View Javadoc

1   /**
2    * Licensed to the Apache Software Foundation (ASF) under one
3    * or more contributor license agreements.  See the NOTICE file
4    * distributed with this work for additional information
5    * regarding copyright ownership.  The ASF licenses this file
6    * to you under the Apache License, Version 2.0 (the
7    * "License"); you may not use this file except in compliance
8    * with the License.  You may obtain a copy of the License at
9    *
10   *     http://www.apache.org/licenses/LICENSE-2.0
11   *
12   * Unless required by applicable law or agreed to in writing, software
13   * distributed under the License is distributed on an "AS IS" BASIS,
14   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15   * See the License for the specific language governing permissions and
16   * limitations under the License.
17   */
18  package org.apache.hadoop.hbase.util;
19  
20  import static com.google.common.base.Preconditions.checkArgument;
21  import static com.google.common.base.Preconditions.checkNotNull;
22  import static com.google.common.base.Preconditions.checkPositionIndex;
23  
24  import java.io.DataInput;
25  import java.io.DataOutput;
26  import java.io.IOException;
27  import java.math.BigDecimal;
28  import java.math.BigInteger;
29  import java.nio.ByteBuffer;
30  import java.nio.charset.Charset;
31  import java.security.SecureRandom;
32  import java.util.Arrays;
33  import java.util.Collection;
34  import java.util.Comparator;
35  import java.util.Iterator;
36  import java.util.List;
37  
38  import com.google.protobuf.ByteString;
39  
40  import org.apache.commons.logging.Log;
41  import org.apache.commons.logging.LogFactory;
42  import org.apache.hadoop.hbase.classification.InterfaceAudience;
43  import org.apache.hadoop.hbase.classification.InterfaceStability;
44  import org.apache.hadoop.hbase.Cell;
45  import org.apache.hadoop.hbase.CellComparator;
46  import org.apache.hadoop.hbase.KeyValue;
47  import org.apache.hadoop.io.RawComparator;
48  import org.apache.hadoop.io.WritableComparator;
49  import org.apache.hadoop.io.WritableUtils;
50  
51  import sun.misc.Unsafe;
52  
53  import com.google.common.annotations.VisibleForTesting;
54  import com.google.common.collect.Lists;
55  
56  /**
57   * Utility class that handles byte arrays, conversions to/from other types,
58   * comparisons, hash code generation, manufacturing keys for HashMaps or
59   * HashSets, and can be used as key in maps or trees.
60   */
61  @SuppressWarnings("restriction")
62  @InterfaceAudience.Public
63  @InterfaceStability.Stable
64  @edu.umd.cs.findbugs.annotations.SuppressWarnings(
65      value="EQ_CHECK_FOR_OPERAND_NOT_COMPATIBLE_WITH_THIS",
66      justification="It has been like this forever")
67  public class Bytes implements Comparable<Bytes> {
68    //HConstants.UTF8_ENCODING should be updated if this changed
69    /** When we encode strings, we always specify UTF8 encoding */
70    private static final String UTF8_ENCODING = "UTF-8";
71  
72    //HConstants.UTF8_CHARSET should be updated if this changed
73    /** When we encode strings, we always specify UTF8 encoding */
74    private static final Charset UTF8_CHARSET = Charset.forName(UTF8_ENCODING);
75  
76    //HConstants.EMPTY_BYTE_ARRAY should be updated if this changed
77    private static final byte [] EMPTY_BYTE_ARRAY = new byte [0];
78  
79    private static final Log LOG = LogFactory.getLog(Bytes.class);
80  
81    /**
82     * Size of boolean in bytes
83     */
84    public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE;
85  
86    /**
87     * Size of byte in bytes
88     */
89    public static final int SIZEOF_BYTE = SIZEOF_BOOLEAN;
90  
91    /**
92     * Size of char in bytes
93     */
94    public static final int SIZEOF_CHAR = Character.SIZE / Byte.SIZE;
95  
96    /**
97     * Size of double in bytes
98     */
99    public static final int SIZEOF_DOUBLE = Double.SIZE / Byte.SIZE;
100 
101   /**
102    * Size of float in bytes
103    */
104   public static final int SIZEOF_FLOAT = Float.SIZE / Byte.SIZE;
105 
106   /**
107    * Size of int in bytes
108    */
109   public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE;
110 
111   /**
112    * Size of long in bytes
113    */
114   public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE;
115 
116   /**
117    * Size of short in bytes
118    */
119   public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE;
120 
121   /**
122    * Mask to apply to a long to reveal the lower int only. Use like this:
123    * int i = (int)(0xFFFFFFFF00000000L ^ some_long_value);
124    */
125   public static final long MASK_FOR_LOWER_INT_IN_LONG = 0xFFFFFFFF00000000L;
126 
127   /**
128    * Estimate of size cost to pay beyond payload in jvm for instance of byte [].
129    * Estimate based on study of jhat and jprofiler numbers.
130    */
131   // JHat says BU is 56 bytes.
132   // SizeOf which uses java.lang.instrument says 24 bytes. (3 longs?)
133   public static final int ESTIMATED_HEAP_TAX = 16;
134 
135 
136   /**
137    * Returns length of the byte array, returning 0 if the array is null.
138    * Useful for calculating sizes.
139    * @param b byte array, which can be null
140    * @return 0 if b is null, otherwise returns length
141    */
142   final public static int len(byte[] b) {
143     return b == null ? 0 : b.length;
144   }
145 
146   private byte[] bytes;
147   private int offset;
148   private int length;
149 
150   /**
151    * Create a zero-size sequence.
152    */
153   public Bytes() {
154     super();
155   }
156 
157   /**
158    * Create a Bytes using the byte array as the initial value.
159    * @param bytes This array becomes the backing storage for the object.
160    */
161   public Bytes(byte[] bytes) {
162     this(bytes, 0, bytes.length);
163   }
164 
165   /**
166    * Set the new Bytes to the contents of the passed
167    * <code>ibw</code>.
168    * @param ibw the value to set this Bytes to.
169    */
170   public Bytes(final Bytes ibw) {
171     this(ibw.get(), ibw.getOffset(), ibw.getLength());
172   }
173 
174   /**
175    * Set the value to a given byte range
176    * @param bytes the new byte range to set to
177    * @param offset the offset in newData to start at
178    * @param length the number of bytes in the range
179    */
180   public Bytes(final byte[] bytes, final int offset,
181       final int length) {
182     this.bytes = bytes;
183     this.offset = offset;
184     this.length = length;
185   }
186 
187   /**
188    * Copy bytes from ByteString instance.
189    * @param byteString copy from
190    */
191   public Bytes(final ByteString byteString) {
192     this(byteString.toByteArray());
193   }
194 
195   /**
196    * Get the data from the Bytes.
197    * @return The data is only valid between offset and offset+length.
198    */
199   public byte [] get() {
200     if (this.bytes == null) {
201       throw new IllegalStateException("Uninitialiized. Null constructor " +
202           "called w/o accompaying readFields invocation");
203     }
204     return this.bytes;
205   }
206 
207   /**
208    * @param b Use passed bytes as backing array for this instance.
209    */
210   public void set(final byte [] b) {
211     set(b, 0, b.length);
212   }
213 
214   /**
215    * @param b Use passed bytes as backing array for this instance.
216    * @param offset
217    * @param length
218    */
219   public void set(final byte [] b, final int offset, final int length) {
220     this.bytes = b;
221     this.offset = offset;
222     this.length = length;
223   }
224 
225   /**
226    * @return the number of valid bytes in the buffer
227    * @deprecated use {@link #getLength()} instead
228    */
229   @Deprecated
230   public int getSize() {
231     if (this.bytes == null) {
232       throw new IllegalStateException("Uninitialiized. Null constructor " +
233           "called w/o accompaying readFields invocation");
234     }
235     return this.length;
236   }
237 
238   /**
239    * @return the number of valid bytes in the buffer
240    */
241   public int getLength() {
242     if (this.bytes == null) {
243       throw new IllegalStateException("Uninitialiized. Null constructor " +
244           "called w/o accompaying readFields invocation");
245     }
246     return this.length;
247   }
248 
249   /**
250    * @return offset
251    */
252   public int getOffset(){
253     return this.offset;
254   }
255 
256   public ByteString toByteString() {
257     return ByteString.copyFrom(this.bytes, this.offset, this.length);
258   }
259 
260   @Override
261   public int hashCode() {
262     return Bytes.hashCode(bytes, offset, length);
263   }
264 
265   /**
266    * Define the sort order of the Bytes.
267    * @param that The other bytes writable
268    * @return Positive if left is bigger than right, 0 if they are equal, and
269    *         negative if left is smaller than right.
270    */
271   public int compareTo(Bytes that) {
272     return BYTES_RAWCOMPARATOR.compare(
273         this.bytes, this.offset, this.length,
274         that.bytes, that.offset, that.length);
275   }
276 
277   /**
278    * Compares the bytes in this object to the specified byte array
279    * @param that
280    * @return Positive if left is bigger than right, 0 if they are equal, and
281    *         negative if left is smaller than right.
282    */
283   public int compareTo(final byte [] that) {
284     return BYTES_RAWCOMPARATOR.compare(
285         this.bytes, this.offset, this.length,
286         that, 0, that.length);
287   }
288 
289   /**
290    * @see Object#equals(Object)
291    */
292   @Override
293   public boolean equals(Object right_obj) {
294     if (right_obj instanceof byte []) {
295       return compareTo((byte [])right_obj) == 0;
296     }
297     if (right_obj instanceof Bytes) {
298       return compareTo((Bytes)right_obj) == 0;
299     }
300     return false;
301   }
302 
303   /**
304    * @see Object#toString()
305    */
306   @Override
307   public String toString() {
308     return Bytes.toString(bytes, offset, length);
309   }
310 
311   /**
312    * @param array List of byte [].
313    * @return Array of byte [].
314    */
315   public static byte [][] toArray(final List<byte []> array) {
316     // List#toArray doesn't work on lists of byte [].
317     byte[][] results = new byte[array.size()][];
318     for (int i = 0; i < array.size(); i++) {
319       results[i] = array.get(i);
320     }
321     return results;
322   }
323 
324   /**
325    * Returns a copy of the bytes referred to by this writable
326    */
327   public byte[] copyBytes() {
328     return Arrays.copyOfRange(bytes, offset, offset+length);
329   }
330   /**
331    * Byte array comparator class.
332    */
333   @InterfaceAudience.Public
334   @InterfaceStability.Stable
335   public static class ByteArrayComparator implements RawComparator<byte []> {
336     /**
337      * Constructor
338      */
339     public ByteArrayComparator() {
340       super();
341     }
342     @Override
343     public int compare(byte [] left, byte [] right) {
344       return compareTo(left, right);
345     }
346     @Override
347     public int compare(byte [] b1, int s1, int l1, byte [] b2, int s2, int l2) {
348       return LexicographicalComparerHolder.BEST_COMPARER.
349         compareTo(b1, s1, l1, b2, s2, l2);
350     }
351   }
352 
353   /**
354    * A {@link ByteArrayComparator} that treats the empty array as the largest value.
355    * This is useful for comparing row end keys for regions.
