Avro C++
|
Avro is a data serialization system. See http://avro.apache.org/docs/current/ for background information.
Avro C++ is a C++ library which implementats parts of the Avro Specification. The library includes the following functionality:
Presently there is no support for the following specified in Avro specification.
Note: Prior to Avro release 1.5, some of the functionality mentioned above was avilable through a somewhat different API and set tools. They are partially incompatible to the present ones. They continue to be available but will be deprecated and discontinued sometime in the future. The documentation on that API can be found at http://avro.apache.org/docs/1.4.0/api/cpp/html/index.html
One should be able to build Avro C++ on (1) any UNIX flavor including cygwin for Windows and (2) natively on Windows using Visual Studio. We have tested it on (1) Linux systems (Ubuntu and RHEL) and Cygwin and Visual Studio 2010 Express edition.
In order to build Avro C++, one needs the following:
For Ubuntu Linux, for example, you can have these by doing apt-get install
for the following packages:
For Windows native builds, you need to install the following:
lang/c++
subdirectory. ./build.sh test
. This builds Avro C++ and runs tests on it. ./build.sh install
. This installs Avro C++ under /usr/local on your system. lang/c++
subdirectory. cmake -G "Visual Studio 10"
. It creates, among other things, Avro-cpp.sln file. After building all the projects, you can also execute the unit tests from command line. ctest -C release
or ctest -C debug
.
Although Avro does not require use of code generation, that is the easiest way to get started with the Avro C++ library. The code generator reads a schema, and generates a C++ header file that defines one or more C++ struct
s to represent the data for the schema and functions to encode and decode those struct
s. Even if you wish to write custom code to encode and decode your objects using the core functionality of Avro C++, the generated code can serve as an example of how to use the code functionality.
Let's walk through an example, using a simple schema. Use the schema that represents an complex number:
File: cpx.json
00001 { 00002 "type": "record", 00003 "name": "cpx", 00004 "fields" : [ 00005 {"name": "re", "type": "double"}, 00006 {"name": "im", "type" : "double"} 00007 ] 00008 }
Note: All the example code given here can be found under examples
directory of the distribution.
Assume this JSON representation of the schema is stored in a file called cpx.json
. To generate the code issue the command:.
avrogencpp -i cpx.json -o cpx.hh -n c
The -i
flag specifies the input schema file and -o
flag specifies the output header file to generate. The generated C++ code will be in the namespace specifed with -n
flag.
The generated file, among other things will have the following:
... namespace c { ...
struct cpx { double re; double im; };
...
}
cpx
is a C++ representation of the Avro schema cpx
.
Now let's see how we can use the code generated to encode data into avro and decode it back.
File: generated.cc
00001 00019 #include "cpx.hh" 00020 #include "avro/Encoder.hh" 00021 #include "avro/Decoder.hh" 00022 00023 00024 int 00025 main() 00026 { 00027 std::auto_ptr<avro::OutputStream> out = avro::memoryOutputStream(); 00028 avro::EncoderPtr e = avro::binaryEncoder(); 00029 e->init(*out); 00030 c::cpx c1; 00031 c1.re = 1.0; 00032 c1.im = 2.13; 00033 avro::encode(*e, c1); 00034 00035 std::auto_ptr<avro::InputStream> in = avro::memoryInputStream(*out); 00036 avro::DecoderPtr d = avro::binaryDecoder(); 00037 d->init(*in); 00038 00039 c::cpx c2; 00040 avro::decode(*d, c2); 00041 std::cout << '(' << c2.re << ", " << c2.im << ')' << std::endl; 00042 return 0; 00043 } 00044
In line 9, we construct a memory output stream. By this we indicate that we want to send the encoded Avro data into memory. In line 10, we construct a binary encoder, whereby we mean the output should be encoded using the Avro binary standard. In line 11, we attach the output stream to the encoder. At any given time an incoder can write to only one output stream.
In line 14, we write the contents of c1 into the output stream using the encoder. Now the output stream contains the binary representation of the object. The rest of the code verifies that the data is indeed in the stream.
In line 17, we construct a memory input stream from the contents of the output stream. Thus the input stream has the binary representation of the object. In line 18 and 19, we construct a binary decoder and attach the input stream to it. Line 22 decodes the contents of the stream into another object c2. Now c1 and c2 should have identical contents, which one can readily verify from the output of the program, which should be:
(1, 2.13)
Now, if you want to encode the data using Avro JSON encoding, you should use avro::jsonEncoder() instead of avro::binaryEncoder() in line 10 and avro::jsonDecoder() instead of avro::binaryDecoder() in line 18.
