
Apache jUDDI Client and GUI Guide

Kurt T Stam, Red Hat, Inc.

Alex O'Ree, Apache Software Foundation (ASF), http://juddi.apache.org

Apache jUDDI Client and GUI Guide
by Kurt T Stam and Alex O'Ree

Copyright © 2003-2014 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the

License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS

IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for

the specific language governing permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

i

Dedication
We’d like to dedicate this guide to Steve Viens and Andy Cutright who started this project back

in 2003.

ii

iii

Preface .. vii

1. Simple Publishing Using the jUDDI API .. 1

1.1. UDDI Data Model ... 1

1.2. jUDDI Additions to the Model .. 2

1.3. UDDI and jUDDI API .. 2

1.4. Getting Started ... 3

1.4.1. Simple Publishing Example ... 3

1.4.2. About UDDI Entity Keys ... 8

1.5. A few tips on adding Binding Templates .. 9

1.6. Conclusion ... 9

2. jUDDI Client Configuration Guide .. 11

2.1. Introduction ... 11

2.2. Client Settings .. 11

2.3. Nodes .. 11

2.3.1. Transport Options .. 12

2.4. Clerks ... 12

2.5. Clerk .. 12

2.6. Digital Signatures .. 13

2.7. Subscription Callbacks .. 14

2.8. XtoWsdl .. 14

2.9. Embedded jUDDI server .. 14

2.9.1. Requirements ... 14

2.9.2. Changes in configuration compared to non-embedded 14

3. Key Format Templates ... 17

3.1. UDDIv3 key format ... 17

3.2. jUDDI key format templates ... 17

3.2.1. Advantages of using a template .. 17

3.2.2. Default UDDIKeyConvention Key Templates .. 17

3.2.3. How to use the templates? ... 17

3.2.4. Where to define to properties? .. 18

4. Using the jUDDI GUI .. 19

4.1. Requirements ... 19

4.2. Tasks ... 19

4.2.1. Your first sign on ... 19

4.3. The Menu Bar .. 23

4.4. Logging in to UDDI Services ... 23

4.5. Logging Out .. 24

4.6. Discover (Browse UDDI) ... 24

4.6.1. Business Browser .. 24

4.6.2. Service Browser ... 26

4.6.3. tModel Browser .. 27

4.6.4. Search ... 28

4.7. Creating new Entities .. 30

4.7.1. Create a tModel ... 30

Apache

jUDDI

Client

and

GUI

Guide

iv

4.7.2. Create a tModek Key Generator (Partition) .. 30

4.7.3. Create a Business .. 31

4.7.4. Create a Service .. 33

4.7.5. Import from WSDL or WADL ... 35

4.8. Custody Transfers ... 36

4.9. Publisher Assertions ... 36

4.10. Subscriptions .. 37

4.10.1. Create a new subscription .. 37

4.10.2. View My Subscriptions .. 41

4.10.3. View the News Feed .. 42

4.11. Using Digital Signatures in juddi-gui ... 42

4.11.1. Sign a Business, Service or tModel ... 42

4.11.2. Verify a signed UDDI entity ... 44

4.12. Configuration .. 46

4.13. Language Codes ... 46

4.14. Switching Nodes ... 47

5. Mapping WSDL and WSDL to UDDI ... 49

5.1. Introduction ... 49

5.2. Use Case - WSDL .. 49

5.2.1. Sample Code ... 49

5.2.2. Links to sample project ... 50

5.3. Use Case - WADL .. 50

5.3.1. Sample Code ... 50

5.3.2. Links to sample project ... 51

6. Using UDDI Annotations .. 53

6.1. UDDI Service Annotation ... 53

6.2. UDDIServiceBinding Annotation ... 54

6.2.1. Java Web Service Example .. 54

6.2.2. Wiring it all together ... 55

6.3. .NET Web Service Example .. 56

6.3.1. Wiring it all together ... 56

6.4. CategoryBag Attribute ... 56

6.5. Considerations for clustered or load balanced web servers and automated

registration .. 57

7. Using the UDDI v2 Services and Adapters .. 59

7.1. Introduction ... 59

7.2. Accessing UDDI v2 services using the jUDDI v3 Client .. 59

7.3. Accessing UDDI v2 services using UDDI v2 APIs ... 59

7.4. Accessing jUDDI v3 services from an existing UDDI v2 based client, plugin or tool .. 60

7.5. Additional Information .. 60

8. UDDI Migration and Backup Tool .. 61

8.1. Using the tool ... 61

8.1.1. Get help .. 61

8.1.2. Use case: basic import and export .. 62

Apache

jUDDI

Client

and

GUI

Guide

v

8.1.3. Use case: Import and Export while preserving ownership information 62

9. Using the jUDDI REST Services .. 65

9.1. URL Patterns and methods ... 65

9.1.1. Endpoints .. 65

9.1.2. Methods .. 65

9.2. Example Output .. 67

9.2.1. XML .. 67

9.2.2. JSON .. 67

9.3. More information ... 70

10. jUDDI Client for NET .. 71

10.1. Procedure ... 71

11. Using the UDDI Technology Compatibility Kit ... 73

11.1. Using the TCK Runner .. 73

11.1.1. Configuration .. 73

11.1.2. Running the TCK Runner .. 74

11.2. Analyzing the Results .. 75

Index ... 77

vi

vii

Preface
The jUDDI client framework facilitates interaction with any UDDI v3 compliant registry. In addition

to providing a client framework for both Java and .NET, it also provides a self proclaimed Technical

Compatilibity Test (TCK) Suite. The jUDDI community encourages collabration of other vendors

on the TCK or on the client framework in general.

viii

1

Chapter 1. Simple Publishing Using

the jUDDI API
One of the most common requests we get on the message board is "How do I publish a service

using jUDDI?" This question holds a wide berth, as it can result anywhere from not understanding

the UDDI data model, to confusion around how jUDDI is set up, to the order of steps required

to publish artifacts in the registry, to general use of the API - and everything in between. This

article will attempt to answer this "loaded" question and, while not going into too much detail, will

hopefully clear some of the confusion about publishing into the jUDDI registry.

1.1. UDDI Data Model

Before you begin publishing artifacts, you need to know exactly how to break down your data into

the UDDI model. This topic is covered extensively in the specification, particularly in section 3, so

I only want to gloss over some for details. Readers interested in more extensive coverage should

most definitely take a look at the UDDI specification.

Below is a great diagram of the UDDI data model (taken directly from the specification): http://

juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif As you can see,

data is organized into a hierarchical pattern. Business Entities are at the top of the pyramid, they

contain Business Services and those services in turn contain Binding Templates. TModels (or

technical models) are a catch-all structure that can do anything from categorize one of the main

entities, describe the technical details of a binding (ex. protocols, transports, etc), to registering

a key partition. TModels won’t be covered too much in this article as I want to focus on the three

main UDDI entities.

The hierarchy defined in the diagram is self-explanatory. You must first have a Business Entity

before you can publish any services. And you must have a Business Service before you can

publish a Binding Template. There is no getting around this structure; this is the way UDDI works.

Business Entities describe the organizational unit responsible for the services it publishes. It

generally consist of a description and contact information. How one chooses to use the Business

Entity is really dependent on the particular case. If you’re one small company, you will likely just

have one Business Entity. If you are a larger company with multiple departments, you may want

to have a Business Entity per department. (The question may arise if you can have one uber-

Business Entity and multiple child Business Entities representing the departments. The answer

is yes, you can relate Business Entities using Publisher Assertions, but that is beyond the scope

of this article.)

Business Services are the cogs of the SOA landscape. They represent units of functionality that

are consumed by clients. In UDDI, there’s not much to a service structure; mainly descriptive

information like name, description and categories. The meat of the technical details about the

service is contained in its child Binding Templates.

http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif
http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif

jUDDI

Additions

to

the

Model

2

Binding Templates, as mentioned above, give the details about the technical specification of the

service. This can be as simple as just providing the service’s access point, to providing the location

of the service WSDL to more complicated scenarios to breaking down the technical details of the

WSDL (when used in concert with tModels). Once again, getting into these scenarios is beyond

the scope of this article but may be the subject of future articles.

1.2. jUDDI Additions to the Model

Out of the box, jUDDI provides some additional structure to the data model described in the

specification. Primarily, this is the concept of the Publisher.

The UDDI specification talks about ownership of the entities that are published within the registry,

but makes no mention about how ownership should be handled. Basically, it is left up to the

particular implementation to decide how to handle "users" that have publishing rights in the

registry.

Enter the jUDDI Publisher. The Publisher is essentially an out-of-the-box implementation of an

identity management system. Per the specification, before assets can be published into the

registry, a "publisher" must authenticate with the registry by retrieving an authorization token. This

authorization token is then attached to future publish calls to assign ownership to the published

entities.

jUDDI’s Publisher concept is really quite simple, particularly when using the default authentication.

You can save a Publisher to the registry using jUDDI’s custom API and then use that Publisher

to publish your assets into the registry. jUDDI allows for integration into your own identity

management system, circumventing the Publisher entirely if desired. This is discussed in more

detail in the documentation, but for purposes of this article, we will be using the simple out-of-

the-box Publisher solution.

Tip

In UDDI, ownership is essentially assigned to a given registry entity by using its

"authorizedName" field. The "authorizedName" field is defined in the specification

in the operationalInfo structure which keeps track of operational info for each entity.

In jUDDI, the authorizedName field translates to the person’s username, also know

as the publisher id,

1.3. UDDI and jUDDI API

Knowing the UDDI data model is all well and good. But to truly interact with the registry, you need

to know how the UDDI API is structured and how jUDDI implements this API. The UDDI API is

covered in great detail in chapter 5 of the specification but will be summarized here.

UDDI divides their API into several "sets" - each representing a specific area of functionality. The

API sets are listed below:

Getting

Started

3

• Inquiry - deals with querying the registry to return details on entities within

• Publication - handles publishing entities into the registry

• Security - open-ended specification that handles authentication

• Custody and Ownership Transfer - deals with transferring ownership and custody of entities

• Subscription - allows clients to retrieve information on entities in a timely manner using a

subscription format

• Subscription Listener - client API that accepts subscription results

• Value Set (Validation and Caching)- validates keyed reference values (not implemented by

jUDDI)

• Replication - deals with federation of data between registry nodes (not implemented by jUDDI)

The most commonly used APIs are the Inquiry, Publication and Security APIs. These APIs

provide the standard functions for interacting with the registry.

The jUDDI server implements each of these API sets as a JAX-WS compliant web service and

each method defined in the API set is simply a method in the corresponding web service. The

client module provided by jUDDI uses a "transport" class that defines how the call is to be made.

The default transport uses JAX-WS but there are several alternative ways to make calls to the

API. Please refer to the documentation for more information.