356    */
357   // TODO: unfortunately, HBase uses byte[0] as both start and end keys for region
358   // boundaries. Thus semantically, we should treat empty byte array as the smallest value
359   // while comparing row keys, start keys etc; but as the largest value for comparing
360   // region boundaries for endKeys.
361   @InterfaceAudience.Public
362   @InterfaceStability.Stable
363   public static class RowEndKeyComparator extends ByteArrayComparator {
364     @Override
365     public int compare(byte[] left, byte[] right) {
366       return compare(left, 0, left.length, right, 0, right.length);
367     }
368     @Override
369     public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
370       if (b1 == b2 && s1 == s2 && l1 == l2) {
371         return 0;
372       }
373       if (l1 == 0) {
374         return l2; //0 or positive
375       }
376       if (l2 == 0) {
377         return -1;
378       }
379       return super.compare(b1, s1, l1, b2, s2, l2);
380     }
381   }
382 
383   /**
384    * Pass this to TreeMaps where byte [] are keys.
385    */
386   public final static Comparator<byte []> BYTES_COMPARATOR = new ByteArrayComparator();
387 
388   /**
389    * Use comparing byte arrays, byte-by-byte
390    */
391   public final static RawComparator<byte []> BYTES_RAWCOMPARATOR = new ByteArrayComparator();
392 
393   /**
394    * Read byte-array written with a WritableableUtils.vint prefix.
395    * @param in Input to read from.
396    * @return byte array read off <code>in</code>
397    * @throws IOException e
398    */
399   public static byte [] readByteArray(final DataInput in)
400   throws IOException {
401     int len = WritableUtils.readVInt(in);
402     if (len < 0) {
403       throw new NegativeArraySizeException(Integer.toString(len));
404     }
405     byte [] result = new byte[len];
406     in.readFully(result, 0, len);
407     return result;
408   }
409 
410   /**
411    * Read byte-array written with a WritableableUtils.vint prefix.
412    * IOException is converted to a RuntimeException.
413    * @param in Input to read from.
414    * @return byte array read off <code>in</code>
415    */
416   public static byte [] readByteArrayThrowsRuntime(final DataInput in) {
417     try {
418       return readByteArray(in);
419     } catch (Exception e) {
420       throw new RuntimeException(e);
421     }
422   }
423 
424   /**
425    * Write byte-array with a WritableableUtils.vint prefix.
426    * @param out output stream to be written to
427    * @param b array to write
428    * @throws IOException e
429    */
430   public static void writeByteArray(final DataOutput out, final byte [] b)
431   throws IOException {
432     if(b == null) {
433       WritableUtils.writeVInt(out, 0);
434     } else {
435       writeByteArray(out, b, 0, b.length);
436     }
437   }
438 
439   /**
440    * Write byte-array to out with a vint length prefix.
441    * @param out output stream
442    * @param b array
443    * @param offset offset into array
444    * @param length length past offset
445    * @throws IOException e
446    */
447   public static void writeByteArray(final DataOutput out, final byte [] b,
448       final int offset, final int length)
449   throws IOException {
450     WritableUtils.writeVInt(out, length);
451     out.write(b, offset, length);
452   }
453 
454   /**
455    * Write byte-array from src to tgt with a vint length prefix.
456    * @param tgt target array
457    * @param tgtOffset offset into target array
458    * @param src source array
459    * @param srcOffset source offset
460    * @param srcLength source length
461    * @return New offset in src array.
462    */
463   public static int writeByteArray(final byte [] tgt, final int tgtOffset,
464       final byte [] src, final int srcOffset, final int srcLength) {
465     byte [] vint = vintToBytes(srcLength);
466     System.arraycopy(vint, 0, tgt, tgtOffset, vint.length);
467     int offset = tgtOffset + vint.length;
468     System.arraycopy(src, srcOffset, tgt, offset, srcLength);
469     return offset + srcLength;
470   }
471 
472   /**
473    * Put bytes at the specified byte array position.
474    * @param tgtBytes the byte array
475    * @param tgtOffset position in the array
476    * @param srcBytes array to write out
477    * @param srcOffset source offset
478    * @param srcLength source length
479    * @return incremented offset
480    */
481   public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes,
482       int srcOffset, int srcLength) {
483     System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength);
484     return tgtOffset + srcLength;
485   }
486 
487   /**
488    * Write a single byte out to the specified byte array position.
489    * @param bytes the byte array
490    * @param offset position in the array
491    * @param b byte to write out
492    * @return incremented offset
493    */
494   public static int putByte(byte[] bytes, int offset, byte b) {
495     bytes[offset] = b;
496     return offset + 1;
497   }
498 
499   /**
500    * Add the whole content of the ByteBuffer to the bytes arrays. The ByteBuffer is modified.
501    * @param bytes the byte array
502    * @param offset position in the array
503    * @param buf ByteBuffer to write out
504    * @return incremented offset
505    */
506   public static int putByteBuffer(byte[] bytes, int offset, ByteBuffer buf) {
507     int len = buf.remaining();
508     buf.get(bytes, offset, len);
509     return offset + len;
510   }
511 
512   /**
513    * Returns a new byte array, copied from the given {@code buf},
514    * from the index 0 (inclusive) to the limit (exclusive),
515    * regardless of the current position.
516    * The position and the other index parameters are not changed.
517    *
518    * @param buf a byte buffer
519    * @return the byte array
520    * @see #getBytes(ByteBuffer)
521    */
522   public static byte[] toBytes(ByteBuffer buf) {
523     ByteBuffer dup = buf.duplicate();
524     dup.position(0);
525     return readBytes(dup);
526   }
527 
528   private static byte[] readBytes(ByteBuffer buf) {
529     byte [] result = new byte[buf.remaining()];
530     buf.get(result);
531     return result;
532   }
533 
534   /**
535    * @param b Presumed UTF-8 encoded byte array.
536    * @return String made from <code>b</code>
537    */
538   public static String toString(final byte [] b) {
539     if (b == null) {
540       return null;
541     }
542     return toString(b, 0, b.length);
543   }
544 
545   /**
546    * Joins two byte arrays together using a separator.
547    * @param b1 The first byte array.
548    * @param sep The separator to use.
549    * @param b2 The second byte array.
550    */
551   public static String toString(final byte [] b1,
552                                 String sep,
553                                 final byte [] b2) {
554     return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length);
555   }
556 
557   /**
558    * This method will convert utf8 encoded bytes into a string. If
559    * the given byte array is null, this method will return null.
560    *
561    * @param b Presumed UTF-8 encoded byte array.
562    * @param off offset into array
563    * @return String made from <code>b</code> or null
564    */
565   public static String toString(final byte [] b, int off) {
566     if (b == null) {
567       return null;
568     }
569     int len = b.length - off;
570     if (len <= 0) {
571       return "";
572     }
573     return new String(b, off, len, UTF8_CHARSET);
574   }
575 
576   /**
577    * This method will convert utf8 encoded bytes into a string. If
578    * the given byte array is null, this method will return null.
579    *
580    * @param b Presumed UTF-8 encoded byte array.
581    * @param off offset into array
582    * @param len length of utf-8 sequence
583    * @return String made from <code>b</code> or null
584    */
585   public static String toString(final byte [] b, int off, int len) {
586     if (b == null) {
587       return null;
588     }
589     if (len == 0) {
590       return "";
591     }
592     return new String(b, off, len, UTF8_CHARSET);
593   }
594 
595   /**
596    * Write a printable representation of a byte array.
597    *
598    * @param b byte array
599    * @return string
600    * @see #toStringBinary(byte[], int, int)
601    */
602   public static String toStringBinary(final byte [] b) {
603     if (b == null)
604       return "null";
605     return toStringBinary(b, 0, b.length);
606   }
607 
608   /**
609    * Converts the given byte buffer to a printable representation,
610    * from the index 0 (inclusive) to the limit (exclusive),
611    * regardless of the current position.
612    * The position and the other index parameters are not changed.
613    *
614    * @param buf a byte buffer
615    * @return a string representation of the buffer's binary contents
616    * @see #toBytes(ByteBuffer)
617    * @see #getBytes(ByteBuffer)
618    */
619   public static String toStringBinary(ByteBuffer buf) {
620     if (buf == null)
621       return "null";
622     if (buf.hasArray()) {
623       return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit());
624     }
625     return toStringBinary(toBytes(buf));
626   }
627 
628   /**
629    * Write a printable representation of a byte array. Non-printable
630    * characters are hex escaped in the format \\x%02X, eg:
631    * \x00 \x05 etc
632    *
633    * @param b array to write out
634    * @param off offset to start at
635    * @param len length to write
636    * @return string output
637    */
638   public static String toStringBinary(final byte [] b, int off, int len) {
639     StringBuilder result = new StringBuilder();
640     // Just in case we are passed a 'len' that is > buffer length...
641     if (off >= b.length) return result.toString();
642     if (off + len > b.length) len = b.length - off;
643     for (int i = off; i < off + len ; ++i) {
644       int ch = b[i] & 0xFF;
645       if ((ch >= '0' && ch <= '9')
646           || (ch >= 'A' && ch <= 'Z')
647           || (ch >= 'a' && ch <= 'z')
648           || " `~!@#$%^&*()-_=+[]{}|;:'\",.<>/?".indexOf(ch) >= 0) {
649         result.append((char)ch);
650       } else {
651         result.append(String.format("\\x%02X", ch));
652       }
653     }
654     return result.toString();
655   }
656 
657   private static boolean isHexDigit(char c) {
658     return
659         (c >= 'A' && c <= 'F') ||
660         (c >= '0' && c <= '9');
661   }
662 
663   /**
664    * Takes a ASCII digit in the range A-F0-9 and returns
665    * the corresponding integer/ordinal value.
666    * @param ch  The hex digit.
667    * @return The converted hex value as a byte.
668    */
669   public static byte toBinaryFromHex(byte ch) {
670     if (ch >= 'A' && ch <= 'F')
671       return (byte) ((byte)10 + (byte) (ch - 'A'));
672     // else
673     return (byte) (ch - '0');
674   }
675 
676   public static byte [] toBytesBinary(String in) {
677     // this may be bigger than we need, but let's be safe.
678     byte [] b = new byte[in.length()];
679     int size = 0;
680     for (int i = 0; i < in.length(); ++i) {
681       char ch = in.charAt(i);
682       if (ch == '\\' && in.length() > i+1 && in.charAt(i+1) == 'x') {
683         // ok, take next 2 hex digits.
684         char hd1 = in.charAt(i+2);
685         char hd2 = in.charAt(i+3);
686 
687         // they need to be A-F0-9:
688         if (!isHexDigit(hd1) ||
689             !isHexDigit(hd2)) {
690           // bogus escape code, ignore:
691           continue;
692         }
693         // turn hex ASCII digit -> number
694         byte d = (byte) ((toBinaryFromHex((byte)hd1) << 4) + toBinaryFromHex((byte)hd2));
695 
696         b[size++] = d;
697         i += 3; // skip 3
698       } else {
699         b[size++] = (byte) ch;
700       }
701     }
702     // resize:
703     byte [] b2 = new byte[size];
704     System.arraycopy(b, 0, b2, 0, size);
705     return b2;
706   }
707 
708   /**
709    * Converts a string to a UTF-8 byte array.
