Coverage Report - org.apache.giraph.examples.RandomWalkComputation
 
Classes in this File Line Coverage Branch Coverage Complexity
RandomWalkComputation
0%
0/45
0%
0/8
1.5
 
 1  
 /*
 2  
  * Licensed to the Apache Software Foundation (ASF) under one
 3  
  * or more contributor license agreements.  See the NOTICE file
 4  
  * distributed with this work for additional information
 5  
  * regarding copyright ownership.  The ASF licenses this file
 6  
  * to you under the Apache License, Version 2.0 (the
 7  
  * "License"); you may not use this file except in compliance
 8  
  * with the License.  You may obtain a copy of the License at
 9  
  *
 10  
  *     http://www.apache.org/licenses/LICENSE-2.0
 11  
  *
 12  
  * Unless required by applicable law or agreed to in writing, software
 13  
  * distributed under the License is distributed on an "AS IS" BASIS,
 14  
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 15  
  * See the License for the specific language governing permissions and
 16  
  * limitations under the License.
 17  
  */
 18  
 
 19  
 package org.apache.giraph.examples;
 20  
 
 21  
 import org.apache.giraph.graph.BasicComputation;
 22  
 import org.apache.giraph.edge.Edge;
 23  
 import org.apache.giraph.graph.Vertex;
 24  
 import org.apache.hadoop.io.DoubleWritable;
 25  
 import org.apache.hadoop.io.LongWritable;
 26  
 import org.apache.hadoop.io.Writable;
 27  
 
 28  
 import java.io.IOException;
 29  
 
 30  
 /**
 31  
  * Base class for executing a random walk on a graph
 32  
  *
 33  
  * @param <E> edge type
 34  
  */
 35  0
 public abstract class RandomWalkComputation<E extends Writable>
 36  
     extends BasicComputation<LongWritable, DoubleWritable, E, DoubleWritable> {
 37  
   /** Configuration parameter for the number of supersteps to execute */
 38  0
   static final String MAX_SUPERSTEPS = RandomWalkComputation.class.getName() +
 39  
       ".maxSupersteps";
 40  
   /** Configuration parameter for the teleportation probability */
 41  0
   static final String TELEPORTATION_PROBABILITY = RandomWalkComputation.class
 42  0
       .getName() + ".teleportationProbability";
 43  
   /** Name of aggregator for the probability assigned to dangling vertices */
 44  0
   static final String CUMULATIVE_DANGLING_PROBABILITY =
 45  0
       RandomWalkComputation.class.getName() + ".cumulativeDanglingProbability";
 46  
   /** Name of aggregator for the probability assigned to all vertices */
 47  0
   static final String CUMULATIVE_PROBABILITY = RandomWalkComputation.class
 48  0
       .getName() + ".cumulativeProbability";
 49  
     /** Name of aggregator for the number of dangling vertices */
 50  0
   static final String NUM_DANGLING_VERTICES = RandomWalkComputation.class
 51  0
       .getName() + ".numDanglingVertices";
 52  
   /** Name of aggregator for the L1 norm of the probability difference, used
 53  
    * for convergence detection */
 54  0
   static final String L1_NORM_OF_PROBABILITY_DIFFERENCE =
 55  0
       RandomWalkComputation.class.getName() + ".l1NormOfProbabilityDifference";
 56  
   /** Reusable {@link DoubleWritable} instance to avoid object instantiation */
 57  0
   private final DoubleWritable doubleWritable = new DoubleWritable();
 58  
   /** Reusable {@link LongWritable} for counting dangling vertices */
 59  0
   private final LongWritable one = new LongWritable(1);
 60  
 
 61  
   /**
 62  
    * Compute an initial probability value for the vertex. Per default,
 63  
    * we start with a uniform distribution.
 64  
    * @return The initial probability value.
 65  
    */
 66  
   protected double initialProbability() {
 67  0
     return 1.0 / getTotalNumVertices();
 68  
   }
 69  
 
 70  
   /**
 71  
    * Compute the probability of transitioning to a neighbor vertex
 72  
    * @param vertex Vertex
 73  
    * @param stateProbability current steady state probability of the vertex
 74  
    * @param edge edge to neighbor
 75  
    * @return the probability of transitioning to a neighbor vertex
 76  
    */
 77  
   protected abstract double transitionProbability(
 78  
       Vertex<LongWritable, DoubleWritable, E> vertex,
 79  
       double stateProbability,
 80  
       Edge<LongWritable, E> edge);
 81  
 