One final note, jUDDI defines its own API set. This API set contains methods that deal with

handling Publishers as well as other useful maintenance functions (mostly related to jUDDI’s

subscription model). This API set is obviously proprietary to jUDDI and therefore doesn’t conform

to the UDDI specification.

1.4. Getting Started

Now that we’ve covered the basics of the data model and API sets, it’s time to get started

with the publishing sample. The first thing that must happen is to get the jUDDI server up and

running. Please refer to this http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-

v3.html article that explains how to start the jUDDI server.

1.4.1. Simple Publishing Example

We will now go over the "simple-publish" examples. These examples expand upon the HelloWorld

example in that after retrieving an authentication token, a BusinessEntity and BusinessService

are published to the registry. There are two examples:

• simple-publish-portal - This is how to perform the publish operations in a way that’s portable,

meaning that the code logic should apply to any UDDIv3 client application library.

http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html

Simple

Publishing

Example

4

• simple-publish-clerk - This shows you how to perform the same actions using the helper

functions in jUDDI’s Client library, which greatly reduces the code required and makes things

simple. This uses the UDDIClerk’s functions.

1.4.1.1. Simple Publishing using Portable Code

The complete source for this example can be found here: - Portable http://svn.apache.org/repos/

asf/juddi/trunk/juddi-examples/simple-publish-portable/

 public SimplePublishPortable() {

 try {

 // create a client and read the config in the

 archive;

 // you can use your config file name

 UDDIClient uddiClient = new UDDIClient("META-INF/

uddi.xml");

 // a UddiClient can be a client to multiple UDDI

 nodes, so

 // supply the nodeName (defined in your uddi.xml.

 // The transport can be WS, inVM, RMI etc which is

 defined in the uddi.xml

 Transport transport =

 uddiClient.getTransport("default");

 // Now you create a reference to the UDDI API

 security = transport.getUDDISecurityService();

 publish = transport.getUDDIPublishService();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

The constructor uses the jUDDI client API to retrieve the transport from the default node. You can

refer to the documentation if you’re confused about how clerks and nodes work. Suffice it to say,

we are simply retrieving the default client transport class which is designed to make UDDI calls

out using JAX-WS web services.

Once the transport is instantiated, we grab the two API sets we need for this demo: 1) the Security

API set so we can get authorization tokens and 2) the Publication API set so we can actually

publish entities to the registry.

All the magic happens in the publish method. We will look at that next.

Here are the first few lines of the publish method:

 // Login aka retrieve its authentication token

 GetAuthToken getAuthTokenMyPub = new GetAuthToken();

 getAuthTokenMyPub.setUserID("bob");

 //your username

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/

Simple

Publishing

Example

5

 getAuthTokenMyPub.setCred("bob");

 //your password

 AuthToken myPubAuthToken =

 security.getAuthToken(getAuthTokenMyPub);

 System.out.println(getAuthTokenMyPub.getUserID() +

 "'s AUTHTOKEN = " + "******* never log auth tokens!");

Important

Don’t log authentication tokens. In addition, whenever you’re done with it, it should

be discarded. Think of it as a logout function.

This code simply gets the authorization token for the bob user.

Tip

jUDDI includes two reserved usernames, uddi and root. Root acts as the

"administrator" for jUDDI API calls. Additionally, the root user is the owning

publisher for all the initial services installed with jUDDI. You may be wondering

what those "initial services" are. Well, since the UDDI API sets are all implemented

as web services by jUDDI, every jUDDI node actually registers those services

inside itself. This is done per the specification. The user uddi owns the remaining

preinstalled data.

Now that we have Bob’s authorization, we can start publishing.

Tip

You’ll note that no credentials have been set on both authorization calls. This is

because we’re using the default authenticator (which is for testing purposes doesn’t

require credentials). Most UDDI servers will require authentication.

 // Creating the parent business entity that will contain our

 service.

 BusinessEntity myBusEntity = new BusinessEntity();

 Name myBusName = new Name();

 myBusName.setValue("My Business");

 myBusEntity.getName().add(myBusName);

 // Adding the business entity to the "save" structure, using our

 publisher's authentication info

 // and saving away.

 SaveBusiness sb = new SaveBusiness();

Simple

Publishing

Example

6

 sb.getBusinessEntity().add(myBusEntity);

 sb.setAuthInfo(myPubAuthToken.getAuthInfo());

 BusinessDetail bd = publish.saveBusiness(sb);

 String myBusKey =

 bd.getBusinessEntity().get(0).getBusinessKey();

 System.out.println("myBusiness key: " + myBusKey);

 // Creating a service to save. Only adding the minimum data:

 the parent business key retrieved

 //from saving the business above and a single name.

 BusinessService myService = new BusinessService();

 myService.setBusinessKey(myBusKey);

 Name myServName = new Name();

 myServName.setValue("My Service");

 myService.getName().add(myServName);

 // Add binding templates, etc...

 // <snip> We removed some stuff here to make the example

 shorter, check out the source for more info</snip>

 // Adding the service to the "save" structure, using our

 publisher's authentication info and

 // saving away.

 SaveService ss = new SaveService();

 ss.getBusinessService().add(myService);

 ss.setAuthInfo(myPubAuthToken.getAuthInfo());

 ServiceDetail sd = publish.saveService(ss);

 String myServKey =

 sd.getBusinessService().get(0).getServiceKey();

 System.out.println("myService key: " + myServKey);

 //and we're done, don't forget to logout!

 security.discardAuthToken(new

 DiscardAuthToken(myPubAuthToken.getAuthInfo()));

To summarize, here we have created and saved a BusinessEntity and then created and saved a

BusinessService. We’ve just added the bare minimum data to each entity. Obviously, you would

want to fill out each structure with greater information, particularly with services. However, this is

beyond the scope of this article, which aims to simply show you how to programmatically publish

entities.

1.4.1.2. Simple Publishing using Clerks

The complete source for this example can be found here: - Clerk http://svn.apache.org/repos/asf/

juddi/trunk/juddi-examples/simple-publish-clerk/

The sample consists of only one class: SimplePublishPortable. Let’s start by taking a look at the

constructor:

 public SimplePublishClerk() {

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/

Simple

Publishing

Example

7

 try {

 // create a client and read the config in the

 archive;

 // you can use your config file name

 UDDIClient uddiClient = new UDDIClient("META-INF/

uddi.xml");

 //get the clerk

 clerk = uddiClient.getClerk("default");

 if (clerk==null)

 throw new Exception("the clerk wasn't found,

 check the config file!");

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

Notice that this is already much more streamlined than the previous example. In this scenario, all

configuration settings and credentials are stored in "META-INF/uddi.xml".

Tip

The configuration file used by clients can be overridden via the system

property "uddi.client.xml". E.g. java -Duddi.client.xml=/usr/local/uddi.xml -jar

MyCoolProgram.jar

UDDIClient’s job is to read the configuration file and initialize the data structures for working with 1

or more UDDI nodes (or servers). It also handles automatic registration of endpoints using WSDL

documents or using class annotations. UDDIClerk’s job is to manage credentials and to perform

a number of common tasks. Feel free to use them in your programs and help you simplify things.

The UDDIClerk also handle credentials and authentication to UDDI for you. If you didn’t want to

store credentials (it can be encrypted) then you can specify them at runtime very easily.

Moving on, the next function is Publish. Here’s the short short version.

public void publish() {

 try {

 // Creating the parent business entity that will

 contain our service.

 BusinessEntity myBusEntity = new BusinessEntity();

 Name myBusName = new Name();

 myBusName.setValue("My Business");

 myBusEntity.getName().add(myBusName);

 //<snip>we removed a bunch of useful stuff here, see

 the full example for the rest of it</snip>

About

UDDI

Entity

Keys

8

 //register the business, if the return value is

 null, something went wrong!

 BusinessEntity register =

 clerk.register(myBusEntity);

 //don't forget to log out!

 clerk.discardAuthToken();

 if (register == null) {

 System.out.println("Save failed!");

 System.exit(1);

 }

 // Now you have a business and service via

 // the jUDDI API!

 System.out.println("Success!");

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

The UDDIClerk has a register and unregister function for nearly everything for UDDI. Between the

UDDIClient and UDDIClerk, there’s enough helper functions to significantly reduce the amount of

code needed to work with UDDI. Here’s a quick list of things they can do for you:

• Create a tModel Partition, also know as a Key Generator

• Resolve endpoints from WSDLs, Hosting directors, and other binding template references from

Access Points http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385

• Get Bindings by Version

• Add REST or SOAP tModels to a binding template

• Setup asynchronous callbacks for subscriptions

• Compare the values of a tModel Instance Info, such as Quality of Service Metrics

• Create and register services using a WADL or WSDL document

• And more…

We’re also looking for the next thing to add to the client library. Have an idea? Please open a

ticket on jUDDI’s Issue Tracker at https://issues.apache.org/jira/browse/JUDDI.

1.4.2. About UDDI Entity Keys

There are a couple important notes regarding the use of entity keys. Version 3 of the specification

allows for publishers to create their own keys but also instructs implementers to have a default

method. Here we have gone with the default implementation by leaving each entity’s "key" field

blank in the save call. jUDDI’s default key generator simply takes the node’s partition and appends

a GUID. In a default installation, it will look something like this:

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385
https://issues.apache.org/jira/browse/JUDDI

A

few

tips

on

adding

Binding

Templates

9

uddi:juddi.apache.org:(generated GUID/UUID)

You can, of course, customize all of this, but that is left for another article. The second important

point is that when the BusinessService is saved, we have to explicitly set its parent business key

(retrieved from previous call saving the business). This is a necessary step when the service is

saved in an independent call like this. Otherwise you would get an error because jUDDI won’t know

where to find the parent entity. I could have added this service to the BusinessEntity’s service

collection and saved it with the call to saveBusiness. In that scenario we would not have to set

the parent business key.

1.5. A few tips on adding Binding Templates

Arguably, the most useful useful part of UDDI is advertising your services similar to a phone book

or directory. The important part really isn’t that Bob’s Business exists (BusinessEntity), it’s that Bob

provides a service (BusinessService) and it’s located at this address. This is where the Binding

Template comes it. It identifies an instance of a service, its location and any other metadata

associated with the endpoint that someone may want to know.

This article skips the binding Template data because it can be lengthy, but the full source for these

examples shows you exactly how to build and add binding templates.

1.6. Conclusion

Hopefully this added clarity to the question, "How do I publish a service using jUDDI?".

10

11

Chapter 2. jUDDI Client

Configuration Guide

2.1. Introduction

The jUDDI Java and .NET clients use an XML configuration file that dictates settings and

behaviors. This guide provides an overview of the settings. Both .NET and jUDDI use the same

configuration file schema. This schema is located within the source tree and with the client

distribution packages of jUDDI.

2.2. Client Settings

The root XML node for the jUDDI client configuration file is always "uddi".