710    * @param s string
711    * @return the byte array
712    */
713   public static byte[] toBytes(String s) {
714     return s.getBytes(UTF8_CHARSET);
715   }
716 
717   /**
718    * Convert a boolean to a byte array. True becomes -1
719    * and false becomes 0.
720    *
721    * @param b value
722    * @return <code>b</code> encoded in a byte array.
723    */
724   public static byte [] toBytes(final boolean b) {
725     return new byte[] { b ? (byte) -1 : (byte) 0 };
726   }
727 
728   /**
729    * Reverses {@link #toBytes(boolean)}
730    * @param b array
731    * @return True or false.
732    */
733   public static boolean toBoolean(final byte [] b) {
734     if (b.length != 1) {
735       throw new IllegalArgumentException("Array has wrong size: " + b.length);
736     }
737     return b[0] != (byte) 0;
738   }
739 
740   /**
741    * Convert a long value to a byte array using big-endian.
742    *
743    * @param val value to convert
744    * @return the byte array
745    */
746   public static byte[] toBytes(long val) {
747     byte [] b = new byte[8];
748     for (int i = 7; i > 0; i--) {
749       b[i] = (byte) val;
750       val >>>= 8;
751     }
752     b[0] = (byte) val;
753     return b;
754   }
755 
756   /**
757    * Converts a byte array to a long value. Reverses
758    * {@link #toBytes(long)}
759    * @param bytes array
760    * @return the long value
761    */
762   public static long toLong(byte[] bytes) {
763     return toLong(bytes, 0, SIZEOF_LONG);
764   }
765 
766   /**
767    * Converts a byte array to a long value. Assumes there will be
768    * {@link #SIZEOF_LONG} bytes available.
769    *
770    * @param bytes bytes
771    * @param offset offset
772    * @return the long value
773    */
774   public static long toLong(byte[] bytes, int offset) {
775     return toLong(bytes, offset, SIZEOF_LONG);
776   }
777 
778   /**
779    * Converts a byte array to a long value.
780    *
781    * @param bytes array of bytes
782    * @param offset offset into array
783    * @param length length of data (must be {@link #SIZEOF_LONG})
784    * @return the long value
785    * @throws IllegalArgumentException if length is not {@link #SIZEOF_LONG} or
786    * if there's not enough room in the array at the offset indicated.
787    */
788   public static long toLong(byte[] bytes, int offset, final int length) {
789     if (length != SIZEOF_LONG || offset + length > bytes.length) {
790       throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG);
791     }
792     if (UnsafeAccess.isAvailable()) {
793       return UnsafeAccess.toLong(bytes, offset);
794     } else {
795       long l = 0;
796       for(int i = offset; i < offset + length; i++) {
797         l <<= 8;
798         l ^= bytes[i] & 0xFF;
799       }
800       return l;
801     }
802   }
803 
804   private static IllegalArgumentException
805     explainWrongLengthOrOffset(final byte[] bytes,
806                                final int offset,
807                                final int length,
808                                final int expectedLength) {
809     String reason;
810     if (length != expectedLength) {
811       reason = "Wrong length: " + length + ", expected " + expectedLength;
812     } else {
813      reason = "offset (" + offset + ") + length (" + length + ") exceed the"
814         + " capacity of the array: " + bytes.length;
815     }
816     return new IllegalArgumentException(reason);
817   }
818 
819   /**
820    * Put a long value out to the specified byte array position.
821    * @param bytes the byte array
822    * @param offset position in the array
823    * @param val long to write out
824    * @return incremented offset
825    * @throws IllegalArgumentException if the byte array given doesn't have
826    * enough room at the offset specified.
827    */
828   public static int putLong(byte[] bytes, int offset, long val) {
829     if (bytes.length - offset < SIZEOF_LONG) {
830       throw new IllegalArgumentException("Not enough room to put a long at"
831           + " offset " + offset + " in a " + bytes.length + " byte array");
832     }
833     if (UnsafeAccess.isAvailable()) {
834       return UnsafeAccess.putLong(bytes, offset, val);
835     } else {
836       for(int i = offset + 7; i > offset; i--) {
837         bytes[i] = (byte) val;
838         val >>>= 8;
839       }
840       bytes[offset] = (byte) val;
841       return offset + SIZEOF_LONG;
842     }
843   }
844 
845   /**
846    * Put a long value out to the specified byte array position (Unsafe).
847    * @param bytes the byte array
848    * @param offset position in the array
849    * @param val long to write out
850    * @return incremented offset
851    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
852    */
853   @Deprecated
854   public static int putLongUnsafe(byte[] bytes, int offset, long val) {
855     return UnsafeAccess.putLong(bytes, offset, val);
856   }
857 
858   /**
859    * Presumes float encoded as IEEE 754 floating-point "single format"
860    * @param bytes byte array
861    * @return Float made from passed byte array.
862    */
863   public static float toFloat(byte [] bytes) {
864     return toFloat(bytes, 0);
865   }
866 
867   /**
868    * Presumes float encoded as IEEE 754 floating-point "single format"
869    * @param bytes array to convert
870    * @param offset offset into array
871    * @return Float made from passed byte array.
872    */
873   public static float toFloat(byte [] bytes, int offset) {
874     return Float.intBitsToFloat(toInt(bytes, offset, SIZEOF_INT));
875   }
876 
877   /**
878    * @param bytes byte array
879    * @param offset offset to write to
880    * @param f float value
881    * @return New offset in <code>bytes</code>
882    */
883   public static int putFloat(byte [] bytes, int offset, float f) {
884     return putInt(bytes, offset, Float.floatToRawIntBits(f));
885   }
886 
887   /**
888    * @param f float value
889    * @return the float represented as byte []
890    */
891   public static byte [] toBytes(final float f) {
892     // Encode it as int
893     return Bytes.toBytes(Float.floatToRawIntBits(f));
894   }
895 
896   /**
897    * @param bytes byte array
898    * @return Return double made from passed bytes.
899    */
900   public static double toDouble(final byte [] bytes) {
901     return toDouble(bytes, 0);
902   }
903 
904   /**
905    * @param bytes byte array
906    * @param offset offset where double is
907    * @return Return double made from passed bytes.
908    */
909   public static double toDouble(final byte [] bytes, final int offset) {
910     return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG));
911   }
912 
913   /**
914    * @param bytes byte array
915    * @param offset offset to write to
916    * @param d value
917    * @return New offset into array <code>bytes</code>
918    */
919   public static int putDouble(byte [] bytes, int offset, double d) {
920     return putLong(bytes, offset, Double.doubleToLongBits(d));
921   }
922 
923   /**
924    * Serialize a double as the IEEE 754 double format output. The resultant
925    * array will be 8 bytes long.
926    *
927    * @param d value
928    * @return the double represented as byte []
929    */
930   public static byte [] toBytes(final double d) {
931     // Encode it as a long
932     return Bytes.toBytes(Double.doubleToRawLongBits(d));
933   }
934 
935   /**
936    * Convert an int value to a byte array.  Big-endian.  Same as what DataOutputStream.writeInt
937    * does.
938    *
939    * @param val value
940    * @return the byte array
941    */
942   public static byte[] toBytes(int val) {
943     byte [] b = new byte[4];
944     for(int i = 3; i > 0; i--) {
945       b[i] = (byte) val;
946       val >>>= 8;
947     }
948     b[0] = (byte) val;
949     return b;
950   }
951 
952   /**
953    * Converts a byte array to an int value
954    * @param bytes byte array
955    * @return the int value
956    */
957   public static int toInt(byte[] bytes) {
958     return toInt(bytes, 0, SIZEOF_INT);
959   }
960 
961   /**
962    * Converts a byte array to an int value
963    * @param bytes byte array
964    * @param offset offset into array
965    * @return the int value
966    */
967   public static int toInt(byte[] bytes, int offset) {
968     return toInt(bytes, offset, SIZEOF_INT);
969   }
970 
971   /**
972    * Converts a byte array to an int value
973    * @param bytes byte array
974    * @param offset offset into array
975    * @param length length of int (has to be {@link #SIZEOF_INT})
976    * @return the int value
977    * @throws IllegalArgumentException if length is not {@link #SIZEOF_INT} or
978    * if there's not enough room in the array at the offset indicated.
979    */
980   public static int toInt(byte[] bytes, int offset, final int length) {
981     if (length != SIZEOF_INT || offset + length > bytes.length) {
982       throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT);
983     }
984     if (UnsafeAccess.isAvailable()) {
985       return UnsafeAccess.toInt(bytes, offset);
986     } else {
987       int n = 0;
988       for(int i = offset; i < (offset + length); i++) {
989         n <<= 8;
990         n ^= bytes[i] & 0xFF;
991       }
992       return n;
993     }
994   }
995 
996   /**
997    * Converts a byte array to an int value (Unsafe version)
998    * @param bytes byte array
999    * @param offset offset into array
1000    * @return the int value
1001    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
1002    */
1003   @Deprecated
1004   public static int toIntUnsafe(byte[] bytes, int offset) {
1005     return UnsafeAccess.toInt(bytes, offset);
1006   }
1007 
1008   /**
1009    * Converts a byte array to an short value (Unsafe version)
1010    * @param bytes byte array
1011    * @param offset offset into array
1012    * @return the short value
1013    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
1014    */
1015   @Deprecated
1016   public static short toShortUnsafe(byte[] bytes, int offset) {
1017     return UnsafeAccess.toShort(bytes, offset);
1018   }
1019 
1020   /**
1021    * Converts a byte array to an long value (Unsafe version)
1022    * @param bytes byte array
1023    * @param offset offset into array
1024    * @return the long value
1025    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
1026    */
1027   @Deprecated
1028   public static long toLongUnsafe(byte[] bytes, int offset) {
1029     return UnsafeAccess.toLong(bytes, offset);
1030   }
1031 
1032   /**
1033    * Converts a byte array to an int value
1034    * @param bytes byte array
1035    * @param offset offset into array
1036    * @param length how many bytes should be considered for creating int
1037    * @return the int value
1038    * @throws IllegalArgumentException if there's not enough room in the array at the offset
1039    * indicated.
1040    */
1041   public static int readAsInt(byte[] bytes, int offset, final int length) {
1042     if (offset + length > bytes.length) {
1043       throw new IllegalArgumentException("offset (" + offset + ") + length (" + length
1044           + ") exceed the" + " capacity of the array: " + bytes.length);
1045     }
1046     int n = 0;
1047     for(int i = offset; i < (offset + length); i++) {
1048       n <<= 8;
1049       n ^= bytes[i] & 0xFF;
1050     }
1051     return n;
1052   }
1053 
1054   /**
1055    * Put an int value out to the specified byte array position.
1056    * @param bytes the byte array
1057    * @param offset position in the array
1058    * @param val int to write out
1059    * @return incremented offset
1060    * @throws IllegalArgumentException if the byte array given doesn't have
1061    * enough room at the offset specified.
1062    */
1063   public static int putInt(byte[] bytes, int offset, int val) {
1064     if (bytes.length - offset < SIZEOF_INT) {
1065       throw new IllegalArgumentException("Not enough room to put an int at"
1066           + " offset " + offset + " in a " + bytes.length + " byte array");
1067     }
1068     if (UnsafeAccess.isAvailable()) {
1069       return UnsafeAccess.putInt(bytes, offset, val);
1070     } else {
1071       for(int i= offset + 3; i > offset; i--) {
1072         bytes[i] = (byte) val;
1073         val >>>= 8;
1074       }
1075       bytes[offset] = (byte) val;
1076       return offset + SIZEOF_INT;
1077     }
1078   }
1079 
1080   /**
1081    * Put an int value out to the specified byte array position (Unsafe).
