
This presentation has been put together for anyone wanting to do an introductory talk of
Apache Isis to their work colleagues or fellow geeks at work, a user group or at a
conference.

It consists of 9 slides outlining some of the main themes of Apache Isis, its use cases,
domain-driven design and also the naked objects pattern. There are plenty of notes for
each slide, so you shouldn’t run out of things to say. In addition, one of the slides is a
placeholder for a demo, so you have the opportunity to show Isis “in the flesh”.

After the final slide (“Resources”), there are 6 additional slides relating to naked objects
pattern. The first two discuss naked object pattern, the next 3 discuss the Irish DSP
project. The DSP project was the “flagship” that was the first to put naked objects to
real-life use, and is a substantive and highly successful “existence proof” of the validity
of the naked objects pattern. The final slide is additional resources relating to naked
objects.

You’re free to interweave these additional slides into the main material if you wish, or
just read them for a little additional context.

Eric Evans, the author of the DDD book, introduces the idea of “ubiquitous language” as
one of the two core patterns of domain-driven design. The idea of a ubiquitous
language is for the team (and by this we mean both the business-oriented domain
experts as well as the techies) to communicate ideas only in terms of the core domain
objects. They should be talking about customers, orders, products; they shouldn’t be
talking about screens, persistence, remoting or security. If the team struggling to
communicate, then it is probably because some domain concept has not been identified
or defined.

An example: on a big government project (DSP) building a new social welfare system,
one of the analysis workshops was discussing the process of sending out pension books
when they expire. Part of the discussion kept mentioning the cycle of renewals for
pension books. Since this phrase kept coming up, it gave rise to the BookRenewalCycle
class, which ended up with its own set of responsibilities.

Using a ubiquitous language helps the developers come up to speed with the domain
concepts, but it also helps ensure that the domain experts fully understand and define
their own domain terms. Non-automated business processes (ie as executed by
humans) are able to cope with a degree of fuzziness, but that isn’t the case for business
processes that are being automated by computers. And of course, the ubiquitous
language becomes the vocabulary by which users stories are articulated.

Apache Isis is a Java framework that allows you to focus on building your domain.

It works by defining a set of pojo-based programming conventions from which it infers
both the structure and the behaviour of your domain objects. From this, Isis takes care
of the other architectural concerns: persistence, security and also the user interface.

Because you don’t have to write presentation or persistence layers, you spend most of
your time focussing on the domain. And by focussing just on the domain, you'll find that
you start to develop your ubiquitous language, giving the entire team (business and
technologists alike) a deep, shared understanding of the domain.

Since you are writing less code, that extra time spent on the domain is likely to lead to
deeper insights into your domain.

More subtly, because you aren’t writing code for the other layers, you are forced to think
things through (and not “bodge” or “fudge” concepts in other layers).

While Isis has a set of programming conventions, these can be customized if need be.
You can also customize the other layers. Indeed, you can even choose to deploy your
domain model on some other framework if you wish.

Isis is great for rapid prototyping, because all you need to write in order to get an
application up-and-running is the domain model objects.

Once you've sketched out your domain model, you can then either start-over using your
preferred framework, or you might choose to take the domain model forward into more
formal specification and testing. Isis integrates with two testing frameworks to help you:
(a) Isis’ Junit integration provides the ability to wrap domain objects with proxies that
simulate the interactions from the UI to the domain; (b) Isis’ integration with Concordion
allows the analysts on your team to specify behaviour using XHTML. These
specifications are then automatic wired through to your domain objects.

Because the programming model has minimal dependencies on the rest of the
framework, you can take your domain object prototyped and/or tested using Isis, and
deploy on some other framework's runtime. Apart from annotations, the dependencies
are distilled down to a single interface, DomainObjectContainer which you should
implement as appropriate.

Alternatively, you can deploy your application on Isis. One option is to deploy your
domain model as a webservice using the json viewer, which provides a generic RESTful
API to your domain object. This API is defined by the Restful Objects specification. You
can either use Isis’ built-in persistence support, or roll your own. You can then build
your own custom clients (eg Jquery app) to consume this API.

Another option is to deploy your domain model as a (human-usable) webapp. Isis
provides a number of viewers; the HTML viewer is the most mature, but deliberately
provides limited customization options. There are a number of other viewers designed
to be more flexible (Scimpi and Wicket viewers), these are currently alpha quality.

Earlier on we talked about the idea of the team building up a ubiquitous language to
communicate, the vocabulary representing the domain of the system. And having a
ubiquitous language is all well and good, but if there’s no representation of it in the
code, then that’s a problem.

With Apache Isis, the application fundamentally consists of pojos, one for each domain
concept. Although you can customize the presentation layer, you don’t need to, so in
large part the developers can focus just on coding up the domain objects.

This ties in with the other core pattern for DDD, namely of being “model driven”. This is
the idea that the domain model described by the ubiquitous language should be
reflected within the codebase. In other words, DDD isn’t about just a bunch of UML
diagrams disconnected with the software.

