17  
 package org.apache.commons.codec.digest;
 18  
 
 19  
 import java.security.MessageDigest;
 20  
 import java.security.NoSuchAlgorithmException;
 21  
 import java.util.Arrays;
 22  
 import java.util.regex.Matcher;
 23  
 import java.util.regex.Pattern;
 24  
 
 25  
 import org.apache.commons.codec.Charsets;
 26  
 
 27  
 /**
 28  
  * SHA2-based Unix crypt implementation.
 29  
  * <p>
 30  
  * Based on the C implementation released into the Public Domain by Ulrich Drepper &lt;drepper@redhat.com&gt;
 31  
  * http://www.akkadia.org/drepper/SHA-crypt.txt
 32  
  * <p>
 33  
  * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers &lt;ch@lathspell.de&gt; and likewise put
 34  
  * into the Public Domain.
 35  
  * <p>
 36  
  * This class is immutable and thread-safe.
 37  
  *
 38  
  * @version $Id$
 39  
  * @since 1.7
 40  
  */
 41  1
 public class Sha2Crypt {
 42  
 
 43  
     /** Default number of rounds if not explicitly specified. */
 44  
     private static final int ROUNDS_DEFAULT = 5000;
 45  
 
 46  
     /** Maximum number of rounds. */
 47  
     private static final int ROUNDS_MAX = 999999999;
 48  
 
 49  
     /** Minimum number of rounds. */
 50  
     private static final int ROUNDS_MIN = 1000;
 51  
 
 52  
     /** Prefix for optional rounds specification. */
 53  
     private static final String ROUNDS_PREFIX = "rounds=";
 54  
 
 55  
     /** The number of bytes the final hash value will have (SHA-256 variant). */
 56  
     private static final int SHA256_BLOCKSIZE = 32;
 57  
 
 58  
     /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
 59  
     static final String SHA256_PREFIX = "$5$";
 60  
 
 61  
     /** The number of bytes the final hash value will have (SHA-512 variant). */
 62  
     private static final int SHA512_BLOCKSIZE = 64;
 63  
 
 64  
     /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
 65  
     static final String SHA512_PREFIX = "$6$";
 66  
 
 67  
     /** The pattern to match valid salt values. */
 68  1
     private static final Pattern SALT_PATTERN = Pattern
 69  
             .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
 70  
 
 71  
     /**
 72  
      * Generates a libc crypt() compatible "$5$" hash value with random salt.
 73  
      * <p>
 74  
      * See {@link Crypt#crypt(String, String)} for details.
 75  
      *
 76  
      * @throws RuntimeException
 77  
      *             when a {@link java.security.NoSuchAlgorithmException} is caught.
 78  
      */
 79  
     public static String sha256Crypt(final byte[] keyBytes) {
 80  2
         return sha256Crypt(keyBytes, null);
 81  
     }
 82  
 
 83  
     /**
 84  
      * Generates a libc6 crypt() compatible "$5$" hash value.
 85  
      * <p>
 86  
      * See {@link Crypt#crypt(String, String)} for details.
 87  
      *
 88  
      * @throws IllegalArgumentException
 89  
      *             if the salt does not match the allowed pattern
 90  
      * @throws RuntimeException
 91  
      *             when a {@link java.security.NoSuchAlgorithmException} is caught.
 92  
      */
 93  
     public static String sha256Crypt(final byte[] keyBytes, String salt) {
 94  20
         if (salt == null) {
 95  3
             salt = SHA256_PREFIX + B64.getRandomSalt(8);
 96  
         }
 97  20
         return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
 98  
     }
 99  
 