1082    * @param bytes the byte array
1083    * @param offset position in the array
1084    * @param val int to write out
1085    * @return incremented offset
1086    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
1087    */
1088   @Deprecated
1089   public static int putIntUnsafe(byte[] bytes, int offset, int val) {
1090     return UnsafeAccess.putInt(bytes, offset, val);
1091   }
1092 
1093   /**
1094    * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes long.
1095    * @param val value
1096    * @return the byte array
1097    */
1098   public static byte[] toBytes(short val) {
1099     byte[] b = new byte[SIZEOF_SHORT];
1100     b[1] = (byte) val;
1101     val >>= 8;
1102     b[0] = (byte) val;
1103     return b;
1104   }
1105 
1106   /**
1107    * Converts a byte array to a short value
1108    * @param bytes byte array
1109    * @return the short value
1110    */
1111   public static short toShort(byte[] bytes) {
1112     return toShort(bytes, 0, SIZEOF_SHORT);
1113   }
1114 
1115   /**
1116    * Converts a byte array to a short value
1117    * @param bytes byte array
1118    * @param offset offset into array
1119    * @return the short value
1120    */
1121   public static short toShort(byte[] bytes, int offset) {
1122     return toShort(bytes, offset, SIZEOF_SHORT);
1123   }
1124 
1125   /**
1126    * Converts a byte array to a short value
1127    * @param bytes byte array
1128    * @param offset offset into array
1129    * @param length length, has to be {@link #SIZEOF_SHORT}
1130    * @return the short value
1131    * @throws IllegalArgumentException if length is not {@link #SIZEOF_SHORT}
1132    * or if there's not enough room in the array at the offset indicated.
1133    */
1134   public static short toShort(byte[] bytes, int offset, final int length) {
1135     if (length != SIZEOF_SHORT || offset + length > bytes.length) {
1136       throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT);
1137     }
1138     if (UnsafeAccess.isAvailable()) {
1139       return UnsafeAccess.toShort(bytes, offset);
1140     } else {
1141       short n = 0;
1142       n ^= bytes[offset] & 0xFF;
1143       n <<= 8;
1144       n ^= bytes[offset+1] & 0xFF;
1145       return n;
1146    }
1147   }
1148 
1149   /**
1150    * Returns a new byte array, copied from the given {@code buf},
1151    * from the position (inclusive) to the limit (exclusive).
1152    * The position and the other index parameters are not changed.
1153    *
1154    * @param buf a byte buffer
1155    * @return the byte array
1156    * @see #toBytes(ByteBuffer)
1157    */
1158   public static byte[] getBytes(ByteBuffer buf) {
1159     return readBytes(buf.duplicate());
1160   }
1161 
1162   /**
1163    * Put a short value out to the specified byte array position.
1164    * @param bytes the byte array
1165    * @param offset position in the array
1166    * @param val short to write out
1167    * @return incremented offset
1168    * @throws IllegalArgumentException if the byte array given doesn't have
1169    * enough room at the offset specified.
1170    */
1171   public static int putShort(byte[] bytes, int offset, short val) {
1172     if (bytes.length - offset < SIZEOF_SHORT) {
1173       throw new IllegalArgumentException("Not enough room to put a short at"
1174           + " offset " + offset + " in a " + bytes.length + " byte array");
1175     }
1176     if (UnsafeAccess.isAvailable()) {
1177       return UnsafeAccess.putShort(bytes, offset, val);
1178     } else {
1179       bytes[offset+1] = (byte) val;
1180       val >>= 8;
1181       bytes[offset] = (byte) val;
1182       return offset + SIZEOF_SHORT;
1183     }
1184   }
1185 
1186   /**
1187    * Put a short value out to the specified byte array position (Unsafe).
1188    * @param bytes the byte array
1189    * @param offset position in the array
1190    * @param val short to write out
1191    * @return incremented offset
1192    * @deprecated As of release 2.0.0, this will be removed in HBase 3.0.0.
1193    */
1194   @Deprecated
1195   public static int putShortUnsafe(byte[] bytes, int offset, short val) {
1196     return UnsafeAccess.putShort(bytes, offset, val);
1197   }
1198 
1199   /**
1200    * Put an int value as short out to the specified byte array position. Only the lower 2 bytes of
1201    * the short will be put into the array. The caller of the API need to make sure they will not
1202    * loose the value by doing so. This is useful to store an unsigned short which is represented as
1203    * int in other parts.
1204    * @param bytes the byte array
1205    * @param offset position in the array
1206    * @param val value to write out
1207    * @return incremented offset
1208    * @throws IllegalArgumentException if the byte array given doesn't have
1209    * enough room at the offset specified.
1210    */
1211   public static int putAsShort(byte[] bytes, int offset, int val) {
1212     if (bytes.length - offset < SIZEOF_SHORT) {
1213       throw new IllegalArgumentException("Not enough room to put a short at"
1214           + " offset " + offset + " in a " + bytes.length + " byte array");
1215     }
1216     bytes[offset+1] = (byte) val;
1217     val >>= 8;
1218     bytes[offset] = (byte) val;
1219     return offset + SIZEOF_SHORT;
1220   }
1221 
1222   /**
1223    * Convert a BigDecimal value to a byte array
1224    *
1225    * @param val
1226    * @return the byte array
1227    */
1228   public static byte[] toBytes(BigDecimal val) {
1229     byte[] valueBytes = val.unscaledValue().toByteArray();
1230     byte[] result = new byte[valueBytes.length + SIZEOF_INT];
1231     int offset = putInt(result, 0, val.scale());
1232     putBytes(result, offset, valueBytes, 0, valueBytes.length);
1233     return result;
1234   }
1235 
1236 
1237   /**
1238    * Converts a byte array to a BigDecimal
1239    *
1240    * @param bytes
1241    * @return the char value
1242    */
1243   public static BigDecimal toBigDecimal(byte[] bytes) {
1244     return toBigDecimal(bytes, 0, bytes.length);
1245   }
1246 
1247   /**
1248    * Converts a byte array to a BigDecimal value
1249    *
1250    * @param bytes
1251    * @param offset
1252    * @param length
1253    * @return the char value
1254    */
1255   public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) {
1256     if (bytes == null || length < SIZEOF_INT + 1 ||
1257       (offset + length > bytes.length)) {
1258       return null;
1259     }
1260 
1261     int scale = toInt(bytes, offset);
1262     byte[] tcBytes = new byte[length - SIZEOF_INT];
1263     System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT);
1264     return new BigDecimal(new BigInteger(tcBytes), scale);
1265   }
1266 
1267   /**
1268    * Put a BigDecimal value out to the specified byte array position.
1269    *
1270    * @param bytes  the byte array
1271    * @param offset position in the array
1272    * @param val    BigDecimal to write out
1273    * @return incremented offset
1274    */
1275   public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) {
1276     if (bytes == null) {
1277       return offset;
1278     }
1279 
1280     byte[] valueBytes = val.unscaledValue().toByteArray();
1281     byte[] result = new byte[valueBytes.length + SIZEOF_INT];
1282     offset = putInt(result, offset, val.scale());
1283     return putBytes(result, offset, valueBytes, 0, valueBytes.length);
1284   }
1285 
1286   /**
1287    * @param vint Integer to make a vint of.
1288    * @return Vint as bytes array.
1289    */
1290   public static byte [] vintToBytes(final long vint) {
1291     long i = vint;
1292     int size = WritableUtils.getVIntSize(i);
1293     byte [] result = new byte[size];
1294     int offset = 0;
1295     if (i >= -112 && i <= 127) {
1296       result[offset] = (byte) i;
1297       return result;
1298     }
1299 
1300     int len = -112;
1301     if (i < 0) {
1302       i ^= -1L; // take one's complement'
1303       len = -120;
1304     }
1305 
1306     long tmp = i;
1307     while (tmp != 0) {
1308       tmp = tmp >> 8;
1309       len--;
1310     }
1311 
1312     result[offset++] = (byte) len;
1313 
1314     len = (len < -120) ? -(len + 120) : -(len + 112);
1315 
1316     for (int idx = len; idx != 0; idx--) {
1317       int shiftbits = (idx - 1) * 8;
1318       long mask = 0xFFL << shiftbits;
1319       result[offset++] = (byte)((i & mask) >> shiftbits);
1320     }
1321     return result;
1322   }
1323 
1324   /**
1325    * @param buffer buffer to convert
1326    * @return vint bytes as an integer.
1327    */
1328   public static long bytesToVint(final byte [] buffer) {
1329     int offset = 0;
1330     byte firstByte = buffer[offset++];
1331     int len = WritableUtils.decodeVIntSize(firstByte);
1332     if (len == 1) {
1333       return firstByte;
1334     }
1335     long i = 0;
1336     for (int idx = 0; idx < len-1; idx++) {
1337       byte b = buffer[offset++];
1338       i = i << 8;
1339       i = i | (b & 0xFF);
1340     }
1341     return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i);
1342   }
1343 
1344   /**
1345    * Reads a zero-compressed encoded long from input buffer and returns it.
1346    * @param buffer Binary array
1347    * @param offset Offset into array at which vint begins.
1348    * @throws java.io.IOException e
1349    * @return deserialized long from buffer.
1350    * @deprecated Use {@link #readAsVLong(byte[],int)} instead.
1351    */
1352   @Deprecated
1353   public static long readVLong(final byte [] buffer, final int offset)
1354   throws IOException {
1355     return readAsVLong(buffer, offset);
1356   }
1357 
1358   /**
1359    * Reads a zero-compressed encoded long from input buffer and returns it.
1360    * @param buffer Binary array
1361    * @param offset Offset into array at which vint begins.
1362    * @return deserialized long from buffer.
1363    */
1364   public static long readAsVLong(final byte [] buffer, final int offset) {
1365     byte firstByte = buffer[offset];
1366     int len = WritableUtils.decodeVIntSize(firstByte);
1367     if (len == 1) {
1368       return firstByte;
1369     }
1370     long i = 0;
1371     for (int idx = 0; idx < len-1; idx++) {
1372       byte b = buffer[offset + 1 + idx];
1373       i = i << 8;
1374       i = i | (b & 0xFF);
1375     }
1376     return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i);
1377   }
1378 
1379   /**
1380    * @param left left operand
1381    * @param right right operand
1382    * @return 0 if equal, &lt; 0 if left is less than right, etc.
1383    */
1384   public static int compareTo(final byte [] left, final byte [] right) {
1385     return LexicographicalComparerHolder.BEST_COMPARER.
1386       compareTo(left, 0, left.length, right, 0, right.length);
1387   }
1388 
1389   /**
1390    * Lexicographically compare two arrays.
1391    *
1392    * @param buffer1 left operand
1393    * @param buffer2 right operand
1394    * @param offset1 Where to start comparing in the left buffer
1395    * @param offset2 Where to start comparing in the right buffer
1396    * @param length1 How much to compare from the left buffer
1397    * @param length2 How much to compare from the right buffer
1398    * @return 0 if equal, &lt; 0 if left is less than right, etc.