<!-- applies to Java clients only -->

uddi/reloadDelay

Multiple clients can be defined in each configuration file.

uddi/client@name="someName"

2.3. Nodes

At least one node is required per client. A node represents a one logical UDDI server (or cluster of

servers). Each UDDI node should host at least the inquiry service. A client using the jUDDI client

package can be configured to access multiple nodes at the same time.

<!-- if isHomeJUDDI is true, then this node is loaded by default, when no

 node is specified in client code -->

uddi/client/nodes[]/node@isHomeJUDDI=true/false

<!-- the name of the node is referenced in client code -->

uddi/client/nodes[]/node/name

<!-- the description of the node -->

uddi/client/nodes[]/node/description

<!-- the properties section defines HTTP style credentials and a runtime

 tokenizer for URLs -->

uddi/client/nodes[]/node/properties

<!-- The transport represents the class name of the transport mechanism that

 the client will use to connect

to the UDDI node. The most commonly used is

 org.apache.juddi.v3.client.transport.JAXWSTransport, however

RMITransport, InVMTransport and JAXWSv2TranslationTransport are also defined

 -->

Transport

Options

12

uddi/client/nodes[]/node/proxyTransport

<!-- endpoint URLs -->

uddi/client/nodes[]/node/custodyTransferUrl

uddi/client/nodes[]/node/inquiryUrl

uddi/client/nodes[]/node/publishUrl

uddi/client/nodes[]/node/securityUrl

uddi/client/nodes[]/node/subscriptionUrl

uddi/client/nodes[]/node/subscriptionListenerUrl

<!-- note: this is for jUDDI v3.x servers only and is not part of the UDDI

 standard -->

uddi/client/nodes[]/node/juddiApiUrl

2.3.1. Transport Options

The Proxy Transport defines which mechanism is used for on the wire transport of the UDDI

XML messages. JAXWS Transport is the most commonly used and assumes SOAP messaging

protocol over HTTP transport layer.

RMI Transport using the Java Remote Method Invocation for transport. It’s more commonly used

for communicating within a J2EE container, but could be used in other cases. It’s not required by

the UDDI specification and is considered a jUDDI add on.

InVM Transport is for hosting jUDDI services without a J2EE container.

JAXWSv2TranslationTransport is a bridge for accessing UDDIv2 web services using the UDDIv3

data structures and APIs. Only the Inquiry and Publish services are required and they must point

to SOAP/HTTP endpoints for a UDDI v2 node.

2.4. Clerks

Clerks are responsible for mapping stored user credentials to a Node and for automated

registration.

<!-- if true, the contents of the child node xregister are registered

 when the UDDIClient object is created, using the credential and node

 reference.-->

uddi/client/clerks/registerOnStartup=true/false

2.5. Clerk

Clerks store credentials and map to a specific node.

<!-- the name is a reference to the Node that these credentials apply to-->

uddi/client/clerks[]/clerk@node - This is reference to uddi/client/node/

name, it must exist

uddi/client/clerks[]/clerk@name - This is a unique identifier of the clerk

Digital

Signatures

13

uddi/client/clerks[]/clerk@publisher - This is the username

uddi/client/clerks[]/clerk@password

uddi/client/clerks[]/clerk@isPasswordEncrypted=true/false

uddi/client/clerks[]/clerk@cryptoProvider=(see Crypto providers)

Credentials can be encrypted using the included batch/bash scripts and then appended to the

configuration. Example with encryption:

<clerk name="default" node="default" publisher="root" password="(cipher text

 removed)"

 isPasswordEncrypted="true"

 cryptoProvider="org.apache.juddi.v3.client.cryptor.AES128Cryptor" />

Clerks also have settings for the automated cross registration of Businesses and Services on

start up.

uddi/client/clerks[]/xregister/service@bindingKey

uddi/client/clerks[]/xregister/service@fromClerk

uddi/client/clerks[]/xregister/service@toClerk

2.6. Digital Signatures

The Signature section contains settings that map to the Digital Signature Utility that makes working

with UDDI digital signatures simple. The section contains all of the settings for both signing and

validating signatures.

uddi/client/signature/signingKeyStorePath

uddi/client/signature/signingKeyStoreFilePassword

uddi/client/signature/signingKeyStoreFilePassword@isPasswordEncrypted

uddi/client/signature/signingKeyStoreFilePassword@cryptoProvider

uddi/client/signature/signingKeyPassword

uddi/client/signature/signingKeyPassword@isPasswordEncrypted

uddi/client/signature/signingKeyPassword@cryptoProvider

uddi/client/signature/signingKeyAlias

uddi/client/signature/canonicalizationMethod

uddi/client/signature/signatureMethod=(default RSA_SHA1)

uddi/client/signature/XML_DIGSIG_NS=(default http://www.w3.org/2000/09/

xmldsig#)

uddi/client/signature/trustStorePath

uddi/client/signature/trustStoreType

uddi/client/signature/trustStorePassword

uddi/client/signature/trustStorePassword@isPasswordEncrypted

uddi/client/signature/trustStorePassword@cryptoProvider

<!-- checks signing certificates for timestamp validity -->

uddi/client/signature/checkTimestamps

<!-- checks signing certificates for trust worthiness -->

uddi/client/signature/checkTrust

Subscription

Callbacks

14

<!-- checks signing certificates for revocation -->

uddi/client/signature/checkRevocationCRL

uddi/client/signature/keyInfoInclusionSubjectDN

uddi/client/signature/keyInfoInclusionSerial

uddi/client/signature/keyInfoInclusionBase64PublicKey

<!-- default is http://www.w3.org/2000/09/xmldsig#sha1 -->

uddi/client/signature/digestMethod

2.7. Subscription Callbacks

The subscriptionCallbacks section defines settings uses by the subscription callback API. This

enables developers to create capabilities that need to be notified immediately when something in

UDDI changes through the use of subscriptions.

uddi/client/subscriptionCallbacks/keyDomain

uddi/client/subscriptionCallbacks/listenUrl this is the URL that is used for

 callbacks, should be externally resolvable

uddi/client/subscriptionCallbacks/autoRegisterBindingTemplate=true/false

uddi/client/subscriptionCallbacks/autoRegisterBusinessServiceKey=(key)

 append callback endpoint to this service

uddi/client/subscriptionCallbacks/

signatureBehavior=(AbortIfSigned,Sign,DoNothing,SignOnlyIfParentIsntSigned),

 default DoNothing. Applies when auto registering the endpoint to a business

 or service that is already signed.

2.8. XtoWsdl

XtoWsdl represents configuration parameters for importing WSDL or WADL files. Currently, the

only setting is for ignoring SSL errors when fetching remote WSDL or WADL files.

uddi/client/XtoWsdl/IgnoreSSLErrors=true or false

2.9. Embedded jUDDI server

jUDDI has the ability to run in embedded mode. This means that the jUDDI services can operate

without a web servlet container, such as Tomcat or JBoss. Typically, this is something that

application developers would use for more advanced scenarios and for operation without network

connectivity.

2.9.1. Requirements

A database server, if one is not available, the embedded Derby engine can be used.

2.9.2. Changes in configuration compared to non-embedded

• META-INF/embedded-uddi.xml needs to contain the connection settings for InVmTransport.

Changes

in

configuration

compared

to

non-

embedded

15

 <!-- In VM Transport Settings -->

 <proxyTransport>org.apache.juddi.v3.client.transport.InVMTransport</

proxyTransport>

 <custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferImpl</

custodyTransferUrl>

 <inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>

 <publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>

 <securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>

 <subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionImpl</

subscriptionUrl>

 <subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerImpl</

subscriptionListenerUrl>

 <juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>

• The serverside config file juddiv3.xml needs to be added to the classpath.

• A META-INF/persistence.xml needs to be added.

• Add the juddi-core (UDDI server) and derby (Embedded Database) dependencies to the pom.

Use the juddi-core-openjpa jar for OpenJPA.

See also the hello-world-embedded example.

16

17

Chapter 3. Key Format Templates

3.1. UDDIv3 key format

The UDDI v3 keys are formatted such that they are human readable. The short story is that UDDI

v3 keys are formatted like: uddi:<domain>:name. For example, if you wanted a tModel defined

as "uddi:www.mycompany.com:serviceauthenticationmethod", you would first have to create a

tModel key generator with value "uddi:www.mycompany.com:keygenerator".

3.2. jUDDI key format templates

The jUDDI client has taken the key format approach one step further so the name part of the key

actually helps you understand what the key is for, or even better in the case of a binding template

what server registered the key.

3.2.1. Advantages of using a template

Using a binding Key with format uddi:${keyDomain}:binding_${serverName}_

${serviceName}_${portName}_${serverPort} contains valuable information for two reasons -

you can tell from the bindingKey what server registered it. This is helpful information if you want

to debug connectivity issues between a client and the UDDI server. - if a server goes to register a

bindingTemplate it registered before it won’t create a second bindingTemplate, so it won’t leave

behind dead or duplicate bindingTemplates.

3.2.2. Default UDDIKeyConvention Key Templates

The default templates setup by the jUDDI client are:

uddi:${keyDomain}:business_${businessName}

uddi:${keyDomain}:service_${serviceName}

uddi:${keyDomain}:service_cache_${serverName}

uddi:${keyDomain}:binding_${serverName}_${serviceName}_${portName}_

${serverPort}

where tokens are expressed using ${}. The templates are defined in the UDDIKeyConvention

class.

3.2.3. How to use the templates?

At runtime a serviceKey can be obtained using

String serviceKey = UDDIKeyConvention.getServiceKey(properties,

 serviceName);

Where

to

define

to

properties?

18

The serviceName can be specified in as a property in the first argument, or it can explicitly passed

as the second argument. Using the second argument overrides what’s specified in the properties.

By default it will use the service template uddi:${keyDomain}:service_${serviceName}, but if

you wish to use a different template you can simple specify that as a property, for example

String myCustomServiceFormat = "uddi:${keyDomain}:s_${serviceName}";

properties.add(Property.SERVICE_KEY_FORMAT, myCustomServiceFormat);

String myCustomFormattedServiceKey =

 UDDIKeyConvention.getServiceKey(properties, serviceName);

3.2.4. Where to define to properties?

You can define the properties in your code, or you can obtain and pass in the properties defined

in your uddi.xml. For an exmaple of this you can check out the META-INF/wsdl2uddi-uddi.xml

of the wsdl2uddi example where for the default node we set

 ...

 <nodes>

 <node>

 <name>default</name>

 <properties>

 <property name="serverName" value="localhost"/>

 <property name="serverPort" value="8080"/>

 <property name="keyDomain"

 value="uddi.joepublisher.com"/>

 <property name="businessName" value="WSDL-Business"/>

 </properties>

 ...

 </node>

 ...

 </nodes>

 ...

and you can obtain the properties like

UDDIClient uddiClient = new UDDIClient("META-INF/wsdl2uddi-uddi.xml");

Properties properties =

 uddiClient.getClientConfig().getUDDINode("default").getProperties();

This is exactly what the WSDL2UDDI implementation does, and it the reason the class requires

the properties in the constructor.

