Meecrowave Configuration

Meecrowave

configuration

is centralized in

org.apache.meecrowave.Meecrowave$Builder class.

Here are the main properties:

Name

antiResourceLocking

cdiConversation
clientAuth

conf

connectors

contextConfigurers

cxfServletParams

defaultSSLHostConfigName

deleteBaseOnStartup

dir

host
http2
httpPort
httpsPort

initializeClientBus

initializers

injectServletContainerInitializer

jaxrsAutoActivateBeanValidation

jaxrsDefaultProviders

jaxrsLogProviders
jaxrsMapping
jaxrsProviderSetup

jaxwsSupportIfAvailable

jsonbBinaryStrategy

Description

Should Tomcat anti resource locking feature be
activated on StandardContext.

Should CDI conversation be activated
HTTPS keystore client authentication
Conf folder to synchronize

Custom connectors

Configurers for all webapps. The
Consumer<Context> instances will be applied to
all deployments.

Init parameters passed to CXF servlet

The name of the default SSLHostConfig that will
be used for secure https connections.

Should the directory be cleaned on startup if
existing

Root folder if provided otherwise a fake one is
created in tmp-dir

Default host
Activate HTTP 2
HTTP port
HTTPS port

Should the client bus be set. If false the server
one will likely be reused.

ServletContainerInitializer instances.

Should ServletContainerlnitialize support
injections.

Should bean validation be activated on JAX-RS
endpoint if present in the classpath.

If jaxrsProviderSetup is true the list of default
providers to load (or defaulting to johnson jsonb
and jsonp ones)

Should JAX-RS providers be logged
Default jaxrs mapping
Should default JAX-RS provider be configured

Should @WebService CDI beans be deployed if
cxf-rt-frontend-jaxws is in the classpath.

Should JSON-B provider prettify the output

Name

jsonbEncoding
jsonbIJson
jsonbNamingStrategy
jsonbNulls
jsonbOrderStrategy
jsonbPrettify
jsonpBufferStrategy

jsonpMaxReadBufferLen

jsonpMaxStringLen

jsonpMaxWriteBufferLen

jsonpPrettify

jsonpSupportsComment

keepServerXmlAsThis
keyAlias

keystoreFile
keystorePass
keystoreType
loggingGlobalSetup

loginConfig

meecrowaveProperties

pidFile

properties

quickSession

realm
roles

scanningExcludes

scanningIncludes

Description

Which encoding provider JSON-B should use
Should JSON-B provider comply to I-J]SON
Should JSON-B provider prettify the output
Should JSON-B provider serialize nulls
Should JSON-B provider prettify the output
Should JSON-B provider prettify the output

JSON-P JAX-RS provider buffer strategy (see
johnzon)

JSON-P JAX-RS provider read buffer limit size
(see johnzon)

JSON-P JAX-RS provider max string limit size
(see johnzon)

JSON-P JAX-RS provider write buffer limit size
(see johnzon)

Should JSON-P JAX-RS provider prettify the
outputs (see johnzon)

Should JSON-P JAX-RS provider support
comments (see johnzon)

Don’t replace ports in server.xml
HTTPS keystore alias

HTTPS keystore location

HTTPS keystore password
HTTPS keystore type

Should logging be configured to use log4j2 (it is
global)

web.xml login config

Loads a meecrowave properties, defaults to
meecrowave.properties.

A file path to write the process id if the server
starts

Passthrough properties

Should an unsecured but fast session id
generator be used

realm
In memory roles

A forced exclude list of jar names (comma
separated values)

A forced include list of jar names (comma
separated values)

Name

scanningPackageExcludes

scanningPackagelncludes

securityConstraints
serverXml
sharedLibraries
skipHttp

ssl

sslProtocol
stopPort

tempDir

tomcatAccessLogPattern

tomcatAutoSetup
tomcatFilter

tomcat]JspDevelopment

tomcatNoJmx

tomcatScanning

tomcatWrapLoader

useLog4j2JulLogManager

useShutdownHook

useTomcatDefaults

users

watcherBouncing

webResourceCached

webSessionCookieConfig

webSessionTimeout

Description

A forced exclude list of packages names (comma
separated values)

A forced include list of packages names (comma
separated values)

web.xml security constraint
Provided server.xml

A folder containing shared libraries.
Skip HTTP connector

Use HTTPS

HTTPS protocol

Shutdown port if used or -1
Temporary directory

Activates and configure the access log valve.
Value example: '%h %]l %u %t "%r" %s %b
"%{Referer}i" "%{User-Agent}i"

Add default servlet
A Tomcat JarScanFilter

Should JSP support if available be set in
development mode

(Experimental) Should Tomcat MBeans be
skipped.