 100  
     /**
 101  
      * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
 102  
      * <p>
 103  
      * This is a nearly line by line conversion of the original C function. The numbered comments are from the
 104  
      * algorithm description, the short C-style ones from the original C code and the ones with "Remark" from me.
 105  
      * <p>
 106  
      * See {@link Crypt#crypt(String, String)} for details.
 107  
      *
 108  
      * @param keyBytes
 109  
      *            plaintext that should be hashed
 110  
      * @param salt
 111  
      *            real salt value without prefix or "rounds="
 112  
      * @param saltPrefix
 113  
      *            either $5$ or $6$
 114  
      * @param blocksize
 115  
      *            a value that differs between $5$ and $6$
 116  
      * @param algorithm
 117  
      *            {@link MessageDigest} algorithm identifier string
 118  
      * @return complete hash value including prefix and salt
 119  
      * @throws IllegalArgumentException
 120  
      *             if the given salt is {@code null} or does not match the allowed pattern
 121  
      * @throws IllegalArgumentException
 122  
      *             when a {@link NoSuchAlgorithmException} is caught
 123  
      * @see MessageDigestAlgorithms
 124  
      */
 125  
     private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
 126  
                                     final int blocksize, final String algorithm) {
 127  
 
 128  39
         final int keyLen = keyBytes.length;
 129  
 
 130  
         // Extracts effective salt and the number of rounds from the given salt.
 131  37
         int rounds = ROUNDS_DEFAULT;
 132  37
         boolean roundsCustom = false;
 133  37
         if (salt == null) {
 134  0
             throw new IllegalArgumentException("Salt must not be null");
 135  
         }
 136  
 
 137  37
         final Matcher m = SALT_PATTERN.matcher(salt);
 138  37
         if (m == null || !m.find()) {
 139  3
             throw new IllegalArgumentException("Invalid salt value: " + salt);
 140  
         }
 141  34
         if (m.group(3) != null) {
 142  6
             rounds = Integer.parseInt(m.group(3));
 143  6
             rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
 144  6
             roundsCustom = true;
 145  
         }
 146  34
         final String saltString = m.group(4);
 147  34
         final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8);
 148  34
         final int saltLen = saltBytes.length;
 149  
 
 150  
         // 1. start digest A
 151  
         // Prepare for the real work.
 152  34
         MessageDigest ctx = DigestUtils.getDigest(algorithm);
 153  
 
 154  
         // 2. the password string is added to digest A
 155  
         /*
 156  
          * Add the key string.
 157  
          */
 158  34
         ctx.update(keyBytes);
 159  
 
 160  
         // 3. the salt string is added to digest A. This is just the salt string
 161  
         // itself without the enclosing '$', without the magic salt_prefix $5$ and
 162  
         // $6$ respectively and without the rounds=<N> specification.
 163  
         //
 164  
         // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
 165  
         // necessary since it is a constant string and does not add security
 166  
         // and /possibly/ allows a plain text attack. Since the rounds=<N>
 167  
         // specification should never be added this would also create an
 168  
         // inconsistency.
 169  
         /*
 170  
          * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
 171  
          * (for compatibility with existing implementations).
 172  
          */
 173  34
         ctx.update(saltBytes);
 174  
 
 175  
         // 4. start digest B
 176  
         /*
 177  
          * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
 178  
          * context.
 179  
          */
 180  34
         MessageDigest altCtx = DigestUtils.getDigest(algorithm);
 181  
 
 182  
         // 5. add the password to digest B
 183  
         /*
 184  
          * Add key.
 185  
          */
 186  34
         altCtx.update(keyBytes);
 187  
 
 188  
         // 6. add the salt string to digest B
 189  
         /*
 190  
          * Add salt.
 191  
          */
 192  34
         altCtx.update(saltBytes);
 193  
 
 194  
         // 7. add the password again to digest B
 195  
         /*
 196  
          * Add key again.
 197  
          */
 198  34
         altCtx.update(keyBytes);
 199  
 
 200  
         // 8. finish digest B
 201  
         /*
 202  
          * Now get result of this (32 bytes) and add it to the other context.
 203  
          */
 204  34
         byte[] altResult = altCtx.digest();
 205  
 