19

Chapter 4. Using the jUDDI GUI
Starting with jUDDI v3.2, a nearly full featured UDDI v3 compliant web user interface is included

called the jUDDI Graphical User Interface, or jUDDI GUI. It is also referred to as the jUDDI Console,

or jUDDI User Console. The jUDDI GUI is a web application that can run in most web servlet

containers, such as Tomcat and can be deployed along side of the jUDDI Web Services war

(juddiv3.war). From the jUDDI GUI, users can browse, search, create, update, digitally sign and

delete most UDDI entities, as well as preform custody transfers, configure subscriptions.

As of version 3.2, the jUDDI GUI supports the complete functionality of the following UDDI services

• Inquiry

• Publish

• Security

• Custody Transfer

• Subscription

4.1. Requirements

The jUDDI GUI needs two things in order to operate.

• UDDI v3 compliant services

• A J2EE application server, such as Tomcat, Jboss, Jetty or maybe even in Winstone

• Optionally, a container level authentication mechanism that supports role based authentication

(for remote configuration)

4.2. Tasks

The following sections detail how to perform basic tasks using the jUDDI GUI. Hopefully, the user

interface is intuitive enough that thorough guidance isn’t necessary.

4.2.1. Your first sign on

Typically, the jUDDI GUI is accessed via a URL in a web browser, such as this: http://

localhost:8080/juddi-gui. This URL will probably be different from this if someone else set up jUDDI

GUI for you (such as a system administrator), in which case, you’ll want to ask them for the correct

URL. Once loading the page, you should see something similiar to this.

http://localhost:8080/juddi-gui
http://localhost:8080/juddi-gui

Your

first

sign

on

20

Figure 4.1. Welcome to jUDDI, Please select a language.

Select a language, then click the button labeled "Go".

Tip

Would you like to see the jUDDI-GUI in a different language that the one’s listed

and want to offer some translation help? Please contact us!

Important

The juddi-gui stores your language preference as a cookie. No personally

identifiable information is stored there.

After clicking on "Go", you should see something similar to the next two screen shots.

Your

first

sign

on

21

Tip

Why would it be different? The jUDDI GUI is based on the Twitter Bootstrap API and

is designed to automatically rearrange the user interface based on screen size and

resolution. Small form factor devices, such as tablets and smart phones generally

function as normal, except that the upper navigation bar becomes condensed into

a single button.

Figure 4.2. Full menu bar for computers or large displays.

Your

first

sign

on

22

Figure 4.3. Tablet/Mobile menu bar for small displays.

The

Menu

Bar

23

For now, let’s just focus on the menu or navigation bar.

4.3. The Menu Bar

Figure 4.4. The Menu Bar.

The menu bar is designed to make navigation simple and intuitive.

• Home - This sub-menu contains links towards information that is tailored towards you, such as

all the businesses you own, subscriptions, custody transfer, and publisher assertion (business

relationships)

• Browse - This sub-menu makes it simple to find stuff in UDDI by letting you flip the pages of

the directory.

• Create - This sub-menu makes it simple to create new UDDI entities, such as businesses,

services, tModels, import from WSDL/WADL and some advanced operations.

• Settings - This page is typically access controlled and enables administrators to remotely

configure the juddi-gui.

• Help - Contains links to the Internet for more help with jUDDI and source code access

• Login/Logout - many registries require authentication. These buttons support both HTTP and

UDDI Auth Token style of authentication.

4.4. Logging in to UDDI Services

Assuming that your UDDI services require authentication, you’ll probably want to login with your

username and password. This is done using the Login/Logout section the Menu bar (top right of

the screen).

Figure 4.5. Login Warning.

Caution

If you happen to notice that a warning symbol next to the Login button, use caution!

Your password may be exposed if you proceed.

Logging

Out

24

Tip

The Warning symbol on the Login portion of the Menu bar will be present unless

the following conditions are met: Communication from your browser to juddi-gui

is encrypted using SSL/TLS AND the communication from juddi-gui to the UDDI

services is encrypted using SSL/TLS.

4.5. Logging Out

Once logged in, just "Welcome <username>" button to log out.

4.6. Discover (Browse UDDI)

All of the Browse pages support pagination, that is you can flip through the pages of the database,

as if it were a phone book.

In addition, search results can be filtered by language. On each Discover page, you will see the

following

Figure 4.6. Browse Options.

Click on "Click to Edit", enter your desired language code, then either press enter, or click "Ok"

and the results will be filtered automatically. See "Language Codes" for more information.

4.6.1. Business Browser

To browse for a UDDI Business, simply click on the word Discover from the top navigation bar

and select Businesses.

Business

Browser

25

Figure 4.7. Browse Business.

When clicking on "Show XX" (XX is the number of services that business has)

Service

Browser

26

Figure 4.8. Browse Business Zoomed in.

The (+) Plus button will enable you to add a new service that belongs to the business on the same

table row.

4.6.2. Service Browser

To browse for a UDDI Service, simply click on the word Discover from the top navigation bar and

select Services. Clicking on the Name of the service, will bring you to the Service Editor page.

Click on the owning Business key to bring you to the Business Editor page.

tModel

Browser

27

Figure 4.9. Service Browser.

4.6.3. tModel Browser

To browse for a UDDI tModel simply click on the word Discover from the top navigation bar and

select tModel. Clicking on the Key of the tModel, will bring you to the tModel Editor page.

Search

28

Figure 4.10. tModel Browser.

4.6.4. Search

Searching UDDI provides you with the capabilities to make both simple and complex queries. To

search, simply click on the word Discover from the top navigation bar and select Search.

Search

29

Figure 4.11. Search.

You first need to select what you’re looking for. You can either search a Business, Service, Binding

Template, or tModel.

Tip

Not all combinations are valid. For instance, you can’t search for a Binding

Template by Name because UDDI’s binding templates do not have names.

Important

UDDI offers a wider, richer search capability. The juddi-gui’s search page is in

comparison, limited. If you have the need for more complex searches, you’ll

probably have to write some code to do so.

Tip

When using the wildcards (%, ?), you have to add the find qualifier,

approximateMatch.

Creating

new

Entities

30

4.7. Creating new Entities

The jUDDI GUI has the ability to create and register new UDDI entities.

4.7.1. Create a tModel

From the menu, select Create, then tModel. For tModels, the only required item is the Name

element.

4.7.2. Create a tModek Key Generator (Partition)

Important

If you want to create your own UDDI keys (recommended) rather than use the not

so user friendly server generated GUID values, then you’ll have to make a Key

Generator first! Read on!

A tModel Key Generator is a special kind of tModel that enables you to define your own keys

(for anything in UDDI) for your own "domain". A "domain" is similar to the Domain Name

System used by the Internet to resolve user friendly names, such as www.apache.org, to an

IP address. This effectively allows you to define any arbitrary UDDI key prefix that you want.

For example, if you wanted a UDDI key defined as "uddi:www.mycompany.com:salesbusiness1",

you would first have to create a tModel key generator (partition) with the value of

"uddi:www.mycompany.com:keygenerator". TModel keys must start with "uddi:" and end with

":keygenerator". This is part of the UDDI specification and acts as a governance mechanism. You

can also create a tModel Key Generator by using the Create tModel menu option and by adding

the appropriate settings (assuming you know the secret sauce) or you can simply click on the

word Create from the top navigation bar and select tModel Partition (Key Generator).

Create

a

Business

31

Figure 4.12. Create a tModel Key Generator (Partition).

Tip

You can also use nested partitions such as

"uddi:www.mycompany.com:keygenerator" and

"uddi:www.mycompany.com:sales:keygenerator". UDDI uses the colon ":" as a

separator for partitions. This will enable you to make UDDI keys such as

"uddi:www.mycompany.com:biz1" and "uddi:www.mycompany.com:sales:biz2".

Tip

UDDI key names can be at MOST 255 characters long!

4.7.3. Create a Business

The UDDI Business entity enables you to define and advertise your business with a variety of

ways. To create a new business, simply click on the word Create from the top navigation bar and

select Business.

Tip

The "Create", "Business" page is also the same page to use when editing an

existing business.

Create

a

Business

32

Figure 4.13. Create Business.

Businesses in UDDI only require you to define at least one name. All of fields are optional.

Business entities can have 0 or more of just about everything. For now, let’s just make a Name,

give it a Value and then save our new business. To add a new Name, click the "+" button next to

the "Name". Then click on "Click to edit" next to "Value". If you make a mistake or wish to remove

the "Name" or any other element, click on the trash can.

Figure 4.14. How to Add and Delete items.

If you read the previous section on tModel Key Generators, then you know all about UDDI keys.

This is your one and only chance to get it right. Once your done, click "Save". Congrats! You’ve

just made your first UDDI business!

Important

When working with UDDI entities, you cannot change the UDDI key after it has

been created.

Create

a

Service

33

The Business Editor/Creator web page, along with the other editor/creator pages, has a ton of

other interesting things that you can do. Since there’s way too much stuff to look at, we broke

them up into logical sections.

Figure 4.15. Business Editor’s Section.

In case you can’t see the picture above:

• General - Names and Descriptions

• Discovery URLs - Usually a link to a web page

• Contacts - Points of Contact, such as Sales, Tech Support, etc

• Categories - These reference tModels and act as a way to categorize your business.

• Identifiers - Can be used for Tax IDs, DUNS Number, or anything else that you can think of.

• Services - This is the meat and potatoes of UDDI, advertising all the great services that your

business provides.

• Signatures - Digital Signatures prevent tampering

• Operational Info - Who created it and when

• Related Businesses - This is where people can find out if you have a business relationship with

someone else. It’s also called Publisher Assertions.

Tip

Clicking on each tab will supply additional information.

Tip

If a business, service, or tModel is signed, the juddi-gui will automatically attempt to

validate the signature. You’ll see a thumbs up or thumbs down icon to let you know.

4.7.4. Create a Service

Creating a new service is simple so long as you remember that a service must be attached to a

business. There are a few ways to create a new business.

The first option is to locate the business that you wish to add a service to via the Business Browser

and then click the Plug button.

Create

a

Service

34

Figure 4.16. Add a Service via Business Browser.

The second option is to bring up the Business Editor for the business you want to add a service

to, then click on the Services tab, then "Add a Service".

Figure 4.17. Add a Service via Business Editor.

Import

from

WSDL

or

WADL

35

Tip

Services require at least one name. Everything else is considered optional.

4.7.5. Import from WSDL or WADL

The jUDDI client provides programmatic access to convert a WSDL or WADL document into UDDI

Service and tModel entries. The juddi-gui takes advantage of this and provides a simple to use

interface to quickly and easily import your SOAP and REST services into UDDI.

From the Create menu, select Register Services from WSDL or WADL.

The process is pretty straight forward.