Should Tomcat scanning be used
(@HandleTypes, @WebXXX)

(Experimental) When deploying a classpath
(current classloader), should meecrowave wrap
the loader to define another loader identity but
still use the same classes and resources.

Should JUL logs be redirected to Log4j2 - only
works before JUL usage.

Use shutdown hook to automatically stop the
container on Ctrl+C

Should Tomcat default be set (session timeout,
mime mapping etc...)

In memory users

Activate redeployment on directories update
using this bouncing.

Cache web resources

Force the cookie-config, it uses a properties
syntax with the keys being the web.xml tag
names.

Force the session timeout for webapps

Name Description

webXml Global web.xml
ﬁ the class also provides some helper methods for programmatic use case like
randomHttpPort() to automatically set an available port to httpPort.

You can also write a Consumer<Builder> to configure programmatically the Builder and make it
active using addCustomizer (Consumer<Builder>).

Example:

new Meecrowave(new Builder() {{
randomHttpPort();
setTomcatScanning(false);
setTomcatAutoSetup(false);
setRealm(new JAASRealm());
user("admin", "secret");

)
.bake()

await();

CDI SE API

CDI 2.0 introduces a "SE API" for CDI. It looks like:

try (final SeContainer container = SeContainerInitializer.newInstance()
.disableDiscovery()
.addBean(Classes(Configured.class)
.initialize()) {
// your main

Meecrowave inherits from OpenWebBeans SE API implementation and therefore this SE API will
work out of the box.

It is implemented as a bake() and you can still access the Builder configuration or even Meecrowave
itself if needed:

try (final SeContainer container = SeContainerInitializer.newInstance()
.disableDiscovery()
.addBean(Classes(Configured.class)
.initialize()) {

// use the configuration to access extensions, custom config or even server port
Configuration config = container.select(Configuration.class).get();
// or

Meecrowave.Builder config2 = container.select(Meecrowave.Builder.class).get();
int port = config.getHttpPort();

// default wait implementation relying on tomcat one
container.select(Meecrowave.class).get().await(); // wait for the program to be
killed (tomcat.await() equivalent)

}
All the configuration of meecrowave is still available using properties:

try (final SeContainer container = SeContainerInitializer.newInstance()
.addProperty("nameOfTheProperty", instanceInTheRightType)
Jinitialize()) {
container.select(Meecrowave.class).get().await();

The type should match the type expected by the Builder instance. Note you can also just pass
directly a Builder instance as value (the property name is not important) if you want something
preconfigured:

try (final SeContainer container = SeContainerInitializer.newInstance()

.addProperty("meecrowaveConfiguration”, new Meecrowave.Builder().randomPort())
.initialize()) {
container.select(Meecrowave.class).get().await();

Automatic configuration

The org.apache.meecrowave.Meecrowave$Builder class also provides loadFromProperties(Properties)
and loadFrom(String). The last one uses the parameter to locate a propertiers file (file path or at
classpath) and delegate the processing to the first one.

loadFromProperties(Propertiers) loads the configuraton from the properties.
The matching is alsmot 1-1 with previous table excepted for these entries:

o if httpPort is -1 then randomHttpPort is called

* properties.x=y will set the property (properties entry) x with the value y

* users.x=y will create the user x with the password y

* roles.x=y will create the role x with the users y (comma separated if multiple users)
» cxf.servlet.params.x=y will force the CXF servlet init parameter x to be y

* connector.x=y will pass the property x to be y on the connector. See the Apache Tomcat 9
Connector Documentation

» connector.attributes.x=y will use the property x with value y to create the connector (set a
property on the instance of “org.apache.catalina.connector.Connector’) See the Connector
attributes referenced in the Apache Tomcat 9 Connector Documentation

* valves.* will be used to create valves. This prefix must be followed by a valve identifier then
you can use the built-in virtual attributes. These ones are _order to sort the valves (natural
order) and _className to specify the class to instantiate. Finally you can use any dotted attribute
to configure the valve (see example after this list).