 206  
         // 9. For each block of 32 or 64 bytes in the password string (excluding
 207  
         // the terminating NUL in the C representation), add digest B to digest A
 208  
         /*
 209  
          * Add for any character in the key one byte of the alternate sum.
 210  
          */
 211  
         /*
 212  
          * (Remark: the C code comment seems wrong for key length > 32!)
 213  
          */
 214  34
         int cnt = keyBytes.length;
 215  43
         while (cnt > blocksize) {
 216  9
             ctx.update(altResult, 0, blocksize);
 217  9
             cnt -= blocksize;
 218  
         }
 219  
 
 220  
         // 10. For the remaining N bytes of the password string add the first
 221  
         // N bytes of digest B to digest A
 222  34
         ctx.update(altResult, 0, cnt);
 223  
 
 224  
         // 11. For each bit of the binary representation of the length of the
 225  
         // password string up to and including the highest 1-digit, starting
 226  
         // from to lowest bit position (numeric value 1):
 227  
         //
 228  
         // a) for a 1-digit add digest B to digest A
 229  
         //
 230  
         // b) for a 0-digit add the password string
 231  
         //
 232  
         // NB: this step differs significantly from the MD5 algorithm. It
 233  
         // adds more randomness.
 234  
         /*
 235  
          * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
 236  
          * the key.
 237  
          */
 238  34
         cnt = keyBytes.length;
 239  134
         while (cnt > 0) {
 240  100
             if ((cnt & 1) != 0) {
 241  58
                 ctx.update(altResult, 0, blocksize);
 242  
             } else {
 243  42
                 ctx.update(keyBytes);
 244  
             }
 245  100
             cnt >>= 1;
 246  
         }
 247  
 
 248  
         // 12. finish digest A
 249  
         /*
 250  
          * Create intermediate result.
 251  
          */
 252  34
         altResult = ctx.digest();
 253  
 
 254  
         // 13. start digest DP
 255  
         /*
 256  
          * Start computation of P byte sequence.
 257  
          */
 258  34
         altCtx = DigestUtils.getDigest(algorithm);
 259  
 
 260  
         // 14. for every byte in the password (excluding the terminating NUL byte
 261  
         // in the C representation of the string)
 262  
         //
 263  
         // add the password to digest DP
 264  
         /*
 265  
          * For every character in the password add the entire password.
 266  
          */
 267  592
         for (int i = 1; i <= keyLen; i++) {
 268  558
             altCtx.update(keyBytes);
 269  
         }
 270  
 
 271  
         // 15. finish digest DP
 272  
         /*
 273  
          * Finish the digest.
 274  
          */
 275  34
         byte[] tempResult = altCtx.digest();
 276  
 
 277  
         // 16. produce byte sequence P of the same length as the password where
 278  
         //
 279  
         // a) for each block of 32 or 64 bytes of length of the password string
 280  
         // the entire digest DP is used
 281  
         //
 282  
         // b) for the remaining N (up to 31 or 63) bytes use the first N
 283  
         // bytes of digest DP
 284  
         /*
 285  
          * Create byte sequence P.
 286  
          */
 287  34
         final byte[] pBytes = new byte[keyLen];
 288  34
         int cp = 0;
 289  43
         while (cp < keyLen - blocksize) {
 290  9
             System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
 291  9
             cp += blocksize;
 292  
         }
 293  34
         System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
 294  
 
 295  
         // 17. start digest DS
 296  
         /*
 297  
          * Start computation of S byte sequence.
 298  
          */
 299  34
         altCtx = DigestUtils.getDigest(algorithm);
 300  
 
 301  
         // 18. repeast the following 16+A[0] times, where A[0] represents the first
 302  
         // byte in digest A interpreted as an 8-bit unsigned value
 303  
         //
 304  
         // add the salt to digest DS
 305  
         /*
 306  
          * For every character in the password add the entire password.
 307  
          */
 308  5661
         for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
 309  5627
             altCtx.update(saltBytes);
 310  
         }
 311  
 
 312  
         // 19. finish digest DS
 313  
         /*
 314  
          * Finish the digest.
 315  
          */
 316  34
         tempResult = altCtx.digest();
 317  
 