1.Provide the location of the WSDL or WADL file. It must be web accessible from the server hosting

juddi-gui.war. If it is password protected (such as Digest, Basic or NTLM) provide a password

to access the WSDL or WADL. Your credentials will not be saved anywhere. 1.The key domain.

The imported UDDI service, binding, and tModels will all use this key partition/domain for key

generation. The juddi-gui will populate this field with the domain of the URL entered in step 1.

If you don’t like, go ahead and change it. One will be automatically created for you. 1.Pick a

business to attach the imported data to. 1.Review and Approve. The Preview button will do all of

the processing except saving the content, so it is a good way to get a preview of what will happen.

Save will do the processing and save it.

Figure 4.18. Importing a Service from WSDL or WADL.

Custody

Transfers

36

4.8. Custody Transfers

Custody Transfers are used to give away ownership and edit permission for UDDI business and

tModels. It’s not used very often, but the workflow is simple.

1.Two business representatives agree to transfer either a business(s) or tModel(s) from business

A to business B. 1.Business A creates a transfer token 1.Business A gives the transfer token data

to Business B’s representative (perhaps via email?) 1.Business B accepts the token and transfers

the ownership over.

All of these actions are processed at the Transfer Ownership page from the Home menu.

Figure 4.19. Custody Transfer.

4.9. Publisher Assertions

Publisher Assertions are how two different businesses can setup a UDDI Business Relationship.

This essentially means that other users can see that this is a relationship between business A and

B and that they can perform queries based on the relationship.

Subscriptions

37

Figure 4.20. Publisher Assertion.

4.10. Subscriptions

Subscriptions in UDDI are used to easily detect when changes are made to a UDDI node.

4.10.1. Create a new subscription

To create a new subscription, you must first be logged in. Click on Home, then Create Subscription.

Subscriptions can either be for a set of specific items or for search results.

Create

a

new

subscription

38

Figure 4.21. Create a Subscription, Specific Item or Search Results.

In our example, we’ve selected a set of specific items.

Create a Subscription, Select Items. image::images/juddi-gui-subscription2.png[Create a

Subscription, Select Items

To add an item to the list, click on Add. The item chooser will appear. Check each item to add

them to the list. To remove, select the item, then click remove.

Create

a

new

subscription

39

Figure 4.22. Create a Subscription, Add an item using the chooser.

Specific items are added by entity keys.

Figure 4.23. Create a Subscription, Item Added.

Create

a

new

subscription

40

Next is the delivery mechanism. The UDDI node can deliver the notifications to you if you have

your own implementation of the UDDI Subscription Listener service. (The juddi-client contains this

for you if you were looking to develop a solution). In addition, the UDDI node can email the results

to you (in XML format).

Tip

Since jUDDI 3.2.1, you can also configure jUDDI to send you a more human

readable version of the subscription notification. To configure, all that is needed

is to add a special transport tModel instance to your subscription binding,

uddi:uddi.org:transport:userfriendlysmtp.

The other option is to periodically poll the UDDI server and get your subscription results (see the

News Feed).

Here, we’ve selected the, I’ll pick them up, option.

Figure 4.24. Create a Subscription, Delivery Mechanism.

The final slider provides subscription options. * Expiration - a date where the subscription expires

* Notification Interval - this is only used when the UDDI node sends the notifications to you via the

Subscription Listener Service * Brief - If true, the UDDI node will only tell you which items have

changed, not what the change was.

View

My

Subscriptions

41

Figure 4.25. Create a Subscription, Options.

4.10.2. View My Subscriptions

To view, edit, and delete existing subscriptions, click on Home, then View Subscriptions.

Figure 4.26. View Subscriptions.

View

the

News

Feed

42

4.10.3. View the News Feed

The New Feed is a simple page designed to show you subscription results for the past 24 hrs. To

view the news feed, click on Home, then News Feed.

4.11. Using Digital Signatures in juddi-gui

The juddi-gui makes working with digital signatures simple and enables you do digitally sign and

protect entities right from the web browser. It allows you to sign business, services and tModels.

Tip

Digital signatures are performed using the jUDDI Digital Signature Applet which

requires a Java plugin for your web browser, as well as a digital certificate (X509).

Tip

You also need to have an X509 Certificate installed in either your Windows My/

Current User Certificate Store or your MacOS Key Chain certificate store.

4.11.1. Sign a Business, Service or tModel

Figure 4.27. Select an entity, then click Digitally Sign.

Sign

a

Business,

Service

or

tModel

43

Figure 4.28. Java Plugin Warnings.

Select a certificate, then if you’re ready to sign, click on "Digitally Sign". This will automatically

generate the signature and save it in the UDDI server.

Figure 4.29. Select a Signing Certificate.

Click on Certificate Info will display the following panel. This is useful if you have a few certificates

that are similarly named.

Verify

a

signed

UDDI

entity

44

Figure 4.30. Certificate Details.

The settings tab gives you a number of options for advanced users. We recommend that you

leave the defaults as is.

Figure 4.31. Signature Settings.

4.11.2. Verify a signed UDDI entity

Once an entity is signed, the juddi-gui will always attempt to validate the signature and will notify

you if its signed and whether or not its valid.

In the following example, the business was signed.

Verify

a

signed

UDDI

entity

45

Figure 4.32. Valid Signed Entity.

Important

UDDI entities are hierarchical. A signed business entities includes all of the data

for its services and binding templates. Any change to a service or binding template

will cause the business’s signature to be invalid. TModels are not affected by this.

In the following example, one of the services own by the business was changed. Note that the

signature is now invalid due to the alteration.

Configuration

46

Figure 4.33. Invalid Signed Entity.

4.12. Configuration

The configuration page is usually restricted to system administrators. There are many fields that

are displayed. Some of the are editable, others are not. In general, the following settings can be

changed (the others are just for troubleshooting and informational purposes).

Details on configuration is located in chapter, jUDDI Server Configuration.

Warning

Saving updates to the console configuration in juddi-gui/WEB-INF/classes/META-

INF/uddi.xml will only work if the juddi-gui is deployed as a folder.

4.13. Language Codes

The Language Code is a field supported by UDDI that is inherited from the errata for XML

Schema, which references RFC 3066, which can be read here: http://www.ietf.org/rfc/rfc3066.txt/.

In general, Language Codes are either 2 or 5 characters but can by up to 26 characters. Here’s

a few examples

• en

• en_US

• es_US

http://www.ietf.org/rfc/rfc3066.txt/

Switching

Nodes

47

More can be found here: http://www.i18nguy.com/unicode/language-identifiers.html

4.14. Switching Nodes

The jUDDI GUI supports connectivity to multiple UDDI nodes. A UDDI Node is simple a collection

of UDDI services that are all connected to the same data source. Another way to put it this, a

UDDI server. Each browser session to the jUDDI GUI has the ability to select the current Node

connection. The current Node select is always saved as a cookie. To avoid any potential confusion,

the currently selected Node is available both from the drop down Settings menu, and on the bottom

of every page.

To switch nodes, simply select the desired node from the Settings menu.

Important

When switching nodes, any unsaved work that you have will be lost. You will also

be logged out of the old node if you were signed in.

http://www.i18nguy.com/unicode/language-identifiers.html

Switching

Nodes

48

Figure 4.34. Node Switcher.

Tip

Administrators can define the default node via the Setting, Configuration page.

49

Chapter 5. Mapping WSDL and

WSDL to UDDI

5.1. Introduction

OASIS published a technical article which describes the recommended way to map the entries

from a WSDL (Web Service Description Language) document into UDDI (https://www.oasis-

open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm). The jUDDI-

client provides a convenient mechanism for this mapping. In addition, the jUDDI team provides

a similar API for mapping a WADL (Web Application Description Language) document to UDDI.

This guide will help you use the APIs to register a WSDL or WADL document that describes a

service within a UDDI registry.

5.2. Use Case - WSDL

The most basic use case is that we have one or more SOAP/WSDL based services from a 3rd

party that was just stood up on our network and we wish to now advertise to our user base that

this service exists. We could manually punch in the information, but what fun is that? Let’s import

it using some code! This can be expanded to import services in bulk.

5.2.1. Sample Code

URL url = new URL("http://someURLtoYourWSDL");

ReadWSDL rw = new ReadWSDL();

Definition wsdlDefinition = rw.readWSDL(url);

Properties properties = new Properties();

properties.put("keyDomain", domain);

properties.put("businessName", domain);

properties.put("serverName", url.getHost());

properties.put("serverPort", url.getPort());

wsdlURL = wsdlDefinition.getDocumentBaseURI();

WSDL2UDDI wsdl2UDDI = new WSDL2UDDI(null, new URLLocalizerDefaultImpl(),

 properties);

//This creates a the services from WSDL

BusinessServices businessServices =

 wsdl2UDDI.createBusinessServices(wsdlDefinition);

//This creates the tModels from WSDL

Map<QName, PortType> portTypes = (Map<QName, PortType>)

 wsdlDefinition.getAllPortTypes();

//This creates more tModels from WSDL

Set<TModel> portTypeTModels = wsdl2UDDI.createWSDLPortTypeTModels(wsdlURL,

 portTypes);

Map allBindings = wsdlDefinition.getAllBindings();

//This creates even more tModels from WSDL

https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

Links

to

sample

project

50

Set<TModel> createWSDLBindingTModels =

 wsdl2UDDI.createWSDLBindingTModels(wsdlURL, allBindin

//Now just save the tModels, then add the services to a new or existing

 business

5.2.2. Links to sample project

SVN Links to sample projects

• http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/

• http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/wsdl2uddi/

• http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

The examples are also available in both jUDDI distributions.

5.3. Use Case - WADL

The most basic use case is that we have one or more REST/WADL based services from a 3rd

party that was just stood up on our network and we wish to now advertise to our user base that

this service exists. We could manually punch in the information, but what fun is that? Let’s import

it using some code! This can be expanded to import services in bulk.

5.3.1. Sample Code

Application app = WADL2UDDI.ParseWadl(new URL("URL to WADL file"));

List<URL> urls = WADL2UDDI.GetBaseAddresses(app);

URL url = urls.get(0);

String domain = url.getHost();

Properties properties = new Properties();

properties.put("keyDomain", domain);

properties.put("businessName", domain);

properties.put("serverName", url.getHost());

properties.put("serverPort", url.getPort());

WADL2UDDI wadl2UDDI = new WADL2UDDI(null, new URLLocalizerDefaultImpl(),

 properties);

//creates the services

BusinessService businessServices = wadl2UDDI.createBusinessService(new

 QName("MyWasdl.namespace", "Servicename"), app);

//creates tModels (if any)

Set<TModel> portTypeTModels = wadl2UDDI.createWADLPortTypeTModels(wsdlURL,

 app);

//Now just save the tModels, then add the services to a new or existing

 business

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/wsdl2uddi/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

Links

to

sample

project

51

5.3.2. Links to sample project

SVN Links to sample projects

• http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/

• http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

The examples are also available in both jUDDI distributions.