On the other hand, if you want to write the contents to a file instead of memory, you should use avro::fileOutputStream() instead of avro::memoryOutputStream() in ine 9 and avro::fileInputStream() instead of avro::memoryInputStream() in line 17.
The section above demonstrated pretty much all that's needed to know to get started reading and writing objects using the Avro C++ code generator. The following sections will cover some more information.
The library provides some utilities to read a schema that is stored in a JSON file:
File: schemaload.cc
00001 00019 #include <fstream> 00020 00021 #include "avro/ValidSchema.hh" 00022 #include "avro/Compiler.hh" 00023 00024 00025 int 00026 main() 00027 { 00028 std::ifstream in("cpx.json"); 00029 00030 avro::ValidSchema cpxSchema; 00031 avro::compileJsonSchema(in, cpxSchema); 00032 }
This reads the file, and parses the JSON schema into an in-meory schema object of type avro::ValidSchema. If, for some reason, the schema is not valid, the cpxSchema
object will not be set, and an exception will be thrown. If you always use code Avro generator you don't really need the in-memory schema objects. But if you use custom objects and routines to encode or decode avro data, you will need the schema objects. Other uses of schema objects are generic data objects and schema resolution described in the following sections.
Suppose you want to encode objects of type std::complex<double> from C++ standard library using the schema defined in cpx.json. Since std::complex<double> was not generated by Avro, it does't know how to encode or decode objects of that type. You have to tell Avro how to do that.
The recommended way to tell Avro how to encode or decode is to specialize Avro's codec_traits template. For std::complex<double>, here is what you'd do:
File: custom.cc
00001 00019 #include <complex> 00020 00021 #include "avro/Encoder.hh" 00022 #include "avro/Decoder.hh" 00023 #include "avro/Specific.hh" 00024 00025 namespace avro { 00026 template<typename T> 00027 struct codec_traits<std::complex<T> > { 00028 static void encode(Encoder& e, const std::complex<T>& c) { 00029 avro::encode(e, std::real(c)); 00030 avro::encode(e, std::imag(c)); 00031 } 00032 00033 static void decode(Decoder& d, std::complex<T>& c) { 00034 T re, im; 00035 avro::decode(d, re); 00036 avro::decode(d, im); 00037 c = std::complex<T>(re, im); 00038 } 00039 }; 00040 00041 } 00042 int 00043 main() 00044 { 00045 std::auto_ptr<avro::OutputStream> out = avro::memoryOutputStream(); 00046 avro::EncoderPtr e = avro::binaryEncoder(); 00047 e->init(*out); 00048 std::complex<double> c1(1.0, 2.0); 00049 avro::encode(*e, c1); 00050 00051 std::auto_ptr<avro::InputStream> in = avro::memoryInputStream(*out); 00052 avro::DecoderPtr d = avro::binaryDecoder(); 00053 d->init(*in); 00054 00055 std::complex<double> c2; 00056 avro::decode(*d, c2); 00057 std::cout << '(' << std::real(c2) << ", " << std::imag(c2) << ')' << std::endl; 00058 return 0; 00059 }
Please notice that the main function is pretty much similar to that we used for the generated class. Once codec_traits
for a specific type is supplied, you do not really need to do anything special for your custom types.
But wait, how does Avro know that complex<double> represents the data for the schema in cpx.json
? It doesn't. In fact, if you have used std::complex<float>
instead of std::complex<double>
program would have worked. But the data in the memory would not have been corresponding to the schema in cpx.json
.