1399    */
1400   public static int compareTo(byte[] buffer1, int offset1, int length1,
1401       byte[] buffer2, int offset2, int length2) {
1402     return LexicographicalComparerHolder.BEST_COMPARER.
1403       compareTo(buffer1, offset1, length1, buffer2, offset2, length2);
1404   }
1405 
1406   interface Comparer<T> {
1407     int compareTo(
1408       T buffer1, int offset1, int length1, T buffer2, int offset2, int length2
1409     );
1410   }
1411 
1412   @VisibleForTesting
1413   static Comparer<byte[]> lexicographicalComparerJavaImpl() {
1414     return LexicographicalComparerHolder.PureJavaComparer.INSTANCE;
1415   }
1416 
1417   /**
1418    * Provides a lexicographical comparer implementation; either a Java
1419    * implementation or a faster implementation based on {@link Unsafe}.
1420    *
1421    * <p>Uses reflection to gracefully fall back to the Java implementation if
1422    * {@code Unsafe} isn't available.
1423    */
1424   @VisibleForTesting
1425   static class LexicographicalComparerHolder {
1426     static final String UNSAFE_COMPARER_NAME =
1427         LexicographicalComparerHolder.class.getName() + "$UnsafeComparer";
1428 
1429     static final Comparer<byte[]> BEST_COMPARER = getBestComparer();
1430     /**
1431      * Returns the Unsafe-using Comparer, or falls back to the pure-Java
1432      * implementation if unable to do so.
1433      */
1434     static Comparer<byte[]> getBestComparer() {
1435       try {
1436         Class<?> theClass = Class.forName(UNSAFE_COMPARER_NAME);
1437 
1438         // yes, UnsafeComparer does implement Comparer<byte[]>
1439         @SuppressWarnings("unchecked")
1440         Comparer<byte[]> comparer =
1441           (Comparer<byte[]>) theClass.getEnumConstants()[0];
1442         return comparer;
1443       } catch (Throwable t) { // ensure we really catch *everything*
1444         return lexicographicalComparerJavaImpl();
1445       }
1446     }
1447 
1448     enum PureJavaComparer implements Comparer<byte[]> {
1449       INSTANCE;
1450 
1451       @Override
1452       public int compareTo(byte[] buffer1, int offset1, int length1,
1453           byte[] buffer2, int offset2, int length2) {
1454         // Short circuit equal case
1455         if (buffer1 == buffer2 &&
1456             offset1 == offset2 &&
1457             length1 == length2) {
1458           return 0;
1459         }
1460         // Bring WritableComparator code local
1461         int end1 = offset1 + length1;
1462         int end2 = offset2 + length2;
1463         for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) {
1464           int a = (buffer1[i] & 0xff);
1465           int b = (buffer2[j] & 0xff);
1466           if (a != b) {
1467             return a - b;
1468           }
1469         }
1470         return length1 - length2;
1471       }
1472     }
1473 
1474     @VisibleForTesting
1475     enum UnsafeComparer implements Comparer<byte[]> {
1476       INSTANCE;
1477 
1478       static final Unsafe theUnsafe;
1479       static {
1480         if (UnsafeAccess.isAvailable()) {
1481           theUnsafe = UnsafeAccess.theUnsafe;
1482         } else {
1483           // It doesn't matter what we throw;
1484           // it's swallowed in getBestComparer().
1485           throw new Error();
1486         }
1487 
1488         // sanity check - this should never fail
1489         if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
1490           throw new AssertionError();
1491         }
1492       }
1493 
1494       /**
1495        * Returns true if x1 is less than x2, when both values are treated as
1496        * unsigned long.
1497        * Both values are passed as is read by Unsafe. When platform is Little Endian, have to
1498        * convert to corresponding Big Endian value and then do compare. We do all writes in
1499        * Big Endian format.
1500        */
1501       static boolean lessThanUnsignedLong(long x1, long x2) {
1502         if (UnsafeAccess.littleEndian) {
1503           x1 = Long.reverseBytes(x1);
1504           x2 = Long.reverseBytes(x2);
1505         }
1506         return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE);
1507       }
1508 
1509       /**
1510        * Returns true if x1 is less than x2, when both values are treated as
1511        * unsigned int.
1512        * Both values are passed as is read by Unsafe. When platform is Little Endian, have to
1513        * convert to corresponding Big Endian value and then do compare. We do all writes in
1514        * Big Endian format.
1515        */
1516       static boolean lessThanUnsignedInt(int x1, int x2) {
1517         if (UnsafeAccess.littleEndian) {
1518           x1 = Integer.reverseBytes(x1);
1519           x2 = Integer.reverseBytes(x2);
1520         }
1521         return (x1 & 0xffffffffL) < (x2 & 0xffffffffL);
1522       }
1523 
1524       /**
1525        * Returns true if x1 is less than x2, when both values are treated as
1526        * unsigned short.
1527        * Both values are passed as is read by Unsafe. When platform is Little Endian, have to
1528        * convert to corresponding Big Endian value and then do compare. We do all writes in
1529        * Big Endian format.
1530        */
1531       static boolean lessThanUnsignedShort(short x1, short x2) {
1532         if (UnsafeAccess.littleEndian) {
1533           x1 = Short.reverseBytes(x1);
1534           x2 = Short.reverseBytes(x2);
1535         }
1536         return (x1 & 0xffff) < (x2 & 0xffff);
1537       }
1538 
1539       /**
1540        * Lexicographically compare two arrays.
1541        *
1542        * @param buffer1 left operand
1543        * @param buffer2 right operand
1544        * @param offset1 Where to start comparing in the left buffer
1545        * @param offset2 Where to start comparing in the right buffer
1546        * @param length1 How much to compare from the left buffer
1547        * @param length2 How much to compare from the right buffer
1548        * @return 0 if equal, < 0 if left is less than right, etc.
1549        */
1550       @Override
1551       public int compareTo(byte[] buffer1, int offset1, int length1,
1552           byte[] buffer2, int offset2, int length2) {
1553 
1554         // Short circuit equal case
1555         if (buffer1 == buffer2 &&
1556             offset1 == offset2 &&
1557             length1 == length2) {
1558           return 0;
1559         }
1560         final int minLength = Math.min(length1, length2);
1561         final int minWords = minLength / SIZEOF_LONG;
1562         final long offset1Adj = offset1 + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET;
1563         final long offset2Adj = offset2 + UnsafeAccess.BYTE_ARRAY_BASE_OFFSET;
1564 
1565         /*
1566          * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a
1567          * time is no slower than comparing 4 bytes at a time even on 32-bit.
1568          * On the other hand, it is substantially faster on 64-bit.
1569          */
1570         // This is the end offset of long parts.
1571         int j = minWords << 3; // Same as minWords * SIZEOF_LONG
1572         for (int i = 0; i < j; i += SIZEOF_LONG) {
1573           long lw = theUnsafe.getLong(buffer1, offset1Adj + (long) i);
1574           long rw = theUnsafe.getLong(buffer2, offset2Adj + (long) i);
1575           long diff = lw ^ rw;
1576           if (diff != 0) {
1577               return lessThanUnsignedLong(lw, rw) ? -1 : 1;
1578           }
1579         }
1580         int offset = j;
1581 
1582         if (minLength - offset >= SIZEOF_INT) {
1583           int il = theUnsafe.getInt(buffer1, offset1Adj + offset);
1584           int ir = theUnsafe.getInt(buffer2, offset2Adj + offset);
1585           if (il != ir) {
1586             return lessThanUnsignedInt(il, ir) ? -1: 1;
1587           }
1588           offset += SIZEOF_INT;
1589         }
1590         if (minLength - offset >= SIZEOF_SHORT) {
1591           short sl = theUnsafe.getShort(buffer1, offset1Adj + offset);
1592           short sr = theUnsafe.getShort(buffer2, offset2Adj + offset);
1593           if (sl != sr) {
1594             return lessThanUnsignedShort(sl, sr) ? -1: 1;
1595           }
1596           offset += SIZEOF_SHORT;
1597         }
1598         if (minLength - offset == 1) {
1599           int a = (buffer1[(int)(offset1 + offset)] & 0xff);
1600           int b = (buffer2[(int)(offset2 + offset)] & 0xff);
1601           if (a != b) {
1602             return a - b;
1603           }
1604         }
1605         return length1 - length2;
1606       }
1607     }
1608   }
1609 
1610   /**
1611    * @param left left operand
1612    * @param right right operand
1613    * @return True if equal
1614    */
1615   public static boolean equals(final byte [] left, final byte [] right) {
1616     // Could use Arrays.equals?
1617     //noinspection SimplifiableConditionalExpression
1618     if (left == right) return true;
1619     if (left == null || right == null) return false;
1620     if (left.length != right.length) return false;
1621     if (left.length == 0) return true;
1622 
1623     // Since we're often comparing adjacent sorted data,
1624     // it's usual to have equal arrays except for the very last byte
1625     // so check that first
1626     if (left[left.length - 1] != right[right.length - 1]) return false;
1627 
1628     return compareTo(left, right) == 0;
1629   }
1630 
1631   public static boolean equals(final byte[] left, int leftOffset, int leftLen,
1632                                final byte[] right, int rightOffset, int rightLen) {
1633     // short circuit case
1634     if (left == right &&
1635         leftOffset == rightOffset &&
1636         leftLen == rightLen) {
1637       return true;
1638     }
1639     // different lengths fast check
1640     if (leftLen != rightLen) {
1641       return false;
1642     }
1643     if (leftLen == 0) {
1644       return true;
1645     }
1646 
1647     // Since we're often comparing adjacent sorted data,
1648     // it's usual to have equal arrays except for the very last byte
1649     // so check that first
1650     if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1]) return false;
1651 
1652     return LexicographicalComparerHolder.BEST_COMPARER.
1653       compareTo(left, leftOffset, leftLen, right, rightOffset, rightLen) == 0;
1654   }
1655 
1656 
1657   /**
1658    * @param a left operand
1659    * @param buf right operand
1660    * @return True if equal
1661    */
1662   public static boolean equals(byte[] a, ByteBuffer buf) {
1663     if (a == null) return buf == null;
1664     if (buf == null) return false;
1665     if (a.length != buf.remaining()) return false;
1666 
1667     // Thou shalt not modify the original byte buffer in what should be read only operations.
1668     ByteBuffer b = buf.duplicate();
1669     for (byte anA : a) {
1670       if (anA != b.get()) {
1671         return false;
1672       }
1673     }
1674     return true;
1675   }
1676 
1677 
1678   /**
1679    * Return true if the byte array on the right is a prefix of the byte
1680    * array on the left.
1681    */
1682   public static boolean startsWith(byte[] bytes, byte[] prefix) {
1683     return bytes != null && prefix != null &&
1684       bytes.length >= prefix.length &&
1685       LexicographicalComparerHolder.BEST_COMPARER.
1686         compareTo(bytes, 0, prefix.length, prefix, 0, prefix.length) == 0;
1687   }
1688 
1689   /**
1690    * @param b bytes to hash
1691    * @return Runs {@link WritableComparator#hashBytes(byte[], int)} on the
1692    * passed in array.  This method is what {@link org.apache.hadoop.io.Text}
1693    * use calculating hash code.
