Home | Trees | Indices | Help |
|
---|
|
Generator methods for creating RDDs comprised of i.i.d samples from some distribution.
Static Methods | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
Method Details |
Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0). To transform the distribution in the generated RDD from U(0.0, 1.0) to
U(a, b), use >>> x = RandomRDDs.uniformRDD(sc, 100).collect() >>> len(x) 100 >>> max(x) <= 1.0 and min(x) >= 0.0 True >>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions() 4 >>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions() >>> parts == sc.defaultParallelism True |
Generates an RDD comprised of i.i.d. samples from the standard normal distribution. To transform the distribution in the generated RDD from standard
normal to some other normal N(mean, sigma^2), use
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L) >>> stats = x.stats() >>> stats.count() 1000L >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 True |
Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean. >>> mean = 100.0 >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=1L) >>> stats = x.stats() >>> stats.count() 1000L >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(stats.stdev() - sqrt(mean)) < 0.5 True |
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the uniform distribution U(0.0, 1.0). >>> import numpy as np >>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect()) >>> mat.shape (10, 10) >>> mat.max() <= 1.0 and mat.min() >= 0.0 True >>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions() 4 |
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the standard normal distribution. >>> import numpy as np >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 True >>> abs(mat.std() - 1.0) < 0.1 True |
Generates an RDD comprised of vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean. >>> import numpy as np >>> mean = 100.0 >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - mean) < 0.5 True >>> from math import sqrt >>> abs(mat.std() - sqrt(mean)) < 0.5 True |
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Mon Nov 24 15:21:12 2014 | http://epydoc.sourceforge.net |