Resources

In TomEE resources are mainly "singleton" (understood as defined once per
server or application). Technically it can be anything but you will probably meet
more Datasources than other type of resources.

Most resources will be created automatically if there is no matching resources -
by name and type - when an injection will be found. To avoid that use
openejb.offline property and set it to true. See Server Configuration for more
detail.

Definition a resource: how does it work?

Before all let see how properties syntax is equivalent to XML one (system.properties and tomee.xml
typically).

Properties syntax uses dot notation to represent setters/properties which are plain properties in
XML syntax and a URL syntax with query parameters to define the resource where it is directly the
resource and tag attributes in XML. Finally the id is an attribute in XML and the key of the resource
definition in properties.

Let see it with a sample, both delcarations are the same:

myDataSource = new://Resource?type=DataSource
myDataSource.JdbcUrl = jdbc:hsqldb:mem:site
myDataSource.UserName = sa

<Resource id="myDataSource" type="DataSource">
JdbeUrl = jdbc:hsqldb:mem:site
UserName = sa

</Resource>

One started you can get injected any resource using @Resource:

(name = "myDataSource")
private DataSource dataSource;

Factory syntax

Here are the attributes of a resource:

Name Optional Description

id false name of the resource, will
match openejb:Resource/id in
JNDI tree.

server.html

Name Optional Description

provider true define a default resource
definition using service-jar.xml

class-name true specify which class to
instantiate
factory-name true specify which method to invoke

on the class-name when
specified to create the resource

properties-provider true a class responsible to provide to
tomee the properties to use, it
can have a property serviceld
to know which resource it is.

classpath true a classpath to use to create the
resource. Note: if not
implementing an interface the
resource will be isolated from
the applications.

aliases true other names for the resource,
allows for instance to share the
same pool for a datasource used
with multiple names in
applications.

post-construct/pre-destroy true methods called when
creating/destroying the
resources.

Lazy true for resources set them to be
created when first accessed and
not when deployed

TomEE supports some implicit properties for resources but sometimes you just want to fully control
the resource and not use implicit properties which can be affected to a property which doesn’t
expect such a value (typically the case if you create a custom Oracle datasource). For such case you
can set SkipImplicitAttributes property to true and your resource will ignore implicit properties.

Implicit properties are:

Name Description
transactionManager The JTA transaction manager
Serviceld the "id" of the resource (its name)

In the same spirit you can skip properties fallback using SkipPropertiesFallback and setting it to
true. It typically avoids to fallback all unset properties (no matching property found) to a Properties
instance and set it if one matching property is found. In Oracle case for instance it matches the
connection properties which can have side effects.

Value ciphering

The propertie values support ciphering using the syntax cipher:{algorithm}:{cipheredValue}, for
instance cipher:Static3DES:xMH5uM1V9vQzVUV5LG7YLA== will be read as Passwdrd. Ciphers can be
computed using tomee.sh script: ${tomee.home}/bin/tomee.sh cipher Passw@rd.

Common Resources

DataSources

DataSources have defaults for all values and a default datasource can be provided automatically
but if you want to configure it here are the common properties:

You can set the boolean JtaManaged to false if you don’t want your datasource to be using JTA - if you
manage transactions yourself.

Then other configurations are linked the pool the datasource is using. By default TomEE uses
tomcat-jdbc but we also provide commons-dbcp (2 for TomEE 7.x and 1 for TomEE 1.x). The
properties are then the related configurations with these particular entries we try to keep in sync
for both:

Name Description

JdbcDriver the jdbc driver of the datasource
JdbcUrl the jdbc url of the datasource
Username the user to use

Password the password of the user

Password and ciphering

DataSource were the first resource to support password ciphering. Originally it was another
property which is still supported. It is called PasswordCipher. Its value is the ciphering algorithm and
it affects the password value. However cipher:xxx is still supported on Password value. Default
PasswordCipher being PlainText it behaves as no ciphering is in place by default.

Sample:
ds = new://Resource?type=javax.sql.DataSource
our password is "Passw@rd"

ds.Password = xMH5uM1V9vQzVUv5LG7YLA==
ds.PasswordCipher = Static3DES

Advanced DataSource configuration

TomEE also provides few utilities you can add in DataSource properties:

https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
https://commons.apache.org/proper/commons-dbcp/configuration.html

Name Description
LogSql Should SQL be logged (using TomEE logger)

LogSqlPackages if set the logging will show the matching
packages (separated by comma) inline when
logging the query, allows to know where a query
comes from

Flushable if true the datasource can be casted as a
Flushable to recreate the pool

