name: GoogleNet on ImageNet
SINGA version: 1.0.1
SINGA commit: 8c990f7da2de220e8a012c6a8ecc897dc7532744
parameter_url: https://s3-ap-southeast-1.amazonaws.com/dlfile/bvlc_googlenet.tar.gz
parameter_sha1: 0a88e8948b1abca3badfd8d090d6be03f8d7655d
license: unrestricted https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
用GoogleNet做图像分类¶
这个例子中,我们将caffe训练好的GoogleNet转换为SINGA模型以用作图像分类。
操作说明¶
下载参数的checkpoint文件到如下目录
$ wget https://s3-ap-southeast-1.amazonaws.com/dlfile/bvlc_googlenet.tar.gz $ tar xvf bvlc_googlenet.tar.gz
运行程序
# use cpu $ python serve.py -C & # use gpu $ python serve.py &
提交图片进行分类
$ curl -i -F image=@image1.jpg http://localhost:9999/api $ curl -i -F image=@image2.jpg http://localhost:9999/api $ curl -i -F image=@image3.jpg http://localhost:9999/api
image1.jpg, image2.jpg和image3.jpg应该在执行指令前就已被下载。
详细信息¶
我们首先从Caffe的checkpoint文件中提取参数值,并转换为pickle版本。下载checkpoint文件后进入caffe_root/python
文件夹,运行如下脚本:
# to be executed within caffe_root/python folder
import caffe
import numpy as np
import cPickle as pickle
model_def = '../models/bvlc_googlenet/deploy.prototxt'
weight = 'bvlc_googlenet.caffemodel' # must be downloaded at first
net = caffe.Net(model_def, weight, caffe.TEST)
params = {}
for layer_name in net.params.keys():
weights=np.copy(net.params[layer_name][0].data)
bias=np.copy(net.params[layer_name][1].data)
params[layer_name+'_weight']=weights
params[layer_name+'_bias']=bias
print layer_name, weights.shape, bias.shape
with open('bvlc_googlenet.pickle', 'wb') as fd:
pickle.dump(params, fd)
然后我们使用SINGA的FeedForwardNet结构构建GoogleNet。 请注意,我们添加了一个EndPadding层来解决Caffe(下取整)和cuDNN(上取整)之间池化图层舍入策略差异的问题。 只有MaxPooling图层以外的启动块才有此问题。 参考这里更多详情。