In order to ensure that you indeed use the correct type, you can use the validating encoders and decoder. Here is how:
File: validating.cc
00001 00019 #include <fstream> 00020 #include <complex> 00021 00022 #include "avro/Compiler.hh" 00023 #include "avro/Encoder.hh" 00024 #include "avro/Decoder.hh" 00025 #include "avro/Specific.hh" 00026 00027 namespace avro { 00028 template<typename T> 00029 struct codec_traits<std::complex<T> > { 00030 static void encode(Encoder& e, const std::complex<T>& c) { 00031 avro::encode(e, std::real(c)); 00032 avro::encode(e, std::imag(c)); 00033 } 00034 00035 static void decode(Decoder& d, std::complex<T>& c) { 00036 T re, im; 00037 avro::decode(d, re); 00038 avro::decode(d, im); 00039 c = std::complex<T>(re, im); 00040 } 00041 }; 00042 00043 } 00044 int 00045 main() 00046 { 00047 std::ifstream ifs("cpx.json"); 00048 00049 avro::ValidSchema cpxSchema; 00050 avro::compileJsonSchema(ifs, cpxSchema); 00051 00052 std::auto_ptr<avro::OutputStream> out = avro::memoryOutputStream(); 00053 avro::EncoderPtr e = avro::validatingEncoder(cpxSchema, 00054 avro::binaryEncoder()); 00055 e->init(*out); 00056 std::complex<double> c1(1.0, 2.0); 00057 avro::encode(*e, c1); 00058 00059 std::auto_ptr<avro::InputStream> in = avro::memoryInputStream(*out); 00060 avro::DecoderPtr d = avro::validatingDecoder(cpxSchema, 00061 avro::binaryDecoder()); 00062 d->init(*in); 00063 00064 std::complex<double> c2; 00065 avro::decode(*d, c2); 00066 std::cout << '(' << std::real(c2) << ", " << std::imag(c2) << ')' << std::endl; 00067 return 0; 00068 }
Here, instead of using the plain binary encoder, you use a validating encoder backed by a binary encoder. Similarly, instead of using the plain binary decoder, you use a validating decoder backed by a binary decoder. Now, if you use std::complex<float>
intead of std::complex<double>
the validating encoder and decoder will throw exception stating that you are trying to encode or decode float
instead of double
.
You can use any encoder behind the validating encoder and any decoder behind the validating decoder. But in practice, only the binary encoder and the binary decoder have no knowledge of the underlying schema. All other encoders (JSON encoder) and decoders (JSON decoder, resolving decoder) do know about the schema and they validate internally. So, fronting them with a validating encoder or validating decoder is wasteful.
A third way to encode and decode data is to use Avro's generic datum. Avro's generic datum allows you to read any arbitray data corresponding to an arbitrary schema into a generic object. One need not know anything about the schema or data at complie time.
Here is an example how one can use the generic datum.
File: generic.cc
00001 00019 #include <fstream> 00020 #include <complex> 00021 00022 #include "cpx.hh" 00023 00024 #include "avro/Compiler.hh" 00025 #include "avro/Encoder.hh" 00026 #include "avro/Decoder.hh" 00027 #include "avro/Specific.hh" 00028 #include "avro/Generic.hh" 00029 00030 int 00031 main() 00032 { 00033 std::ifstream ifs("cpx.json"); 00034 00035 avro::ValidSchema cpxSchema; 00036 avro::compileJsonSchema(ifs, cpxSchema); 00037 00038 std::auto_ptr<avro::OutputStream> out = avro::memoryOutputStream(); 00039 avro::EncoderPtr e = avro::binaryEncoder(); 00040 e->init(*out); 00041 c::cpx c1; 00042 c1.re = 100.23; 00043 c1.im = 105.77; 00044 avro::encode(*e, c1); 00045 00046 std::auto_ptr<avro::InputStream> in = avro::memoryInputStream(*out); 00047 avro::DecoderPtr d = avro::binaryDecoder(); 00048 d->init(*in); 00049 00050 avro::GenericDatum datum(cpxSchema); 00051 avro::decode(*d, datum); 00052 std::cout << "Type: " << datum.type() << std::endl; 00053 if (datum.type() == avro::AVRO_RECORD) { 00054 const avro::GenericRecord& r = datum.value<avro::GenericRecord>(); 00055 std::cout << "Field-count: " << r.fieldCount() << std::endl; 00056 if (r.fieldCount() == 2) { 00057 const avro::GenericDatum& f0 = r.fieldAt(0); 00058 if (f0.type() == avro::AVRO_DOUBLE) { 00059 std::cout << "Real: " << f0.value<double>() << std::endl; 00060 } 00061 const avro::GenericDatum& f1 = r.fieldAt(1); 00062 if (f1.type() == avro::AVRO_DOUBLE) { 00063 std::cout << "Imaginary: " << f1.value<double>() << std::endl; 00064 } 00065 } 00066 } 00067 return 0; 00068 }
In this example, we encode the data using generated code and decode it with generic datum. Then we examine the contents of the generic datum and extract them. Please see avro::GenericDatum for more details on how to use it.