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

52

53

Chapter 6. Using UDDI Annotations
Conventionally Services (BusinessService) and their EndPoints (BindingTemplates) are

registered to a UDDI Registry using a GUI, where an admin user manually adds the necessary

info. This process tends to make the data in the Registry rather static and the data can grow stale

over time. To make the data in the UDDI more dynamic it makes sense to register and EndPoint

(BindingTemplate) when it comes online, which is when it gets deployed. The UDDI annotations

are designed to just that: register a Service when it get deployed to an Application Server. There

are two annotations: UDDIService, and UDDIServiceBinding. You need to use both annotations

to register an EndPoint. Upon undeployment of the Service, the EndPoint will be de-registered

from the UDDI. The Service information stays in the UDDI. It makes sense to leave the Service

level information in the Registry since this reflects that the Service is there, however there is

no EndPoint at the moment ("Check back later"). It is a manual process to remove the Service

information. The annotations use the juddi-client library which means that they can be used to

register to any UDDIv3 registry.

6.1. UDDI Service Annotation

The UDDIService annotation is used to register a service under an already existing business in

the Registry. The annotation should be added at the class level of the java class.

Table 6.1. UDDIService attributes

attribute description required

serviceName The name of the service, by

default the clerk will use the

one name specified in the

WebService annotation

no

description Human readable description

of the service

yes

serviceKey UDDI v3 Key of the Service yes

businessKey UDDI v3 Key of the Business

that should own this Service.

The business should exist

in the registry at time of

registration

yes

lang Language locale which will

be used for the name and

description, defaults to "en" if

omitted

no

categoryBag Definition of a CategoryBag,

see below for details

no

UDDIServiceBinding

Annotation

54

6.2. UDDIServiceBinding Annotation

The UDDIServiceBinding annotation is used to register a BindingTemplate to the UDDI registry.

This annotation cannot be used by itself. It needs to go along side a UDDIService annotation.

Table 6.2. UDDIServiceBinding attributes

attribute description required

bindingKey UDDI v3 Key of the

ServiceBinding

yes

description Human readable description

of the service

yes

 accessPointType UDDI v3

AccessPointType, defaults to

wsdlDeployment if omitted

no

accessPoint Endpoint reference yes

lang Language locale which will

be used for the name and

description, defaults to "en" if

omitted

no

tModelKeys Comma-separated list of

tModelKeys key references

no

categoryBag Definition of a CategoryBag,

see below for further details

no

6.2.1. Java Web Service Example

The annotations can be used on any class that defines a service. Here they are added to a

WebService, a POJO with a JAX-WS WebService annotation.

package org.apache.juddi.samples;

import javax.jws.WebService;

import org.apache.juddi.v3.annotations.UDDIService;

import org.apache.juddi.v3.annotations.UDDIServiceBinding;

@UDDIService(

 businessKey="uddi:myBusinessKey",

 serviceKey="uddi:myServiceKey",

 description = "Hello World test service")

@UDDIServiceBinding(

 bindingKey="uddi:myServiceBindingKey",

 description="WSDL endpoint for the helloWorld Service. This service is

 used for "

Wiring

it

all

together

55

 + "testing the jUDDI annotation functionality",

 accessPointType="wsdlDeployment",

 accessPoint="http://localhost:8080/juddiv3-samples/services/helloworld?

wsdl")

@WebService(

 endpointInterface = "org.apache.juddi.samples.HelloWorld",

 serviceName = "HelloWorld")

public class HelloWorldImpl implements HelloWorld {

 public String sayHi(String text) {

 System.out.println("sayHi called");

 return "Hello " + text;

 }

}

On deployment of this WebService, the juddi-client code will scan this class for UDDI annotations

and take care of the registration process. The configuration file uddi.xml of the juddi-client is

described in the chapter, Using the jUDDI-Client. In the clerk section you need to reference the

Service class org.apache.juddi.samples.HelloWorldImpl:

<clerk name="BobCratchit" node="default" publisher="sales" password="sales">

 <class>org.apache.juddi.samples.HelloWorldImpl</class>

</clerk>

which means that Bob is using the node connection setting of the node with name "default", and

that he will be using the "sales" publisher, for which the password it "sales". There is some analogy

here as to how datasources are defined.

6.2.2. Wiring it all together

The mechanism that triggers the automated registration is the UDDIClient. For each class you

annotation, the class needs to be listed in the jUDDI Client Configuration file. When the client

reads in the configuration, it will read the uddi.xml config file for the following location:

client/clerks/clerk[].class

In addition, the following flag must be set to true.

client/clerks@registerOnStartup="true"

Here’s a full example

<clerks registerOnStartup="false" >

 <clerk name="default" node="default" publisher="userjoe"

 password="******" cryptoProvider="" isPasswordEncrypted="false">

 <class>com.mybiz.services.Service1</class>

 </clerk>

.NET

Web

Service

Example

56

</clerks>

The next step is to automate the "starting" and "stopping" of UDDIClient. In Java, anything that

runs in a servlet container and use the following servlet class:

org.apache.juddi.v3.client.config.UDDIClerkServlet

It will automatically handle registration on start up and it will remove binding Templates on

shutdown (this ensuring clients that discover the endpoint won’t find a dead link).

Clients that run elsewhere simply need to "start" the UDDIClient.

//start up

UDDIClient clerkManager = new UDDIClient("META-INF/uddi.xml");

// register the clerkManager with the client side container

UDDIClientContainer.addClient(clerkManager);

clerkManager.start(); //will create business/services/bindings as necessary

//shutdown down

clerkManager.stop(); //will unregister binding templates

6.3. .NET Web Service Example

In .NET, the procedure is almost identical to Java. Annotate your web service classes, append the

classnames to your uddi.xml client config file. .NET annotations work with any WCF, ASP.NET

or any other class.

6.3.1. Wiring it all together

In .NET, there’s a few options, each with pro’s and con’s for automating registration.

6.3.1.1. Use UDDIClient in your service’s constructor

Pro: It’s simple Con: Services often get multiple instances depending on the number of worker

threads in the server and thus can cause some concurrency issues.

6.3.1.2. Use UDDIClient in Global.asa Application_Start

Pro: It’s simple Con: You need .NET 4.0 and ASP.NET enabled in order to utilize this function

More information about this can be found here: http://weblogs.asp.net/scottgu/

archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx

6.4. CategoryBag Attribute

The CategoryBag attribute allows you to reference tModels. For example the following

categoryBag

http://weblogs.asp.net/scottgu/archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx

Considerations

for

clustered

or

load

balanced

web

servers

and

automated

registration

57

<categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:wsdl" keyValue="wsdlDeployment" />

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:wsdl2" keyValue="wsdlDeployment2" />

</categoryBag>

can be put in like

categoryBag="keyedReference=keyName=uddi-

org:types:wsdl;keyValue=wsdlDeployment;" +

 "tModelKey=uddi:uddi.org:categorization:types," +

 "keyedReference=keyName=uddi-

org:types:wsdl2;keyValue=wsdlDeployment2;" +

 "tModelKey=uddi:uddi.org:categorization:types2",

6.5. Considerations for clustered or load balanced web

servers and automated registration

Most production environments have primary and failover web servers and/or an intelligent load

balancer that routers traffic to whichever server is online. When using automated registration with

the jUDDI client, care must be taken when enabling automated registration.

58

59

Chapter 7. Using the UDDI v2

Services and Adapters

7.1. Introduction

Starting with jUDDI version 3.2, a number of adapters are provided to help you use or access

UDDI version 2 based services. There are a multitude of options and will be discussed in the

following sections.

7.2. Accessing UDDI v2 services using the jUDDI v3

Client

Accessing UDDI v2 services via the jUDDI v3 client is quite simple. All that’s required is

modification of the uddi.xml client configuration file. Simply set the transport to:

org.apache.juddi.v3.client.transport.JAXWSv2TranslationTransport

…and adjust the inquiryUrl and publishUrl URL endpoints.

Tip

When accessing UDDI v2, Custody Transfer, Subscription, Replication and Value

Set APIs will not be available and may generate unexpected behavior. The UDDIv3

Inquiry getOperationalInfo method is only partially mapped.

That’s it. No code changes are required other than to avoid Custody Transfer, Subscription,

Replication and Value Set APIs. In addition, digital signatures are not mapped.

7.3. Accessing UDDI v2 services using UDDI v2 APIs

The jUDDI v3 client now contains the UDDI 2 web service clients. Although, there isn’t currently

a configuration/transport/client/clerk wrapper for it, you can still get access to web service clients

with the following code:

org.apache.juddi.v3.client.UDDIServiceV2 svc = new UDDIServiceV2();

Inquire port = svc.getInquire();

((BindingProvider)

 port).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

 "http://localhost:8080/juddiv3/services/inquiryv2");

Publish pub= svc.getPublish();

Accessing

jUDDI

v3

services

from

an

existing

UDDI

v2

based

client,

plugin

or

tool

60

((BindingProvider)

 pub).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

 "http://localhost:8080/juddiv3/services/publishv2");

All you need to reference the following projects/jars from jUDDI:

• juddi-client

• uddi-ws

7.4. Accessing jUDDI v3 services from an existing UDDI

v2 based client, plugin or tool

When UDDI v2 was release, many application developers jumped on board to support it. As

such, there are many UDDI v2 tools that exist, such as IDE plugins like Eclipse’s Web Services

Explorer. To support legacy tools, jUDDI now offers UDDI v2 endpoints. Simple point your tool at

the following URLs. You’ll have to alter them to match your environment.

http://localhost:8080/juddiv3/services/inquiryv2

http://localhost:8080/juddiv3/services/publishv2

7.5. Additional Information

The UDDI v2 adapters provide basic mappings from to and from UDDI v3. The juddi-client has

several mapping functions that are used both client and service side to convert from UDDI v2 to

UDDI v3. In addition, the client has as several interface adapters to help with a seamless transition.

61

Chapter 8. UDDI Migration and

Backup Tool
The UDDI Migration and Backup Tool can be used to perform a number of administrative tasks

such as

• Backup the contents of a UDDI server (business, services, binding templates and tModels)

• Import contents into a UDDI server (business, services, binding templates and tModels)

In addition, the migration tool has a few features that serve as job aids.

• Ability to remove digital signatures on Import or Export

• Ability to maintain ownership properties of UDDI entries

• Ability to export and import Publishers (jUDDI only)

• Automatically skip an item on import if the entity key already exists

The UDDI Migration and Backup Tool is Command Line Interface program and has a number of

use cases such as:

• Copying data from one registry to another

• Migrating from one vendor to another

• Periodic backups

• Upgrades to jUDDI

Tip

The migration tool will not overwrite data when importing.

8.1. Using the tool

There are many configuration options and settings for the migration tool. This tool is distributed

with the uddi client distribution package.