 318  
         // 20. produce byte sequence S of the same length as the salt string where
 319  
         //
 320  
         // a) for each block of 32 or 64 bytes of length of the salt string
 321  
         // the entire digest DS is used
 322  
         //
 323  
         // b) for the remaining N (up to 31 or 63) bytes use the first N
 324  
         // bytes of digest DS
 325  
         /*
 326  
          * Create byte sequence S.
 327  
          */
 328  
         // Remark: The salt is limited to 16 chars, how does this make sense?
 329  34
         final byte[] sBytes = new byte[saltLen];
 330  34
         cp = 0;
 331  34
         while (cp < saltLen - blocksize) {
 332  0
             System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
 333  0
             cp += blocksize;
 334  
         }
 335  34
         System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
 336  
 
 337  
         // 21. repeat a loop according to the number specified in the rounds=<N>
 338  
         // specification in the salt (or the default value if none is
 339  
         // present). Each round is numbered, starting with 0 and up to N-1.
 340  
         //
 341  
         // The loop uses a digest as input. In the first round it is the
 342  
         // digest produced in step 12. In the latter steps it is the digest
 343  
         // produced in step 21.h. The following text uses the notation
 344  
         // "digest A/C" to describe this behavior.
 345  
         /*
 346  
          * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
 347  
          */
 348  164034
         for (int i = 0; i <= rounds - 1; i++) {
 349  
             // a) start digest C
 350  
             /*
 351  
              * New context.
 352  
              */
 353  164000
             ctx = DigestUtils.getDigest(algorithm);
 354  
 
 355  
             // b) for odd round numbers add the byte sequense P to digest C
 356  
             // c) for even round numbers add digest A/C
 357  
             /*
 358  
              * Add key or last result.
 359  
              */
 360  164000
             if ((i & 1) != 0) {
 361  81998
                 ctx.update(pBytes, 0, keyLen);
 362  
             } else {
 363  82002
                 ctx.update(altResult, 0, blocksize);
 364  
             }
 365  
 
 366  
             // d) for all round numbers not divisible by 3 add the byte sequence S
 367  
             /*
 368  
              * Add salt for numbers not divisible by 3.
 369  
              */
 370  164000
             if (i % 3 != 0) {
 371  109322
                 ctx.update(sBytes, 0, saltLen);
 372  
             }
 373  
 
 374  
             // e) for all round numbers not divisible by 7 add the byte sequence P
 375  
             /*
 376  
              * Add key for numbers not divisible by 7.
 377  
              */
 378  164000
             if (i % 7 != 0) {
 379  140550
                 ctx.update(pBytes, 0, keyLen);
 380  
             }
 381  
 
 382  
             // f) for odd round numbers add digest A/C
 383  
             // g) for even round numbers add the byte sequence P
 384  
             /*
 385  
              * Add key or last result.
 386  
              */
 387  164000
             if ((i & 1) != 0) {
 388  81998
                 ctx.update(altResult, 0, blocksize);
 389  
             } else {
 390  82002
                 ctx.update(pBytes, 0, keyLen);
 391  
             }
 392  
 
 393  
             // h) finish digest C.
 394  
             /*
 395  
              * Create intermediate result.
 396  
              */
 397  164000
             altResult = ctx.digest();
 398  
         }
 399  
 
 400  
         // 22. Produce the output string. This is an ASCII string of the maximum
 401  
         // size specified above, consisting of multiple pieces:
 402  
         //
 403  
         // a) the salt salt_prefix, $5$ or $6$ respectively
 404  
         //
 405  
         // b) the rounds=<N> specification, if one was present in the input
 406  
         // salt string. A trailing '$' is added in this case to separate
 407  
         // the rounds specification from the following text.
 408  
         //
 409  
         // c) the salt string truncated to 16 characters
 410  
         //
 411  
         // d) a '$' character
 412  
         /*
 413  
          * Now we can construct the result string. It consists of three parts.
 414  
          */
 415  34
         final StringBuilder buffer = new StringBuilder(saltPrefix);
 416  34
         if (roundsCustom) {
 417  6
             buffer.append(ROUNDS_PREFIX);
 418  6
             buffer.append(rounds);
 419  6
             buffer.append("$");
 420  
         }
 421  34
         buffer.append(saltString);
 422  34
         buffer.append("$");
 423  
 