It is possible to read the data written according to one schema using a different schema, provided the reader's schema and the writer's schema are compatible according to the Avro's Schema resolution rules.
For example, you have a reader which is interested only in the imaginary part of a complex number while the writer writes both the real and imaginary parts. It is possible to do automatic schema resolution between the writer's schema and schema as shown below.
File: imaginary.json
00001 { 00002 "type": "record", 00003 "name": "cpx", 00004 "fields" : [ 00005 {"name": "im", "type" : "double"} 00006 ] 00007 }
avrogencpp -i imaginary.json -o imaginary.hh -n i
File: resolving.cc
00001 00019 #include <fstream> 00020 00021 #include "cpx.hh" 00022 #include "imaginary.hh" 00023 00024 #include "avro/Compiler.hh" 00025 #include "avro/Encoder.hh" 00026 #include "avro/Decoder.hh" 00027 #include "avro/Specific.hh" 00028 #include "avro/Generic.hh" 00029 00030 00031 00032 avro::ValidSchema load(const char* filename) 00033 { 00034 std::ifstream ifs(filename); 00035 avro::ValidSchema result; 00036 avro::compileJsonSchema(ifs, result); 00037 return result; 00038 } 00039 00040 int 00041 main() 00042 { 00043 avro::ValidSchema cpxSchema = load("cpx.json"); 00044 avro::ValidSchema imaginarySchema = load("imaginary.json"); 00045 00046 std::auto_ptr<avro::OutputStream> out = avro::memoryOutputStream(); 00047 avro::EncoderPtr e = avro::binaryEncoder(); 00048 e->init(*out); 00049 c::cpx c1; 00050 c1.re = 100.23; 00051 c1.im = 105.77; 00052 avro::encode(*e, c1); 00053 00054 std::auto_ptr<avro::InputStream> in = avro::memoryInputStream(*out); 00055 avro::DecoderPtr d = avro::resolvingDecoder(cpxSchema, imaginarySchema, 00056 avro::binaryDecoder()); 00057 d->init(*in); 00058 00059 i::cpx c2; 00060 avro::decode(*d, c2); 00061 std::cout << "Imaginary: " << c2.im << std::endl; 00062 00063 }
In this example, writer and reader deal with different schemas, both are recornd with the same name cpx. The writer schema has two fields and the reader's has just one. We generated code for writer's schema in a namespace c
and the reader's in i
.
Please notice how the reading part of the example at line 42 reads as if the stream contains the data corresponding to its schema. The schema resolution is automatically done by the resolving decoder.
In this example, we have used a simple (somewhat artificial) projection (where the set of fields in the reader's schema is a subset of set of fields in the writer's). But more complex resolutions are allowed by Avro specification.
Avro specification specifies a format for data files. Avro C++ implements the sepcification. The code below demonstrates how one can use the Avro data file to store and retrieve a collection of objects corresponding to a given schema.
File: datafile.cc
00001 00019 #include <fstream> 00020 00021 #include "cpx.hh" 00022 #include "avro/Encoder.hh" 00023 #include "avro/Decoder.hh" 00024 #include "avro/ValidSchema.hh" 00025 #include "avro/Compiler.hh" 00026 #include "avro/DataFile.hh" 00027 00028 00029 avro::ValidSchema loadSchema(const char* filename) 00030 { 00031 std::ifstream ifs(filename); 00032 avro::ValidSchema result; 00033 avro::compileJsonSchema(ifs, result); 00034 return result; 00035 } 00036 00037 int 00038 main() 00039 { 00040 avro::ValidSchema cpxSchema = loadSchema("cpx.json"); 00041 00042 { 00043 avro::DataFileWriter<c::cpx> dfw("test.bin", cpxSchema); 00044 c::cpx c1; 00045 for (int i = 0; i < 100; i++) { 00046 c1.re = i * 100; 00047 c1.im = i + 100; 00048 dfw.write(c1); 00049 } 00050 dfw.close(); 00051 } 00052 00053 { 00054 avro::DataFileReader<c::cpx> dfr("test.bin", cpxSchema); 00055 c::cpx c2; 00056 while (dfr.read(c2)) { 00057 std::cout << '(' << c2.re << ", " << c2.im << ')' << std::endl; 00058 } 00059 } 00060 return 0; 00061 } 00062
Please see DataFile.hh for more details.