1694    */
1695   public static int hashCode(final byte [] b) {
1696     return hashCode(b, b.length);
1697   }
1698 
1699   /**
1700    * @param b value
1701    * @param length length of the value
1702    * @return Runs {@link WritableComparator#hashBytes(byte[], int)} on the
1703    * passed in array.  This method is what {@link org.apache.hadoop.io.Text}
1704    * use calculating hash code.
1705    */
1706   public static int hashCode(final byte [] b, final int length) {
1707     return WritableComparator.hashBytes(b, length);
1708   }
1709 
1710   /**
1711    * @param b bytes to hash
1712    * @return A hash of <code>b</code> as an Integer that can be used as key in
1713    * Maps.
1714    */
1715   public static Integer mapKey(final byte [] b) {
1716     return hashCode(b);
1717   }
1718 
1719   /**
1720    * @param b bytes to hash
1721    * @param length length to hash
1722    * @return A hash of <code>b</code> as an Integer that can be used as key in
1723    * Maps.
1724    */
1725   public static Integer mapKey(final byte [] b, final int length) {
1726     return hashCode(b, length);
1727   }
1728 
1729   /**
1730    * @param a lower half
1731    * @param b upper half
1732    * @return New array that has a in lower half and b in upper half.
1733    */
1734   public static byte [] add(final byte [] a, final byte [] b) {
1735     return add(a, b, EMPTY_BYTE_ARRAY);
1736   }
1737 
1738   /**
1739    * @param a first third
1740    * @param b second third
1741    * @param c third third
1742    * @return New array made from a, b and c
1743    */
1744   public static byte [] add(final byte [] a, final byte [] b, final byte [] c) {
1745     byte [] result = new byte[a.length + b.length + c.length];
1746     System.arraycopy(a, 0, result, 0, a.length);
1747     System.arraycopy(b, 0, result, a.length, b.length);
1748     System.arraycopy(c, 0, result, a.length + b.length, c.length);
1749     return result;
1750   }
1751 
1752   /**
1753    * @param arrays all the arrays to concatenate together.
1754    * @return New array made from the concatenation of the given arrays.
1755    */
1756   public static byte [] add(final byte [][] arrays) {
1757     int length = 0;
1758     for (int i = 0; i < arrays.length; i++) {
1759       length += arrays[i].length;
1760     }
1761     byte [] result = new byte[length];
1762     int index = 0;
1763     for (int i = 0; i < arrays.length; i++) {
1764       System.arraycopy(arrays[i], 0, result, index, arrays[i].length);
1765       index += arrays[i].length;
1766     }
1767     return result;
1768   }
1769 
1770   /**
1771    * @param a array
1772    * @param length amount of bytes to grab
1773    * @return First <code>length</code> bytes from <code>a</code>
1774    */
1775   public static byte [] head(final byte [] a, final int length) {
1776     if (a.length < length) {
1777       return null;
1778     }
1779     byte [] result = new byte[length];
1780     System.arraycopy(a, 0, result, 0, length);
1781     return result;
1782   }
1783 
1784   /**
1785    * @param a array
1786    * @param length amount of bytes to snarf
1787    * @return Last <code>length</code> bytes from <code>a</code>
1788    */
1789   public static byte [] tail(final byte [] a, final int length) {
1790     if (a.length < length) {
1791       return null;
1792     }
1793     byte [] result = new byte[length];
1794     System.arraycopy(a, a.length - length, result, 0, length);
1795     return result;
1796   }
1797 
1798   /**
1799    * @param a array
1800    * @param length new array size
1801    * @return Value in <code>a</code> plus <code>length</code> prepended 0 bytes
1802    */
1803   public static byte [] padHead(final byte [] a, final int length) {
1804     byte [] padding = new byte[length];
1805     for (int i = 0; i < length; i++) {
1806       padding[i] = 0;
1807     }
1808     return add(padding,a);
1809   }
1810 
1811   /**
1812    * @param a array
1813    * @param length new array size
1814    * @return Value in <code>a</code> plus <code>length</code> appended 0 bytes
1815    */
1816   public static byte [] padTail(final byte [] a, final int length) {
1817     byte [] padding = new byte[length];
1818     for (int i = 0; i < length; i++) {
1819       padding[i] = 0;
1820     }
1821     return add(a,padding);
1822   }
1823 
1824   /**
1825    * Split passed range.  Expensive operation relatively.  Uses BigInteger math.
1826    * Useful splitting ranges for MapReduce jobs.
1827    * @param a Beginning of range
1828    * @param b End of range
1829    * @param num Number of times to split range.  Pass 1 if you want to split
1830    * the range in two; i.e. one split.
1831    * @return Array of dividing values
1832    */
1833   public static byte [][] split(final byte [] a, final byte [] b, final int num) {
1834     return split(a, b, false, num);
1835   }
1836 
1837   /**
1838    * Split passed range.  Expensive operation relatively.  Uses BigInteger math.
1839    * Useful splitting ranges for MapReduce jobs.
1840    * @param a Beginning of range
1841    * @param b End of range
1842    * @param inclusive Whether the end of range is prefix-inclusive or is
1843    * considered an exclusive boundary.  Automatic splits are generally exclusive
1844    * and manual splits with an explicit range utilize an inclusive end of range.
1845    * @param num Number of times to split range.  Pass 1 if you want to split
1846    * the range in two; i.e. one split.
1847    * @return Array of dividing values
1848    */
1849   public static byte[][] split(final byte[] a, final byte[] b,
1850       boolean inclusive, final int num) {
1851     byte[][] ret = new byte[num + 2][];
1852     int i = 0;
1853     Iterable<byte[]> iter = iterateOnSplits(a, b, inclusive, num);
1854     if (iter == null)
1855       return null;
1856     for (byte[] elem : iter) {
1857       ret[i++] = elem;
1858     }
1859     return ret;
1860   }
1861 
1862   /**
1863    * Iterate over keys within the passed range, splitting at an [a,b) boundary.
1864    */
1865   public static Iterable<byte[]> iterateOnSplits(final byte[] a,
1866       final byte[] b, final int num)
1867   {
1868     return iterateOnSplits(a, b, false, num);
1869   }
1870 
1871   /**
1872    * Iterate over keys within the passed range.
1873    */
1874   public static Iterable<byte[]> iterateOnSplits(
1875       final byte[] a, final byte[]b, boolean inclusive, final int num)
1876   {
1877     byte [] aPadded;
1878     byte [] bPadded;
1879     if (a.length < b.length) {
1880       aPadded = padTail(a, b.length - a.length);
1881       bPadded = b;
1882     } else if (b.length < a.length) {
1883       aPadded = a;
1884       bPadded = padTail(b, a.length - b.length);
1885     } else {
1886       aPadded = a;
1887       bPadded = b;
1888     }
1889     if (compareTo(aPadded,bPadded) >= 0) {
1890       throw new IllegalArgumentException("b <= a");
1891     }
1892     if (num <= 0) {
1893       throw new IllegalArgumentException("num cannot be <= 0");
1894     }
1895     byte [] prependHeader = {1, 0};
1896     final BigInteger startBI = new BigInteger(add(prependHeader, aPadded));
1897     final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded));
1898     BigInteger diffBI = stopBI.subtract(startBI);
1899     if (inclusive) {
1900       diffBI = diffBI.add(BigInteger.ONE);
1901     }
1902     final BigInteger splitsBI = BigInteger.valueOf(num + 1);
1903     //when diffBI < splitBI, use an additional byte to increase diffBI
1904     if(diffBI.compareTo(splitsBI) < 0) {
1905       byte[] aPaddedAdditional = new byte[aPadded.length+1];
1906       byte[] bPaddedAdditional = new byte[bPadded.length+1];
1907       for (int i = 0; i < aPadded.length; i++){
1908         aPaddedAdditional[i] = aPadded[i];
1909       }
1910       for (int j = 0; j < bPadded.length; j++){
1911         bPaddedAdditional[j] = bPadded[j];
1912       }
1913       aPaddedAdditional[aPadded.length] = 0;
1914       bPaddedAdditional[bPadded.length] = 0;
1915       return iterateOnSplits(aPaddedAdditional, bPaddedAdditional, inclusive,  num);
1916     }
1917     final BigInteger intervalBI;
1918     try {
1919       intervalBI = diffBI.divide(splitsBI);
1920     } catch(Exception e) {
1921       LOG.error("Exception caught during division", e);
1922       return null;
1923     }
1924 
1925     final Iterator<byte[]> iterator = new Iterator<byte[]>() {
1926       private int i = -1;
1927 
1928       @Override
1929       public boolean hasNext() {
1930         return i < num+1;
1931       }
1932 
1933       @Override
1934       public byte[] next() {
1935         i++;
1936         if (i == 0) return a;
1937         if (i == num + 1) return b;
1938 
1939         BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i)));
1940         byte [] padded = curBI.toByteArray();
1941         if (padded[1] == 0)
1942           padded = tail(padded, padded.length - 2);
1943         else
1944           padded = tail(padded, padded.length - 1);
1945         return padded;
1946       }
1947 
1948       @Override
1949       public void remove() {
1950         throw new UnsupportedOperationException();
1951       }
1952 
1953     };
1954 
1955     return new Iterable<byte[]>() {
1956       @Override
1957       public Iterator<byte[]> iterator() {
1958         return iterator;
1959       }
1960     };
1961   }
1962 
1963   /**
1964    * @param bytes array to hash
1965    * @param offset offset to start from
1966    * @param length length to hash
1967    * */
1968   public static int hashCode(byte[] bytes, int offset, int length) {
1969     int hash = 1;
1970     for (int i = offset; i < offset + length; i++)
1971       hash = (31 * hash) + (int) bytes[i];
1972     return hash;
1973   }
1974 
1975   /**
1976    * @param t operands
1977    * @return Array of byte arrays made from passed array of Text
1978    */
1979   public static byte [][] toByteArrays(final String [] t) {
1980     byte [][] result = new byte[t.length][];
1981     for (int i = 0; i < t.length; i++) {
1982       result[i] = Bytes.toBytes(t[i]);
1983     }
1984     return result;
1985   }
1986 
1987   /**
1988    * @param t operands
1989    * @return Array of binary byte arrays made from passed array of binary strings
1990    */
1991   public static byte[][] toBinaryByteArrays(final String[] t) {
1992     byte[][] result = new byte[t.length][];
1993     for (int i = 0; i < t.length; i++) {
1994       result[i] = Bytes.toBytesBinary(t[i]);
1995     }
1996     return result;
1997   }
1998 
1999   /**
2000    * @param column operand
2001    * @return A byte array of a byte array where first and only entry is
2002    * <code>column</code>
2003    */
2004   public static byte [][] toByteArrays(final String column) {
2005     return toByteArrays(toBytes(column));
2006   }
2007 
2008   /**
2009    * @param column operand
2010    * @return A byte array of a byte array where first and only entry is
2011    * <code>column</code>
2012    */
2013   public static byte [][] toByteArrays(final byte [] column) {
2014     byte [][] result = new byte[1][];
2015     result[0] = column;
2016     return result;
2017   }
2018 
2019   /**
2020    * Binary search for keys in indexes.