We tend to recommend that every time you identify a domain concept, add it in some
form to the codebase. It may be an entity, an interface or a value, and may start out
with very few or even no responsibilities. However, once it exists, it will become part of
the team’s language and over time will inevitably acquire its own set of responsibilities.

Adopting this approach also removes the artificial barrier that can arise between
analysis and design, of maintaining an analysis model and a design model. Instead,
analysis should be about being able to zoom in on (or filter out) details from the (one-
and-only) domain model. Indeed, going back to the first slide, one thing that Evans says
is “with a *conscious* effort the team can build a ubiquitous language”. With Isis
though, no particularly conscious effort needs to be made to bridge analysis and design,
because the majority of coding effort put in by the team is on the classes that would
represent that domain object.

Although we’ve said that Isis applications are “just pojos”, there is of course a little more
to it than that. Isis defines a set of programming conventions and a number of code
annotations, and these together define the Isis programming model.

At the base level, you can build an Isis application out of pojos. Those with state and a
lifecycle (Customer, Order, Product) will be entities, those that represent state (Money,
Date, Duration, BigDecimal etc) are values, and those that are singletons are domain
services (by which we include repositories).

Over and above basic getters and setters (“know-whats” for properties/collections), any
public methods represent actions (“know-how-tos”). We sometimes call this
behavioural completeness. Most business logic is implemented in such actions.

Isis also supports “pre-condition” business rules through conventions. A class member
can be hidden; or if visible then it can be disabled (greyed out), or if enabled then the
values/arguments can be validated. We summarize this as : “(can you) see it / (can you)
use it / (can you) do it”.

Such business rules can be specified declaratively through annotations (eg @MaxLength)
or imperatively through supporting methods (eg validatePlaceOrder(…) for a
placeOrder(…) action). The annotations are in the Isis applib; this is the only compile-
time binding that an Isis application has to the framework.

Finally, Isis provides runtime support. It automatically injects all domain services /
repositories as well as the Isis DomainObjectContainer, and if needed uses bytecode
enhancement for lazy loading and object dirtying.

After all that preamble, it’s probably worth showing what Isis looks like in action.

You can either browse to Isis onlne demo [http://mmyco.co.uk:8180/isis-onlinedemo],
or a pre-canned demo. Or, if you enjoy live coding in front of an audience, you could run
the Maven archetype, and then extend it based on suggestions.

Demonstrate the HTML viewer, and also the RESTful (JSON) viewer. You could also
demonstrate the Junit integration and the BDD Concordion integration (all of these are
configured in the Maven archetype).

Page 7

Apache Isis is a full-stack framework, so that it provides an infrastructure for all the usual
architectural layers (presentation, application service, domain model, persistence) of an
enterprise application.

Isis is also modular, and has a number of APIs for different services. The slide above
attempts to show these different modules, using the hexagonal architecture pattern
(also called “ports and adapters”; see Alistair Cockburn’s blog for his original
description). From a build perspective, Isis is built using Maven, so each of the boxes
shown constitutes either one or several Maven modules.

The middle hexagon is the core framework which acts as a container for the domain
objects. In programming terms, this is represented by the DomainObjectContainer
interface, and is injected into every domain object. Using it, the domain object can do
such things as raising warnings/errors, or creating/persisting/removing objects.

Around the outside of the hexagon are a number of “ports”. Of these, the only ones
used directly by domain objects are the domain services, again automatically injected.
The services you have will depend on your app, and are written by you.

All the other ports are APIs used by Isis . “Persistence” and “security” should be self
explanatory; the “progmodel “ defines the mechanism by which Isis metamodel is built
up, and “bytecode” is used for lazy loading..

On the left-hand side are the viewers. These dynamically generated a user interface
from the domain objects, with respect to their metamodel.

Closing slide, with some resources for those interested.

The main resource is the Apache Isis website, at the URL above. From there the
audience can subscribe to the isis-dev mailing list, link to the wiki, go onto our IRC
channel, and so forth.

Another resource is the Restful Objects spec, as implemented by Isis’ json-viewer.

Apache Isis supports domain-driven design by implementing the naked objects pattern.

“Naked Objects” as a term has several definitions. First, it is an architectural pattern for
a system whereby the presentation layer is an automatically generated object-oriented
UI, constructed at runtime from the domain model. This isn’t compile-time code
generation scaffolding, it’s building a metamodel on-the-fly at runtime. As an pattern, it
also fits in well with the hexagonal architecture.

Perhaps more fundamentally, the principle of naked objects is object-orientation as
“your mother taught you”, applied to enterprise business applications. So we’re not
talking about objects as anaemic data holders that are manipulated by service layers;
these are proper objects with “know-whats” (encapsulated state) and “know-how-tos”
(encapsulated behaviour).