8.1.1. Get help

>java -jar juddi-migration-tool-3.2.0-SNAPSHOT-jar-with-dependencies.jar

This tool is used to export and import UDDI data from a UDDI v3 registry

Use

case:

basic

import

and

export

62

Random TIP: Without the preserveOwnership flag, all imported data will be

 owned by the username that imported it.

usage: java -jar juddi-migration-tool-(VERSION)-jar-with-dependencies.jar

 -business <arg> Im/Export option, file to store the business data,

 default is 'business-export.xml'

 -config <arg> Use an alternate config file default is 'uddi.xml'

 -credFile <arg> Import option with -preserveOwnership, this is a

 properties file mapping with user=pass

 -export Exports data into a UDDIv3 registry

 -import Imports data into a UDDIv3 registry

 -isJuddi Is this a jUDDI registry? If so we can in/export

 more stuff

 -mappings <arg> Im/Export option, file that maps keys to owners,

 default is 'entityusermappings.properties'

 -myItemsOnly Export option, Only export items owned by yourself

 -node <arg> The node 'name' in the config, default is 'default'

 -pass <arg> Password, if not defined, those is uddi.xml will be

 used

 -preserveOwnership Im/Export option, saves owership data to the

 'mappings' file

 -publishers <arg> jUDDI only - In/Export option, file to store

 publishers, default is 'publishers-export.xml'

 -stripSignatures Im/Export option, removes digital signatures from

 all signed items, default is false

 -tmodel <arg> Im/Export for tmodels, file to store tmodel data,

 default is 'tmodel-export.xml'

 -user <arg> Username, if not defined, those is uddi.xml will be

 used

8.1.2. Use case: basic import and export

To export everything without preserving ownership information:

java -jar juddi-migration-tool-(VERSION)-jar-with-dependencies.jar -export

To import everything without preserving ownership information:

java -jar juddi-migration-tool-(VERSION)-jar-with-dependencies.jar -import

8.1.3. Use case: Import and Export while preserving ownership

information

To export everything with preserving ownership information:

java -jar juddi-migration-tool-(VERSION)-jar-with-dependencies.jar -export -

preserveOwnership

Use

case:

Import

and

Export

while

preserving

ownership

information

63

To import everything with preserving ownership information, first edit the mappings file which

is entityusermappings.properties by default. Once every user has a password, run the following

command

java -jar juddi-migration-tool-(VERSION)-jar-with-dependencies.jar -import -

preserveOwnership

Tip

When preserving ownership information, upon import, you’ll need every UDDI

entity owner’s password. If you don’t have this and you’re using jUDDI, you

can temporarily switch jUDDI to the DefaultAuthenticator which doesn’t validate

passwords (just put anything in the mappings file for each user). Once the import

is complete, you can then switch back to whatever authenticator you were using

before.

64

65

Chapter 9. Using the jUDDI REST

Services
jUDDI includes a Inquiry API adapter that exposes some of the basic functionality of UDDI via

REST. Data can be retrieved in both XML and JSON encoding for all methods.

9.1. URL Patterns and methods

1. All jUDDI Inquiry REST service are accessible via HTTP GET.

2. Authentication is not yet supported. This also implies that the Inquiry API must be configured

for anonymous access (i.e. do not turn on Inquiry Authentication Required).

3. The jUDDI Inquiry REST service is not currently portable as an adapter to other UDDI instances

(but it could be adapted to it in the future)

9.1.1. Endpoints

All endpoints must be prefixed with http(s)://server:port/juddicontext/ where juddicontext is

typically juddiv3.

WADL Document: http://localhost:8080/juddiv3/services/inquiryRest?_wadl

Tip

All of the examples in this document reference JSON encoded messages. To

switch to XML messages, just replace the JSON with XML in the URL. That’s it!

9.1.2. Methods

Each method is accessible using the following pattern:

http://localhost:8080/juddiv3/services/inquiryRest/{encoding}/{method}/

{parameters}

//or

http://localhost:8080/juddiv3/services/inquiryRest/{encoding}/{method}?

{name=value}

Notes

• Encoding - Can be XML or JSON

• Methods - See below

• Parameters - usually a unique UDDI key

http://localhost:8080/juddiv3/services/inquiryRest?_wadl

Methods

66

9.1.2.1. xxxList

Returns up to 100 items within a KeyBag object, containing a list of all keys for the given object

type.

1. serviceList - http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceList

2. businessList - http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessList

3. tModelList - http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelList

9.1.2.2. endpointsByService/key

Returns all executable endpoints for a given service key, including all binding Templates. This

also resolves hosting redirector and a number of other accessPoint useType specifics.

Example:

http://localhost:8080/juddiv3/services/inquiryRest/JSON/endpointsByService/

uddi:juddi.apache.org:services-custodytransfer

9.1.2.3. getDetail

Return the details of a specific item using query parameters. This implements the

UDDI recommendation for HTTP GET services for UDDI. See http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm#_Toc85908158 for further information.

Example:

http://localhost:8080/juddiv3/services/inquiryRest/XML/getDetail?

businessKey=uddi:juddi.apache.org:businesses-asf

The following query parameters are supported. Only one can be specified at a time

1. businessKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?

businessKey=uddi:juddi.apache.org:businesses-asf

2. tModelKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?

tModelKey=uddi:uddi.org:categorization:types

3. bindingKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?

bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws

4. serviceKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?

serviceKey=uddi:juddi.apache.org:services-inquiry

9.1.2.4. xxxKey

Return the details of a specific item. This is similar to getDetail except that it is not based on query

parameters. The underlying code of this function is the same as getDetail.

http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceList
http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessList
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelList
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?businessKey=uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?businessKey=uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?tModelKey=uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?tModelKey=uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?serviceKey=uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?serviceKey=uddi:juddi.apache.org:services-inquiry

Example

Output

67

Example:

1. businessKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/

uddi:juddi.apache.org:businesses-asf

2. tModelKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelKey/

uddi:uddi.org:categorization:types

3. bindingKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/

uddi:juddi.apache.org:servicebindings-inquiry-ws

4. serviceKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/

uddi:juddi.apache.org:services-inquiry

5. opInfo/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/

uddi:juddi.apache.org:businesses-asf

9.1.2.5. xxxSearch

Returns the search results for registered entities in XML or JSON using a number of query

parameters.

Supported entities: . searchService . searchBusiness . searchTModel

Supported query parameters . name - Filters by the name element. If not specified, the wildcard

symbol is used %. . lang - Filters by language. If not specified, null is used. . findQualifiers -

Adds sorting or additional find parameters. comma delimited. If not specified, approximateMatch

is used . maxrows - Maximum rows returned. If not specified, 100 is used. . offset - Offset for

paging operations. If not specified, 0 is used.

9.2. Example Output

9.2.1. XML

The output of all XML encoded messages is identical to the UDDI schema specifications. There

should be no surprises.

9.2.2. JSON

The output of JSON encoded messages is obviously different than XML. The following is an

example of what it looks like.

{

 "businessEntity": {

 "@businessKey": "uddi:juddi.apache.org:businesses-asf",

 "discoveryURLs": {

 "discoveryURL": {

 "@useType": "homepage",

 "$": "http://localhost:8080/juddiv3"

 }

http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelKey/uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelKey/uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/uddi:juddi.apache.org:businesses-asf

JSON

68

 },

 "name": {

 "@xml.lang": "en",

 "$": "An Apache jUDDI Node"

 },

 "description": {

 "@xml.lang": "en",

 "$": "This is a UDDI v3 registry node as implemented by Apache

 jUDDI."

 },

 "businessServices": {

 "businessService": [

 {

 "@serviceKey": "uddi:juddi.apache.org:services-

custodytransfer",

 "@businessKey": "uddi:juddi.apache.org:businesses-asf",

 "name": {

 "@xml.lang": "en",

 "$": "UDDI Custody and Ownership Transfer Service"

 },

 "description": {

 "@xml.lang": "en",

 "$": "Web Service supporting UDDI Custody and

 Ownership Transfer API"

 },

 "bindingTemplates": {

 "bindingTemplate": [

 {

 "@bindingKey":

 "uddi:juddi.apache.org:servicebindings-custodytransfer-ws",

 "@serviceKey":

 "uddi:juddi.apache.org:services-custodytransfer",

 "description": "UDDI Custody and Ownership

 Transfer API V3",

 "accessPoint": {

 "@useType": "wsdlDeployment",

 "$": "http://localhost:8080/juddiv3/

services/custody-transfer?wsdl"

 },

 "tModelInstanceDetails": {

 "tModelInstanceInfo": {

 "@tModelKey":

 "uddi:uddi.org:v3_ownership_transfer",

 "instanceDetails": {

 "instanceParms": "\n

 \n <?xml version=\"1.0\" encoding=\"utf-8\" ?>\n

 <UDDIinstanceParmsContainer\n xmlns=\"urn:uddi-

org:policy_v3_instanceParms\">\n <authInfoUse>required</

JSON

69

authInfoUse>\n </UDDIinstanceParmsContainer>\n

 \n "

 }

 }

 },

 "categoryBag": {

 "keyedReference": {

 "@tModelKey":

 "uddi:uddi.org:categorization:types",

 "@keyName": "uddi-org:types:wsdl",

 "@keyValue": "wsdlDeployment"

 }

 }

 },

 {

 "@bindingKey":

 "uddi:juddi.apache.org:servicebindings-custodytransfer-ws-ssl",

 "@serviceKey":

 "uddi:juddi.apache.org:services-custodytransfer",

 "description": "UDDI Custody and Ownership

 Transfer API V3 SSL",

 "accessPoint": {

 "@useType": "wsdlDeployment",

 "$": "https://localhost:8443/juddiv3/

services/custody-transfer?wsdl"

 },

 "tModelInstanceDetails": {

 "tModelInstanceInfo": [

 {

 "@tModelKey":

 "uddi:uddi.org:v3_ownership_transfer",

 "instanceDetails": {

 "instanceParms": "\n

 \n <?xml version=\"1.0\" encoding=\"utf-8\" ?>\n

 <UDDIinstanceParmsContainer\n xmlns=\"urn:uddi-

org:policy_v3_instanceParms\">\n <authInfoUse>required</

authInfoUse>\n </UDDIinstanceParmsContainer>\n

 \n "

 }

 },

 {

 "@tModelKey":

 "uddi:uddi.org:protocol:serverauthenticatedssl3"

 }

]

 },

 "categoryBag": {

 "keyedReference": {

More

information

70

 "@tModelKey":

 "uddi:uddi.org:categorization:types",

 "@keyName": "uddi-org:types:wsdl",

 "@keyValue": "wsdlDeployment"

 }

 }

 }

]

 }

 }

]

 },

 "categoryBag": {

 "keyedReference": {

 "@tModelKey": "uddi:uddi.org:categorization:nodes",

 "@keyName": "",

 "@keyValue": "node"

 }

 }

 }

}

9.3. More information

For more information, please check out the source code: http://svn.apache.org/repos/asf/juddi/

trunk/juddi-rest-cxf/

http://svn.apache.org/repos/asf/juddi/trunk/juddi-rest-cxf/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-rest-cxf/

71

Chapter 10. jUDDI Client for NET
Since 3.2, the majority of the functions in the jUDDI Client for Java have been ported to .NET.