 82  
   /**
 83  
    * Perform a single step of a random walk computation.
 84  
    * @param vertex Vertex
 85  
    * @param messages Messages received in the previous step.
 86  
    * @param teleportationProbability Probability of teleporting to another
 87  
    *          vertex.
 88  
    * @return The new probability value.
 89  
    */
 90  
   protected abstract double recompute(
 91  
       Vertex<LongWritable, DoubleWritable, E> vertex,
 92  
       Iterable<DoubleWritable> messages,
 93  
       double teleportationProbability);
 94  
 
 95  
   /**
 96  
    * Returns the cumulative probability from dangling vertices.
 97  
    * @return The cumulative probability from dangling vertices.
 98  
    */
 99  
   protected double getDanglingProbability() {
 100  0
     return this.<DoubleWritable>getAggregatedValue(
 101  0
         RandomWalkComputation.CUMULATIVE_DANGLING_PROBABILITY).get();
 102  
   }
 103  
 
 104  
   /**
 105  
    * Returns the cumulative probability from dangling vertices.
 106  
    * @return The cumulative probability from dangling vertices.
 107  
    */
 108  
   protected double getPreviousCumulativeProbability() {
 109  0
     return this.<DoubleWritable>getAggregatedValue(
 110  0
         RandomWalkComputation.CUMULATIVE_PROBABILITY).get();
 111  
   }
 112  
 
 113  
   @Override
 114  
   public void compute(
 115  
       Vertex<LongWritable, DoubleWritable, E> vertex,
 116  
       Iterable<DoubleWritable> messages) throws IOException {
 117  
     double stateProbability;
 118  
 
 119  0
     if (getSuperstep() > 0) {
 120  
 
 121  0
       double previousStateProbability = vertex.getValue().get();
 122  0
       stateProbability =
 123  0
           recompute(vertex, messages, teleportationProbability());
 124  
 
 125  
       // Important: rescale for numerical stability
 126  0
       stateProbability /= getPreviousCumulativeProbability();
 127  
 
 128  0
       doubleWritable.set(Math.abs(stateProbability - previousStateProbability));
 129  0
       aggregate(L1_NORM_OF_PROBABILITY_DIFFERENCE, doubleWritable);
 130  
 
 131  0
     } else {
 132  0
       stateProbability = initialProbability();
 133  
     }
 134  
 
 135  0
     vertex.getValue().set(stateProbability);
 136  
 
 137  0
     aggregate(CUMULATIVE_PROBABILITY, vertex.getValue());
 138  
 
 139  
     // Compute dangling node contribution for next superstep
 140  0
     if (vertex.getNumEdges() == 0) {
 141  0
       aggregate(NUM_DANGLING_VERTICES, one);
 142  0
       aggregate(CUMULATIVE_DANGLING_PROBABILITY, vertex.getValue());
 143  
     }
 144  
 
 145  0
     if (getSuperstep() < maxSupersteps()) {
 146  0
       for (Edge<LongWritable, E> edge : vertex.getEdges()) {
 147  0
         double transitionProbability =
 148  0
             transitionProbability(vertex, stateProbability, edge);
 149  0
         doubleWritable.set(transitionProbability);
 150  0
         sendMessage(edge.getTargetVertexId(), doubleWritable);
 151  0
       }
 152  
     } else {
 153  0
       vertex.voteToHalt();
 154  
     }
 155  0
   }
 156  
 
 157  
   /**
 158  
    * Reads the number of supersteps to execute from the configuration
 159  
    * @return number of supersteps to execute
 160  
    */
 161  
   private int maxSupersteps() {
 162  0
     return ((RandomWalkWorkerContext) getWorkerContext()).getMaxSupersteps();
 163  
   }
 164  
 
 165  
   /**
 166  
    * Reads the teleportation probability from the configuration
 167  
    * @return teleportation probability
 168  
    */
 169  
   protected double teleportationProbability() {
 170  0
     return ((RandomWalkWorkerContext) getWorkerContext())
 171  0
         .getTeleportationProbability();
 172  
   }
 173  
 }