ResetOnError if a SQLException happens the pool is
automatically recreated. Configuration is either
"true" to do it each time an exception occurs, x
or retry(x) to do it and retry until maximum x

times
ResetOnErrorMethods which methods are handled by ResetOnError
TomEEProxyHandler Custom InvocationHandler wrapping the

datasource calls

DataSourceCreator which pool to use, dbcp, tomcat, dbcp-alternative
(DBCP and TomEE proxying instead of DBCP JTA
integration), simple (no pooling)

DataSource and JTA

JtaManaged determines wether or not this data source should be JTA managed or user managed. If
set to 'true' it will automatically be enrolled in any ongoing transactions. Calling
begin/commit/rollback or setAutoCommit on the datasource or connection will not be allowed. If
you need to perform these functions yourself, set JtaManaged to false

DataSource and JPA

In terms of JPA persistence.xml:

» JtaManaged=true can be used as a 'jta-data-source’

* JtaManaged=false can be used as a 'non-jta-data-source'

ActiveMQResourceAdapter

Declarable in tomee.xml via

<Resource id="Foo" type="ActiveMQResourceAdapter">
BrokerXmlConfig = broker:(tcp://localhost:61616)?useImx=false
ServerUrl = vm://localhost?waitForStart=20000&async=true
DataSource = Default Unmanaged JDBC Database
StartupTimeout = 10 seconds

</Resource>

Declarable in properties via

Foo = new://Resource?type=ActiveMQResourceAdapter
Foo.BrokerXmlConfig = broker:(tcp://localhost:61616)?useImx=false
Foo.ServerUrl = vm://localhost?waitForStart=20000&async=true
Foo.DataSource = Default Unmanaged JDBC Database
Foo.StartupTimeout = 10 seconds

Configuration

BrokerXmlConfig

Broker configuration URI as defined by ActiveMQ see http://activemg.apache.org/broker-
configuration-uri.html BrokerXmlConfig xbean:file:conf/activemq.xml - Requires xbean-spring.jar
and dependencies

ServerUrl

Broker address

DataSource

DataSource for persistence messages

StartupTimeout

How long to wait for broker startup

javax.jms.ConnectionFactory

An ActiveMQ (JMS) connection factory.

Declarable in tomee.xml via

<Resource id="Foo" type="javax.jms.ConnectionFactory">
ResourceAdapter = Default JMS Resource Adapter
TransactionSupport = xa
PoolMaxSize = 10
PoolMinSize = @
ConnectionMaxWaitTime = 5 seconds
ConnectionMaxIdleTime = 15 Minutes

</Resource>

Declarable in properties via

http://activemq.apache.org/broker-configuration-uri.html
http://activemq.apache.org/broker-configuration-uri.html

Foo = new://Resource?type=javax.jms.ConnectionFactory
Foo.ResourceAdapter = Default IMS Resource Adapter
Foo.TransactionSupport = xa

Foo.PoolMaxSize = 10
Foo.PoolMinSize = @
Foo.ConnectionMaxWaitTime
Foo.ConnectionMaxIdleTime

5 seconds
15 Minutes

Configuration

ResourceAdapter

An ActiveMQ (JMS) resource adapter.

TransactionSupport

Specifies if the connection is enrolled in global transaction allowed values: xa, local or none. Default
to xa.

PoolMaxSize

Maximum number of physical connection to the ActiveMQ broker.

PoolMinSize

Minimum number of physical connection to the ActiveMQ broker.

ConnectionMaxWaitTime

Maximum amount of time to wait for a connection.

ConnectionMaxIdleTime

Maximum amount of time a connection can be idle before being reclaimed.

javax.jms.Queue
An ActiveMQ (JMS) queue.

Declarable in tomee.xml via
<Resource id="Foo" type="javax.jms.Queue">
not set means id

destination =
</Resource>

Declarable in properties via

Foo = new://Resource?type=javax.jms.Queue
not set means id
Foo.destination =

Configuration

destination

Specifies the name of the queue
javax.jms.Topic
An ActiveMQ (JMS) topic.

Declarable in tomee.xml via

<Resource id="Foo" type="javax.jms.Topic">
not set means id
destination =

</Resource>

Declarable in properties via

Foo = new://Resource?type=javax.jms.Topic
not set means id
Foo.destination =

Configuration

destination

Specifies the name of the topic

org.omg.CORBA.ORB

NOTE to use it you need to add an implementation of corba.

Declarable in tomee.xml via
<Resource id="Foo" type="org.omg.CORBA.ORB" />

Declarable in properties via

Foo = new://Resource?type=org.omg.CORBA.ORB

javax.mail.Session
A mail session.