Another theme to naked objects is that the UI should allow the user to perform their job
in the way that they want, without forcing them to follow narrowly defined paths. This
is especially useful for expert users who have a deep knowledge of the domain
(something often true for end-users within an enterprise). The domain objects take
responsibility for ensuring they are never placed into an invalid state, and provide
behaviours for the user to manipulate them, but say nothing about the order in which
they are manipulated. We usually describe this as naked objects systems being written
for the “problem solver, not process follower”.

Isis’ customizable viewers are intended to extend the scope of Isis to applications where
the users are not experts. The most extreme example of this is the json viewer, which
provides the RESTful API. This is intended to be consumed by a custom app, eg a
Javascript application.

The “don’t repeat yourself” (DRY) principle is the idea that every concept, business rule
and validation should be expressed in one place and one place only. The term was
originally coined by Dave Thomas and Andy Hunt in their book, the Pragmatic
Programmer (2001), and has been widely quoted since then as sound advice.

Object/relational mappers such as Hibernate are a good example of the DRY principle;
rather than writing lots of boilerplate JDBC to insert, update and delete objects into the
database, we instead defining a mapping and let the ORM do the heavy lifting for you.

The naked objects pattern is another example of DRY, but this time applied to the
presentation layer rather than the persistence layer. So, object instances are
automatically exposed as icons, while the object can be opened up into forms showing
the object’s state (properties and collections). Furthermore all other public the object’s
methods (we call them actions) are rendered as menu items or links.

It’s worth contrasting this with other tools that can generate CRUD applications. First,
the UI is generated at runtime, not compile-time (there’s no “generate scaffolding”
command to run). Second, exposing object actions means this is more than just simple
CRUD style applications. Third, with Apache Isis we always starts with the domain layer.
Some other tools start with either a database schema (ie reverse engineering a data
model), or start with the presentation layer (where the domain model can end up as a
2nd class citizen as the domain expert gets distracted by UI concerns).

12

The remaining three slides provide some background on the DSP system. You’re free to
interweave these additional slides into the main material if you wish, or just read them
for a little additional context.

DSP is the Irish Government’s Department of Social Protection, responsible for the
payment of social welfare payments, such as pensions and child benefit. These are two
of the largest benefits, but in all the department administers ~45 benefits. Of these,
currently around 12 of these (including pensions and CB) are administered by a naked
objects system (running on .NET). As such, the system is a substantive and highly
successful “existence proof” of the validity of the naked objects pattern.

This slide talks about why the DSP chose a naked objects system in the first place,
couching the answer in terms of letting the department become more agile. The system
has indeed demonstrated agility on all three levels; for example:
- strategic agility was demonstrated by a new “Early Childcare Supplement” (ECS)

benefit that was announced in the Dec 2005 budget, and went live 9 months later, in
Aug 2006. Similarly, new requirements in the Nov 2008 budget went live in Feb 2009
and in Apr 2009.

- operationality agility continues to be demonstrated by the OOUI; Richard Pawson’s
thesis includes details of this in terms of end-iuser interviews

- technical agility relates to the ability to incorporate new technologies, such as
domain service implementations for SMS, Barcoding, printing etc; use of BizTalk to
integrate with other departments, integration with varied legacy systems for
unemployment benefit handling etc.

13

As mentioned on the previous slide, the DSP administers ~45 schemes, of which ~12
now run on naked objects system. The long-term plan is to support all systems via
naked objects (in some cases wrapping legacy systems, in others porting the
functionality over).

The system comprises:
- a common BOM (business object model), that acts as a shared kernel for the core

concepts such as customer, scheme, payment, officer, auditing, workflow and such
like.

- scheme specific “BOMs”, that provide the business rules for the various schemes
administered (pensions, child benefit, unemployment benefit, bereavement grant,
household benefits, free travel etc etc)

- a technical platform that extends naked objects framework for persistence, remoting,
security etc

- domain services that integrate with other systems, technologies and departments

Domain driven design
- the common BOM consists of 120 classes, 60000 lines of code, written by 2 people
- pensions BOM is comparable size; written by 3 people
- extreme reuse:

- child benefit domain model reimplemented on SDM platform
- original application >50,000 lines of code
- domain logic for replacement amounts to just 957 lines of code

Agile development
- monthly releases and planning games
- automated regression testing via FitNesse.NET and Nunit
- continuous integration

Some other facts and figures:
- >1000 end-users, working numerous local offices across the country
- €5bn paid out annually
- >100Gb database

Page 14

Closing slide, with some additional resources on Naked Objects for those interested.

Useful background reading is Richard Pawson’s original thesis on Naked Objects. There’s
also Dan Haywood’s book, Domain Driven Design using Naked Objects. This relates to
the Naked Objects framework circa 2009, but applies more-or-less unchanged to Apache
Isis (the main difference is that the applib package names have changed).

For those who work on the .NET platform, the Naked Objects for MVC platform may be
of interest. This also implements the Restful Objects spec.