 424  
         // e) the base-64 encoded final C digest. The encoding used is as
 425  
         // follows:
 426  
         // [...]
 427  
         //
 428  
         // Each group of three bytes from the digest produces four
 429  
         // characters as output:
 430  
         //
 431  
         // 1. character: the six low bits of the first byte
 432  
         // 2. character: the two high bits of the first byte and the
 433  
         // four low bytes from the second byte
 434  
         // 3. character: the four high bytes from the second byte and
 435  
         // the two low bits from the third byte
 436  
         // 4. character: the six high bits from the third byte
 437  
         //
 438  
         // The groups of three bytes are as follows (in this sequence).
 439  
         // These are the indices into the byte array containing the
 440  
         // digest, starting with index 0. For the last group there are
 441  
         // not enough bytes left in the digest and the value zero is used
 442  
         // in its place. This group also produces only three or two
 443  
         // characters as output for SHA-512 and SHA-512 respectively.
 444  
 
 445  
         // This was just a safeguard in the C implementation:
 446  
         // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
 447  
 
 448  34
         if (blocksize == 32) {
 449  18
             B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
 450  18
             B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
 451  18
             B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
 452  18
             B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
 453  18
             B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
 454  18
             B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
 455  18
             B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
 456  18
             B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
 457  18
             B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
 458  18
             B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
 459  18
             B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
 460  
         } else {
 461  16
             B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
 462  16
             B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
 463  16
             B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
 464  16
             B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
 465  16
             B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
 466  16
             B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
 467  16
             B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
 468  16
             B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
 469  16
             B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
 470  16
             B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
 471  16
             B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
 472  16
             B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
 473  16
             B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
 474  16
             B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
 475  16
             B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
 476  16
             B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
 477  16
             B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
 478  16
             B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
 479  16
             B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
 480  16
             B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
 481  16
             B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
 482  16
             B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
 483  
         }
 484  
 
 485  
         /*
 486  
          * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
 487  
          * cannot get any information.
 488  
          */
 489  
         // Is there a better way to do this with the JVM?
 490  34
         Arrays.fill(tempResult, (byte) 0);
 491  34
         Arrays.fill(pBytes, (byte) 0);
 492  34
         Arrays.fill(sBytes, (byte) 0);
 493  34
         ctx.reset();
 494  34
         altCtx.reset();
 495  34
         Arrays.fill(keyBytes, (byte) 0);
 496  34
         Arrays.fill(saltBytes, (byte) 0);
 497  
 
 498  34
         return buffer.toString();
 499  
     }
 500  
 
 501  
     /**
 502  
      * Generates a libc crypt() compatible "$6$" hash value with random salt.
 503  
      * <p>
 504  
      * See {@link Crypt#crypt(String, String)} for details.
 505  
      *
 506  
      * @throws RuntimeException
 507  
      *             when a {@link java.security.NoSuchAlgorithmException} is caught.
 508  
      */
 509  
     public static String sha512Crypt(final byte[] keyBytes) {
 510  5
         return sha512Crypt(keyBytes, null);
 511  
     }
 512  
 
 513  
     /**
 514  
      * Generates a libc6 crypt() compatible "$6$" hash value.
 515  
      * <p>
 516  
      * See {@link Crypt#crypt(String, String)} for details.
 517  
      *
 518  
      * @throws IllegalArgumentException
 519  
      *             if the salt does not match the allowed pattern
 520  
      * @throws RuntimeException
 521  
      *             when a {@link java.security.NoSuchAlgorithmException} is caught.
 522  
      */
 523  
     public static String sha512Crypt(final byte[] keyBytes, String salt) {
 524  19
         if (salt == null) {
 525  6
             salt = SHA512_PREFIX + B64.getRandomSalt(8);
 526  
         }
 527  19
         return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
 528  
     }
 529  
 }