* realm=y will create an instance of y (qualified name of the class) as realm

* realm.x=y will set x property to y - needs previous property to be set

* login=will create a custom org.apache.meecrowave.Meecrowave$LoginConfigBuilder
* login.x=y will customize previous instance with x property

e securityConstraint= will create a custom
org.apache.meecrowave.Meecrowave$SecurityConstaintBuilder

» securityConstraint.x=y will customize previous instance with x property
» configurationCustomizer=y will create an instance of y to customize the configuration

» configurationCustomizer.x=y will set x to y for the customizer

Out of the box, any Builder instance will read meecrowave.properties.
meecrowave.properties uses CLI names (without the leading --). It loads all
available files from the classpath, they are merged using configuration.ordinal
key (exactly like Apache OpenWebBeans does for its configuration). It also

Q supports configuration.complete=[true|false] which enables a single file to host it
with the true value and will consider this file as the merged result of all potential
files found in the classpath. It is useful to avoid an implicit merging and can
typically be used in conf/meecrowave.properties in bundle mode. See CLI page for
the list.

Valve configuration

Here is an example to configure the RemoteIpValve and LoadBalancerDrainingValve using the
meecrowave.properties syntax (which means it uses the properties. prefix to specify properties,
drop it if you use the CLI options):

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
http://openwebbeans.apache.org/meecrowave/meecrowave-core/cli.html

properties.valves.remote-ip._order = 1

properties.valves.remote-ip._className = org.apache.catalina.valves.RemoteIpValve
properties.valves.remote-ip.internalProxies = 192\\.168\\.0\\.10\|192\\.168\\.0\\.11
properties.valves.remote-ip.remoteIpHeader = x-forwarded-for
properties.valves.remote-ip.proxiesHeader = x-forwarded-by
properties.valves.remote-ip.trustedProxies = proxy1|proxy2

properties.valves.draining._order = 2
properties.valves.draining._className =
org.apache.catalina.valves.LoadBalancerDrainingValve
properties.valves.draining.redirectStatusCode = 307
properties.valves.draining.ignoreCookieName = draining-action
properties.valves.draining.ignoreCookieValue = skip

This will define the remote-ip and draining valves in this order with the configuration defined
thanks to the properties not having an underscore at the beginning of their name.

Logging

Meecrowave relies by default on Log4j2 (see http://logging.apache.org/log4j/2.x/). By default it uses
an internal configuration which is overridden by standard log4j mechanism.

Passwords/Secrets

For the configuration requiring to be ciphered you can implement
org.apache.meecrowave.service.ValueTransformer

public class MyTransformer implements ValueTransformer {
@0verride
public String name() {
return "mine";

}

@0verride
public String apply(final String encodedPassword) {
return;

}

0 this code being executed before the container starts you can’t use CDI there.

To register your implementation just put the fully qualified name of your transformer in META-
INF/services/org.apache.meecrowave.service.ValueTransformer.

Then to use it set the value to decode:mine:encodedvalue. General pattern is: decode:<transformer
name>:<value before decryption>

http://logging.apache.org/log4j/2.x/

Note that by default the same ciphering algorithm than in TomEE is available (Static3DES).

This syntax is usable on the command line and in meecrowave.properties.

Programmatic customization

org.apache.meecrowave.Meecrowave$ConfigurationCustomizer can be wused to customize the
configuration programmatically before startup. It will take the Builder as parameter and you can
change it at that moment.

org.apache.meecrowave.Meecrowave$InstanceCustomizer can be used to customize the configuration
programmatically before startup. It will take the Tomcat as parameter and you can change it at that
moment. This is very useful to automatically add valves and things like that.

	Meecrowave Configuration
	CDI SE API
	Automatic configuration
	Valve configuration

	Logging
	Passwords/Secrets
	Programmatic customization