2021    *
2022    * @param arr array of byte arrays to search for
2023    * @param key the key you want to find
2024    * @param offset the offset in the key you want to find
2025    * @param length the length of the key
2026    * @param comparator a comparator to compare.
2027    * @return zero-based index of the key, if the key is present in the array.
2028    *         Otherwise, a value -(i + 1) such that the key is between arr[i -
2029    *         1] and arr[i] non-inclusively, where i is in [0, i], if we define
2030    *         arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above
2031    *         means that this function can return 2N + 1 different values
2032    *         ranging from -(N + 1) to N - 1.
2033    * @deprecated {@link Bytes#binarySearch(byte[][], byte[], int, int)}
2034    */
2035   @Deprecated
2036   public static int binarySearch(byte [][]arr, byte []key, int offset,
2037       int length, RawComparator<?> comparator) {
2038     return binarySearch(arr, key, offset, length);
2039   }
2040 
2041   /**
2042    * Binary search for keys in indexes using Bytes.BYTES_RAWCOMPARATOR.
2043    *
2044    * @param arr array of byte arrays to search for
2045    * @param key the key you want to find
2046    * @param offset the offset in the key you want to find
2047    * @param length the length of the key
2048    * @return zero-based index of the key, if the key is present in the array.
2049    *         Otherwise, a value -(i + 1) such that the key is between arr[i -
2050    *         1] and arr[i] non-inclusively, where i is in [0, i], if we define
2051    *         arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above
2052    *         means that this function can return 2N + 1 different values
2053    *         ranging from -(N + 1) to N - 1.
2054    */
2055   public static int binarySearch(byte[][] arr, byte[] key, int offset, int length) {
2056     int low = 0;
2057     int high = arr.length - 1;
2058 
2059     while (low <= high) {
2060       int mid = (low + high) >>> 1;
2061       // we have to compare in this order, because the comparator order
2062       // has special logic when the 'left side' is a special key.
2063       int cmp = Bytes.BYTES_RAWCOMPARATOR
2064           .compare(key, offset, length, arr[mid], 0, arr[mid].length);
2065       // key lives above the midpoint
2066       if (cmp > 0)
2067         low = mid + 1;
2068       // key lives below the midpoint
2069       else if (cmp < 0)
2070         high = mid - 1;
2071       // BAM. how often does this really happen?
2072       else
2073         return mid;
2074     }
2075     return -(low + 1);
2076   }
2077 
2078   /**
2079    * Binary search for keys in indexes.
2080    *
2081    * @param arr array of byte arrays to search for
2082    * @param key the key you want to find
2083    * @param comparator a comparator to compare.
2084    * @return zero-based index of the key, if the key is present in the array.
2085    *         Otherwise, a value -(i + 1) such that the key is between arr[i -
2086    *         1] and arr[i] non-inclusively, where i is in [0, i], if we define
2087    *         arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above
2088    *         means that this function can return 2N + 1 different values
2089    *         ranging from -(N + 1) to N - 1.
2090    * @return the index of the block
2091    * @deprecated Use {@link Bytes#binarySearch(Cell[], Cell, CellComparator)}
2092    */
2093   @Deprecated
2094   public static int binarySearch(byte[][] arr, Cell key, RawComparator<Cell> comparator) {
2095     int low = 0;
2096     int high = arr.length - 1;
2097     KeyValue.KeyOnlyKeyValue r = new KeyValue.KeyOnlyKeyValue();
2098     while (low <= high) {
2099       int mid = (low+high) >>> 1;
2100       // we have to compare in this order, because the comparator order
2101       // has special logic when the 'left side' is a special key.
2102       r.setKey(arr[mid], 0, arr[mid].length);
2103       int cmp = comparator.compare(key, r);
2104       // key lives above the midpoint
2105       if (cmp > 0)
2106         low = mid + 1;
2107       // key lives below the midpoint
2108       else if (cmp < 0)
2109         high = mid - 1;
2110       // BAM. how often does this really happen?
2111       else
2112         return mid;
2113     }
2114     return - (low+1);
2115   }
2116 
2117   /**
2118    * Binary search for keys in indexes.
2119    *
2120    * @param arr array of byte arrays to search for
2121    * @param key the key you want to find
2122    * @param comparator a comparator to compare.
2123    * @return zero-based index of the key, if the key is present in the array.
2124    *         Otherwise, a value -(i + 1) such that the key is between arr[i -
2125    *         1] and arr[i] non-inclusively, where i is in [0, i], if we define
2126    *         arr[-1] = -Inf and arr[N] = Inf for an N-element array. The above
2127    *         means that this function can return 2N + 1 different values
2128    *         ranging from -(N + 1) to N - 1.
2129    * @return the index of the block
2130    */
2131   public static int binarySearch(Cell[] arr, Cell key, CellComparator comparator) {
2132     int low = 0;
2133     int high = arr.length - 1;
2134     while (low <= high) {
2135       int mid = (low+high) >>> 1;
2136       // we have to compare in this order, because the comparator order
2137       // has special logic when the 'left side' is a special key.
2138       int cmp = comparator.compare(key, arr[mid]);
2139       // key lives above the midpoint
2140       if (cmp > 0)
2141         low = mid + 1;
2142       // key lives below the midpoint
2143       else if (cmp < 0)
2144         high = mid - 1;
2145       // BAM. how often does this really happen?
2146       else
2147         return mid;
2148     }
2149     return - (low+1);
2150   }
2151 
2152   /**
2153    * Bytewise binary increment/deincrement of long contained in byte array
2154    * on given amount.
2155    *
2156    * @param value - array of bytes containing long (length &lt;= SIZEOF_LONG)
2157    * @param amount value will be incremented on (deincremented if negative)
2158    * @return array of bytes containing incremented long (length == SIZEOF_LONG)
2159    */
2160   public static byte [] incrementBytes(byte[] value, long amount)
2161   {
2162     byte[] val = value;
2163     if (val.length < SIZEOF_LONG) {
2164       // Hopefully this doesn't happen too often.
2165       byte [] newvalue;
2166       if (val[0] < 0) {
2167         newvalue = new byte[]{-1, -1, -1, -1, -1, -1, -1, -1};
2168       } else {
2169         newvalue = new byte[SIZEOF_LONG];
2170       }
2171       System.arraycopy(val, 0, newvalue, newvalue.length - val.length,
2172         val.length);
2173       val = newvalue;
2174     } else if (val.length > SIZEOF_LONG) {
2175       throw new IllegalArgumentException("Increment Bytes - value too big: " +
2176         val.length);
2177     }
2178     if(amount == 0) return val;
2179     if(val[0] < 0){
2180       return binaryIncrementNeg(val, amount);
2181     }
2182     return binaryIncrementPos(val, amount);
2183   }
2184 
2185   /* increment/deincrement for positive value */
2186   private static byte [] binaryIncrementPos(byte [] value, long amount) {
2187     long amo = amount;
2188     int sign = 1;
2189     if (amount < 0) {
2190       amo = -amount;
2191       sign = -1;
2192     }
2193     for(int i=0;i<value.length;i++) {
2194       int cur = ((int)amo % 256) * sign;
2195       amo = (amo >> 8);
2196       int val = value[value.length-i-1] & 0x0ff;
2197       int total = val + cur;
2198       if(total > 255) {
2199         amo += sign;
2200         total %= 256;
2201       } else if (total < 0) {
2202         amo -= sign;
2203       }
2204       value[value.length-i-1] = (byte)total;
2205       if (amo == 0) return value;
2206     }
2207     return value;
2208   }
2209 
2210   /* increment/deincrement for negative value */
2211   private static byte [] binaryIncrementNeg(byte [] value, long amount) {
2212     long amo = amount;
2213     int sign = 1;
2214     if (amount < 0) {
2215       amo = -amount;
2216       sign = -1;
2217     }
2218     for(int i=0;i<value.length;i++) {
2219       int cur = ((int)amo % 256) * sign;
2220       amo = (amo >> 8);
2221       int val = ((~value[value.length-i-1]) & 0x0ff) + 1;
2222       int total = cur - val;
2223       if(total >= 0) {
2224         amo += sign;
2225       } else if (total < -256) {
2226         amo -= sign;
2227         total %= 256;
2228       }
2229       value[value.length-i-1] = (byte)total;
2230       if (amo == 0) return value;
2231     }
2232     return value;
2233   }
2234 
2235   /**
2236    * Writes a string as a fixed-size field, padded with zeros.
2237    */
2238   public static void writeStringFixedSize(final DataOutput out, String s,
2239       int size) throws IOException {
2240     byte[] b = toBytes(s);
2241     if (b.length > size) {
2242       throw new IOException("Trying to write " + b.length + " bytes (" +
2243           toStringBinary(b) + ") into a field of length " + size);
2244     }
2245 
2246     out.writeBytes(s);
2247     for (int i = 0; i < size - s.length(); ++i)
2248       out.writeByte(0);
2249   }
2250 
2251   /**
2252    * Reads a fixed-size field and interprets it as a string padded with zeros.
2253    */
2254   public static String readStringFixedSize(final DataInput in, int size)
2255       throws IOException {
2256     byte[] b = new byte[size];
2257     in.readFully(b);
2258     int n = b.length;
2259     while (n > 0 && b[n - 1] == 0)
2260       --n;
2261 
2262     return toString(b, 0, n);
2263   }
2264 
2265   /**
2266    * Copy the byte array given in parameter and return an instance
2267    * of a new byte array with the same length and the same content.
2268    * @param bytes the byte array to duplicate
2269    * @return a copy of the given byte array
2270    */
2271   public static byte [] copy(byte [] bytes) {
2272     if (bytes == null) return null;
2273     byte [] result = new byte[bytes.length];
2274     System.arraycopy(bytes, 0, result, 0, bytes.length);
2275     return result;
2276   }
2277 
2278   /**
2279    * Copy the byte array given in parameter and return an instance
2280    * of a new byte array with the same length and the same content.
2281    * @param bytes the byte array to copy from
2282    * @return a copy of the given designated byte array
2283    * @param offset
2284    * @param length
2285    */
2286   public static byte [] copy(byte [] bytes, final int offset, final int length) {
2287     if (bytes == null) return null;
2288     byte [] result = new byte[length];
2289     System.arraycopy(bytes, offset, result, 0, length);
2290     return result;
2291   }
2292 
2293   /**
2294    * Search sorted array "a" for byte "key". I can't remember if I wrote this or copied it from
2295    * somewhere. (mcorgan)
2296    * @param a Array to search. Entries must be sorted and unique.
2297    * @param fromIndex First index inclusive of "a" to include in the search.
2298    * @param toIndex Last index exclusive of "a" to include in the search.
2299    * @param key The byte to search for.
2300    * @return The index of key if found. If not found, return -(index + 1), where negative indicates
2301    *         "not found" and the "index + 1" handles the "-0" case.
2302    */
2303   public static int unsignedBinarySearch(byte[] a, int fromIndex, int toIndex, byte key) {
2304     int unsignedKey = key & 0xff;
2305     int low = fromIndex;
2306     int high = toIndex - 1;
2307 
2308     while (low <= high) {
2309       int mid = (low + high) >>> 1;
2310       int midVal = a[mid] & 0xff;
2311 
2312       if (midVal < unsignedKey) {
2313         low = mid + 1;
2314       } else if (midVal > unsignedKey) {
2315         high = mid - 1;
2316       } else {
2317         return mid; // key found
2318       }
2319     }
2320     return -(low + 1); // key not found.