Declarable in tomee.xml via

<Resource id="mail/mysession" type="javax.mail.Session">
mail.transport.protocol = smtp
mail.smtp.host = smtp.provider.com
mail.smtp.auth = true
mail.smtp.starttls.enable = true
mail.smtp.port = 587
mail.smtp.user = user@provider.com
password = abcdefghij
</Resource>

Declarable in properties via

mail/mysession = new://Resource?type=javax.mail.Session
mail/mysession.mail.transport.protocol = smtp
mail/mysession.mail.smtp.host = smtp.provider.com
mail/mysession.mail.smtp.auth = true
mail/mysession.mail.smtp.starttls.enable = true
mail/mysession.mail.smtp.port = 587
mail/mysession.mail.smtp.user = user@provider.com
mail/mysession.password = abcdefghij

The properties are javax.mail.Session ones with the addition of useDefault which specifies if
getDefaultInstance() or getInstance is used to create the session. getDefaultInstance() will ensure
that several calls are done with the same configuration and return the same instance. For tomee it
is likely better to rely on getInstance()(ie keep useDefault to false) and use aliases option of the
resource to define an alias if you need to share the same instance accross multiple names.

ManagedExecutorService

A concurrency utility for EE executor service.

Declarable in tomee.xml via

<Resource id="Foo" type="ManagedExecutorService">
Core = 5
Max = 25
KeepAlive = 5 s
Queue = 15
ThreadFactory = org.apache.openejb.threads.impl.ManagedThreadFactoryImpl
Lazy = true
</Resource>

Declarable in properties via

Foo = new://Resource?type=ManagedExecutorService

Foo.Core = 5

Foo.Max = 25

Foo.KeepAlive = 5 s

Foo.Queue = 15

Foo.ThreadFactory = org.apache.openejb.threads.impl.ManagedThreadFactoryImpl
Foo.Lazy = true

Configuration

Core

The pool core size.

Max

The pool max size.

KeepAlive

The thread keep alive time (in duration format)

Queue

The queue type size.

ThreadFactory

The thread factory implementation class.

Lazy

If set to true the pool is created when first accessed otherwise it is created at startup.

ManagedScheduledExecutorService

Inherit from ManagedExecutorService and adds scheduling abilities.

Declarable in tomee.xml via

<Resource id="Foo" type="ManagedScheduledExecutorService">

ThreadFactory = org.apache.openejb.threads.impl.ManagedThreadFactoryImpl

Core = 5
Lazy = true
</Resource>

Declarable in properties via

Foo = new://Resource?type=ManagedScheduledExecutorService

Foo.Core = 5

Foo.ThreadFactory = org.apache.openejb.threads.impl.ManagedThreadFactoryImpl

Foo.Lazy = true

Configuration

See ManagedExecutorService.

ManagedThreadFactory

A thread factory for a ManagedExecutorService.

Declarable in tomee.xml via

<Resource id="Foo" type="ManagedThreadFactory">
Prefix = openejb-managed-thread-
Lazy = true

</Resource>

Declarable in properties via

Foo = new://Resource?type=ManagedThreadFactory
Foo.Prefix = openejb-managed-thread-
Foo.Lazy = true

Configuration

Prefix

The thread prefix (suffixed with thread id).

10

ContextService

A concurrency utilities for JavaEE context service. It allows to create contextual proxies (inheriting
from security, classloader...contexts).

Declarable in tomee.xml via
<Resource id="Foo" type="ContextService" />
Declarable in properties via

Foo = new://Resource?type=ContextService

JndiProvider: inject remote clients

A thread factory for a ManagedExecutorService. Default implementation is
org.apache.openejb.threads.impl.ManagedThreadFactoryImpl.

Declarable in tomee.xml via

<Resource id="Foo" type="ManagedThreadFactory">
Prefix = openejb-managed-thread-
Lazy = true

</Resource>

Declarable in properties via

Foo = new://Resource?type=ManagedThreadFactory
Foo.Prefix = openejb-managed-thread-
Foo.Lazy = true

Configuration

Prefix

The thread prefix (suffixed with thread id).

ContextService

A concurrency utilities for JavaEE context service. It allows to create contextual proxies (inheriting
from security, classloader...contexts).

Declarable in tomee.xml via

11

<Resource id="Foo" type="ContextService" />

Declarable in properties via

Foo = new://Resource?type=ContextService

12

	Resources
	Definition a resource: how does it work?
	Factory syntax
	Common Resources
	ActiveMQResourceAdapter
	javax.jms.ConnectionFactory
	javax.jms.Queue
	javax.jms.Topic
	org.omg.CORBA.ORB
	javax.mail.Session
	ManagedExecutorService
	ManagedScheduledExecutorService
	ManagedThreadFactory
	ContextService
	JndiProvider: inject remote clients
	ContextService

