name: Resnets on ImageNet SINGA version: 1.1 SINGA commit: 45ec92d8ffc1fa1385a9307fdf07e21da939ee2f parameter_url: https://s3-ap-southeast-1.amazonaws.com/dlfile/resnet/resnet-18.tar.gz license: Apache V2, https://github.com/facebook/fb.resnet.torch/blob/master/LICENSE
用ResNet做图像分类¶
这个例子中,我们将Torch训练好的ResNet转换为SINGA模型以用作图像分类。
操作说明¶
下载参数的checkpoint文件到如下目录
$ wget https://s3-ap-southeast-1.amazonaws.com/dlfile/resnet/resnet-18.tar.gz $ wget https://s3-ap-southeast-1.amazonaws.com/dlfile/resnet/synset_words.txt $ tar xvf resnet-18.tar.gz
运行程序
$ python serve.py -h
运行程序
# use cpu $ python serve.py --use_cpu --parameter_file resnet-18.pickle --model resnet --depth 18 & # use gpu $ python serve.py --parameter_file resnet-18.pickle --model resnet --depth 18 &
我们提供了以下模型和深度配置的参数文件:
提交图片进行分类
$ curl -i -F image=@image1.jpg http://localhost:9999/api $ curl -i -F image=@image2.jpg http://localhost:9999/api $ curl -i -F image=@image3.jpg http://localhost:9999/api
image1.jpg, image2.jpg和image3.jpg应该在执行指令前就已被下载。