2321   }
2322 
2323   /**
2324    * Treat the byte[] as an unsigned series of bytes, most significant bits first.  Start by adding
2325    * 1 to the rightmost bit/byte and carry over all overflows to the more significant bits/bytes.
2326    *
2327    * @param input The byte[] to increment.
2328    * @return The incremented copy of "in".  May be same length or 1 byte longer.
2329    */
2330   public static byte[] unsignedCopyAndIncrement(final byte[] input) {
2331     byte[] copy = copy(input);
2332     if (copy == null) {
2333       throw new IllegalArgumentException("cannot increment null array");
2334     }
2335     for (int i = copy.length - 1; i >= 0; --i) {
2336       if (copy[i] == -1) {// -1 is all 1-bits, which is the unsigned maximum
2337         copy[i] = 0;
2338       } else {
2339         ++copy[i];
2340         return copy;
2341       }
2342     }
2343     // we maxed out the array
2344     byte[] out = new byte[copy.length + 1];
2345     out[0] = 1;
2346     System.arraycopy(copy, 0, out, 1, copy.length);
2347     return out;
2348   }
2349 
2350   public static boolean equals(List<byte[]> a, List<byte[]> b) {
2351     if (a == null) {
2352       if (b == null) {
2353         return true;
2354       }
2355       return false;
2356     }
2357     if (b == null) {
2358       return false;
2359     }
2360     if (a.size() != b.size()) {
2361       return false;
2362     }
2363     for (int i = 0; i < a.size(); ++i) {
2364       if (!Bytes.equals(a.get(i), b.get(i))) {
2365         return false;
2366       }
2367     }
2368     return true;
2369   }
2370 
2371   public static boolean isSorted(Collection<byte[]> arrays) {
2372     byte[] previous = new byte[0];
2373     for (byte[] array : IterableUtils.nullSafe(arrays)) {
2374       if (Bytes.compareTo(previous, array) > 0) {
2375         return false;
2376       }
2377       previous = array;
2378     }
2379     return true;
2380   }
2381 
2382   public static List<byte[]> getUtf8ByteArrays(List<String> strings) {
2383     List<byte[]> byteArrays = Lists.newArrayListWithCapacity(CollectionUtils.nullSafeSize(strings));
2384     for (String s : IterableUtils.nullSafe(strings)) {
2385       byteArrays.add(Bytes.toBytes(s));
2386     }
2387     return byteArrays;
2388   }
2389 
2390   /**
2391    * Returns the index of the first appearance of the value {@code target} in
2392    * {@code array}.
2393    *
2394    * @param array an array of {@code byte} values, possibly empty
2395    * @param target a primitive {@code byte} value
2396    * @return the least index {@code i} for which {@code array[i] == target}, or
2397    *     {@code -1} if no such index exists.
2398    */
2399   public static int indexOf(byte[] array, byte target) {
2400     for (int i = 0; i < array.length; i++) {
2401       if (array[i] == target) {
2402         return i;
2403       }
2404     }
2405     return -1;
2406   }
2407 
2408   /**
2409    * Returns the start position of the first occurrence of the specified {@code
2410    * target} within {@code array}, or {@code -1} if there is no such occurrence.
2411    *
2412    * <p>More formally, returns the lowest index {@code i} such that {@code
2413    * java.util.Arrays.copyOfRange(array, i, i + target.length)} contains exactly
2414    * the same elements as {@code target}.
2415    *
2416    * @param array the array to search for the sequence {@code target}
2417    * @param target the array to search for as a sub-sequence of {@code array}
2418    */
2419   public static int indexOf(byte[] array, byte[] target) {
2420     checkNotNull(array, "array");
2421     checkNotNull(target, "target");
2422     if (target.length == 0) {
2423       return 0;
2424     }
2425 
2426     outer:
2427     for (int i = 0; i < array.length - target.length + 1; i++) {
2428       for (int j = 0; j < target.length; j++) {
2429         if (array[i + j] != target[j]) {
2430           continue outer;
2431         }
2432       }
2433       return i;
2434     }
2435     return -1;
2436   }
2437 
2438   /**
2439    * @param array an array of {@code byte} values, possibly empty
2440    * @param target a primitive {@code byte} value
2441    * @return {@code true} if {@code target} is present as an element anywhere in {@code array}.
2442    */
2443   public static boolean contains(byte[] array, byte target) {
2444     return indexOf(array, target) > -1;
2445   }
2446 
2447   /**
2448    * @param array an array of {@code byte} values, possibly empty
2449    * @param target an array of {@code byte}
2450    * @return {@code true} if {@code target} is present anywhere in {@code array}
2451    */
2452   public static boolean contains(byte[] array, byte[] target) {
2453     return indexOf(array, target) > -1;
2454   }
2455 
2456   /**
2457    * Fill given array with zeros.
2458    * @param b array which needs to be filled with zeros
2459    */
2460   public static void zero(byte[] b) {
2461     zero(b, 0, b.length);
2462   }
2463 
2464   /**
2465    * Fill given array with zeros at the specified position.
2466    * @param b
2467    * @param offset
2468    * @param length
2469    */
2470   public static void zero(byte[] b, int offset, int length) {
2471     checkPositionIndex(offset, b.length, "offset");
2472     checkArgument(length > 0, "length must be greater than 0");
2473     checkPositionIndex(offset + length, b.length, "offset + length");
2474     Arrays.fill(b, offset, offset + length, (byte) 0);
2475   }
2476 
2477   private static final SecureRandom RNG = new SecureRandom();
2478 
2479   /**
2480    * Fill given array with random bytes.
2481    * @param b array which needs to be filled with random bytes
2482    */
2483   public static void random(byte[] b) {
2484     RNG.nextBytes(b);
2485   }
2486 
2487   /**
2488    * Fill given array with random bytes at the specified position.
2489    * @param b
2490    * @param offset
2491    * @param length
2492    */
2493   public static void random(byte[] b, int offset, int length) {
2494     checkPositionIndex(offset, b.length, "offset");
2495     checkArgument(length > 0, "length must be greater than 0");
2496     checkPositionIndex(offset + length, b.length, "offset + length");
2497     byte[] buf = new byte[length];
2498     RNG.nextBytes(buf);
2499     System.arraycopy(buf, 0, b, offset, length);
2500   }
2501 
2502   /**
2503    * Create a max byte array with the specified max byte count
2504    * @param maxByteCount the length of returned byte array
2505    * @return the created max byte array
2506    */
2507   public static byte[] createMaxByteArray(int maxByteCount) {
2508     byte[] maxByteArray = new byte[maxByteCount];
2509     for (int i = 0; i < maxByteArray.length; i++) {
2510       maxByteArray[i] = (byte) 0xff;
2511     }
2512     return maxByteArray;
2513   }
2514 
2515   /**
2516    * Create a byte array which is multiple given bytes
2517    * @param srcBytes
2518    * @param multiNum
2519    * @return byte array
2520    */
2521   public static byte[] multiple(byte[] srcBytes, int multiNum) {
2522     if (multiNum <= 0) {
2523       return new byte[0];
2524     }
2525     byte[] result = new byte[srcBytes.length * multiNum];
2526     for (int i = 0; i < multiNum; i++) {
2527       System.arraycopy(srcBytes, 0, result, i * srcBytes.length,
2528         srcBytes.length);
2529     }
2530     return result;
2531   }
2532 
2533   private static final char[] HEX_CHARS = {
2534     '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
2535   };
2536 
2537   /**
2538    * Convert a byte range into a hex string
2539    */
2540   public static String toHex(byte[] b, int offset, int length) {
2541     checkArgument(length <= Integer.MAX_VALUE / 2);
2542     int numChars = length * 2;
2543     char[] ch = new char[numChars];
2544     for (int i = 0; i < numChars; i += 2)
2545     {
2546       byte d = b[offset + i/2];
2547       ch[i] = HEX_CHARS[(d >> 4) & 0x0F];
2548       ch[i+1] = HEX_CHARS[d & 0x0F];
2549     }
2550     return new String(ch);
2551   }
2552   
2553   /**
2554    * Convert a byte array into a hex string
2555    */
2556   public static String toHex(byte[] b) {
2557     return toHex(b, 0, b.length);
2558   }
2559 
2560   private static int hexCharToNibble(char ch) {
2561     if (ch <= '9' && ch >= '0') {
2562       return ch - '0';
2563     } else if (ch >= 'a' && ch <= 'f') {
2564       return ch - 'a' + 10;
2565     } else if (ch >= 'A' && ch <= 'F') {
2566       return ch - 'A' + 10;
2567     }
2568     throw new IllegalArgumentException("Invalid hex char: " + ch);
2569   }
2570 
2571   private static byte hexCharsToByte(char c1, char c2) {
2572     return (byte) ((hexCharToNibble(c1) << 4) | hexCharToNibble(c2));
2573   }
2574 
2575   /**
2576    * Create a byte array from a string of hash digits. The length of the
2577    * string must be a multiple of 2
2578    * @param hex
2579    */
2580   public static byte[] fromHex(String hex) {
2581     checkArgument(hex.length() % 2 == 0, "length must be a multiple of 2");
2582     int len = hex.length();
2583     byte[] b = new byte[len / 2];
2584     for (int i = 0; i < len; i += 2) {
2585         b[i / 2] = hexCharsToByte(hex.charAt(i),hex.charAt(i+1));
2586     }
2587     return b;
2588   }
2589 
2590   /**
2591    * @param b
2592    * @param delimiter
2593    * @return Index of delimiter having started from start of <code>b</code> moving rightward.
2594    */
2595   public static int searchDelimiterIndex(final byte[] b, int offset, final int length,
2596       final int delimiter) {
2597     if (b == null) {
2598       throw new IllegalArgumentException("Passed buffer is null");
2599     }
2600     int result = -1;
2601     for (int i = offset; i < length + offset; i++) {
2602       if (b[i] == delimiter) {
2603         result = i;
2604         break;
2605       }
2606     }
2607     return result;
2608   }
2609 
2610   /**
2611    * Find index of passed delimiter walking from end of buffer backwards.
2612    *
2613    * @param b
2614    * @param delimiter
2615    * @return Index of delimiter
2616    */
2617   public static int searchDelimiterIndexInReverse(final byte[] b, final int offset,
2618       final int length, final int delimiter) {
2619     if (b == null) {
2620       throw new IllegalArgumentException("Passed buffer is null");
2621     }
2622     int result = -1;
2623     for (int i = (offset + length) - 1; i >= offset; i--) {
2624       if (b[i] == delimiter) {
2625         result = i;
2626         break;
2627       }
2628     }
2629     return result;
2630     }
2631 
2632     public static int findCommonPrefix(byte[] left, byte[] right, int leftLength, int rightLength,
2633         int leftOffset, int rightOffset) {
2634       int length = Math.min(leftLength, rightLength);
2635       int result = 0;
2636 
2637       while (result < length && left[leftOffset + result] == right[rightOffset + result]) {
2638         result++;
2639       }
2640       return result;
2641     }
2642 }