This guide will show you how to use it and integrate it with your own .NET based applications.

10.1. Procedure

1. Add a reference to jUDDI-Client.NET.dll

2. Add a reference to System.Web.Services

3. Add a reference to System.ServiceModel

4. Add a reference to System.Xml

5. Add a reference to System.Runtime.Serialization

6. Add a reference to System.Configuration

7. Add a reference to System.Security

8. Add a copy of the sample uddi.xml file. Modify it to meet your environment and operational

needs.

9. Note, many of the settings are identical to the Java jUDDI-client. The APIs are also nearly

identical, so example code should be easily portable from one language to another.

Sample Code

/*

 * Copyright 2001-2013 The Apache Software Foundation.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 *

 */

using org.apache.juddi.v3.client;

using org.apache.juddi.v3.client.config;

Procedure

72

using org.apache.juddi.v3.client.transport;

using org.uddi.apiv3;

using System;

using System.Collections.Generic;

using System.Text;

namespace juddi_client.net_sample

{

 class Program

 {

 static void Main(string[] args)

 {

 UDDIClient clerkManager = new UDDIClient("uddi.xml");

 UDDIClientContainer.addClient(clerkManager);

 Transport transport = clerkManager.getTransport("default");

 org.uddi.apiv3.UDDI_Security_SoapBinding security =

 transport.getUDDISecurityService();

 org.uddi.apiv3.UDDI_Inquiry_SoapBinding inquiry =

 transport.getUDDIInquiryService();

 UDDIClerk clerk = clerkManager.getClerk("default");

 find_business fb = new find_business();

 fb.authInfo = clerk.getAuthToken(security.Url);

 fb.findQualifiers = new string[]

 { UDDIConstants.APPROXIMATE_MATCH };

 fb.name = new name[1];

 fb.name[0] = new name(UDDIConstants.WILDCARD, "en");

 businessList bl = inquiry.find_business(fb);

 for (int i = 0; i < bl.businessInfos.Length; i++)

 {

 Console.WriteLine(bl.businessInfos[i].name[0].Value);

 }

 Console.Read();

 }

 }

}

The sample code above should print out a list of all businesses currently registered in the registry.

If credentials are stored in the uddi.xml file and are encrypted, they will be decrypted automatically

for you.

Within the jUDDI Source Tree, there are many different examples of how to use the jUDDI Client

for .NET. They are available here: http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/

juddi-client.net-sample/

http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/juddi-client.net-sample/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/juddi-client.net-sample/

73

Chapter 11. Using the UDDI

Technology Compatibility Kit
Since UDDI is a specification with many complex rules in it, we (the jUDDI team) have had

to write test cases to exercise each of the rules and restrictions in UDDI. Knowing that there

are a number of open source and commercial UDDI v3 implementations, the jUDDI team took

this as an opportunity to create a reusable benchmark for testing the compatibility of UDDI v3

implementations.

Important

Although the TCK covers a large number of test cases, the UDDI specification is

long and complex. It’s more than possible that we missed a few scenarios or test

cases. If you run across any, please let us know.

11.1. Using the TCK Runner

The TCK Runner requires a few files to operate:

1. juddi-tck-runner-version.jar - This is the executable

2. uddi.xml - This file sets the location of the UDDI services

3. tck.properties - This file controls what tests are ran.

4. truststore and keystore.jks - These files are for digital signature tests

11.1.1. Configuration

• Edit the uddi.xml file and update all of the UDDI endpoint locations for all supported endpoints

of UDDI server being tested. Ignore all credentials and other settings

• Edit tck.properties and update the usernames and passwords of the test users. Enable or

disable tests based on the whether or not the UDDI server supports the optional listed

capabilities.

Tip

Do not use usernames and passwords that already have data associated with it.

Running

the

TCK

Runner

74

A few of the test cases, such as RMI transport, are not identified by the UDDI specification,

therefore the results may be skewed if unsupported tests are attempted. In addition, the UDDI

specification identifies a number of APIs and features that are considered optional.

Although it is possible to run the TCK against a UDDIv2 registry using the UDDIv2 transport

adapters, this is not supported. The TCK’s test cases and rules apply to the business rules defined

in UDDIv3. Unsupported and unmapped functions defined in UDDIv3 that are not supported in

UDDIv2 fail ultimately fail.

11.1.1.1. tck.properties

The TCK properties file contains settings for all of the TCK tests.

1. Credentials - You’ll need credentials for a number of user accounts

2. jUDDI optional tests - If you’re running the tests against jUDDI, there’s a number of additional

tests ran to exercise things like user accounts.

3. Load testing - These settings enable you to tweak or disable the load testing.

4. Key stores - These are needed to run the digital signature tests

5. Supported transports - jUDDI supports a number of transports, such as RMI and HTTP (for

UDDI service interaction) and SMTP and HTTP for subscription callbacks. RMI is actually not

in the spec and SMTP is considered optional, so you’ll want to adjusted these based on the

available documentation from the vendor.

11.1.1.2. uddi.xml

The only parts used from uddi.xml are the following

1. The endpoints of the UDDI services

2. The client subscription callback settings

11.1.2. Running the TCK Runner

Executing the TCK runner is simple.

java (options) -Duddi.client.xml=uddi.xml -jar juddi-tck-runner-{VERSION}-

SNAPSHOT-jar-with-dependencies.jar

Optional parameters

• -Ddebug=true - this turns up the logging output, typically including the XML payloads of each

message.

Analyzing

the

Results

75

• -Duddi.client.xml=uddi.xml - Use this file as the jUDDI Client config file. This specifies where

all of the UDDI endpoints are.

• -Dtck.properties=file.properties - Use this to use an alternate tck properties file.

11.2. Analyzing the Results

There are two ways to identify the result of the tests.

• Analyze the console output

• Review the test results in uddi-tck-results-[DateTime].txt

The results are summarized in the uddi-tck-results file along with the specific error conditions and

stack traces that will enable you to find out the root cause of the failure. It may be necessary to

obtain UDDI server logs to help with root cause identification.

76

77

Index

78

	Apache jUDDI Client and GUI Guide
	Table of Contents
	Preface
	Chapter 1. Simple Publishing Using the jUDDI API
	1.1. UDDI Data Model
	1.2. jUDDI Additions to the Model
	1.3. UDDI and jUDDI API
	1.4. Getting Started
	1.4.1. Simple Publishing Example
	1.4.1.1. Simple Publishing using Portable Code
	1.4.1.2. Simple Publishing using Clerks

	1.4.2. About UDDI Entity Keys

	1.5. A few tips on adding Binding Templates
	1.6. Conclusion

	Chapter 2. jUDDI Client Configuration Guide
	2.1. Introduction
	2.2. Client Settings
	2.3. Nodes
	2.3.1. Transport Options

	2.4. Clerks
	2.5. Clerk
	2.6. Digital Signatures
	2.7. Subscription Callbacks
	2.8. XtoWsdl
	2.9. Embedded jUDDI server
	2.9.1. Requirements
	2.9.2. Changes in configuration compared to non-embedded

	Chapter 3. Key Format Templates
	3.1. UDDIv3 key format
	3.2. jUDDI key format templates
	3.2.1. Advantages of using a template
	3.2.2. Default UDDIKeyConvention Key Templates
	3.2.3. How to use the templates?
	3.2.4. Where to define to properties?

	Chapter 4. Using the jUDDI GUI
	4.1. Requirements
	4.2. Tasks
	4.2.1. Your first sign on

	4.3. The Menu Bar
	4.4. Logging in to UDDI Services
	4.5. Logging Out
	4.6. Discover (Browse UDDI)
	4.6.1. Business Browser
	4.6.2. Service Browser
	4.6.3. tModel Browser
	4.6.4. Search

	4.7. Creating new Entities
	4.7.1. Create a tModel
	4.7.2. Create a tModek Key Generator (Partition)
	4.7.3. Create a Business
	4.7.4. Create a Service
	4.7.5. Import from WSDL or WADL

	4.8. Custody Transfers
	4.9. Publisher Assertions
	4.10. Subscriptions
	4.10.1. Create a new subscription
	4.10.2. View My Subscriptions
	4.10.3. View the News Feed

	4.11. Using Digital Signatures in juddi-gui
	4.11.1. Sign a Business, Service or tModel
	4.11.2. Verify a signed UDDI entity

	4.12. Configuration
	4.13. Language Codes
	4.14. Switching Nodes

	Chapter 5. Mapping WSDL and WSDL to UDDI
	5.1. Introduction
	5.2. Use Case - WSDL
	5.2.1. Sample Code
	5.2.2. Links to sample project

	5.3. Use Case - WADL
	5.3.1. Sample Code
	5.3.2. Links to sample project

	Chapter 6. Using UDDI Annotations
	6.1. UDDI Service Annotation
	6.2. UDDIServiceBinding Annotation
	6.2.1. Java Web Service Example
	6.2.2. Wiring it all together

	6.3. .NET Web Service Example
	6.3.1. Wiring it all together
	6.3.1.1. Use UDDIClient in your service’s constructor
	6.3.1.2. Use UDDIClient in Global.asa Application_Start

	6.4. CategoryBag Attribute
	6.5. Considerations for clustered or load balanced web servers and automated registration

	Chapter 7. Using the UDDI v2 Services and Adapters
	7.1. Introduction
	7.2. Accessing UDDI v2 services using the jUDDI v3 Client
	7.3. Accessing UDDI v2 services using UDDI v2 APIs
	7.4. Accessing jUDDI v3 services from an existing UDDI v2 based client, plugin or tool
	7.5. Additional Information

	Chapter 8. UDDI Migration and Backup Tool
	8.1. Using the tool
	8.1.1. Get help
	8.1.2. Use case: basic import and export
	8.1.3. Use case: Import and Export while preserving ownership information

	Chapter 9. Using the jUDDI REST Services
	9.1. URL Patterns and methods
	9.1.1. Endpoints
	9.1.2. Methods
	9.1.2.1. xxxList
	9.1.2.2. endpointsByService/key
	9.1.2.3. getDetail
	9.1.2.4. xxxKey
	9.1.2.5. xxxSearch

	9.2. Example Output
	9.2.1. XML
	9.2.2. JSON

	9.3. More information

	Chapter 10. jUDDI Client for NET
	10.1. Procedure

	Chapter 11. Using the UDDI Technology Compatibility Kit
	11.1. Using the TCK Runner
	11.1.1. Configuration
	11.1.1.1. tck.properties
	11.1.1.2. uddi.xml

	11.1.2. Running the TCK Runner

	11.2. Analyzing the Results

	Index

