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Overview

• Status of the Aqua Port
▪ what has been accomplished

• Development
▪ Specifics of a Productivity Suite
▪ Typical Problems of a Port
▪ Code Refactoring

• Contributing
▪ as a normal user
▪ as expert
▪ as developer
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What has been accomplished

• The Aqua Port was now officially released with 
OpenOffice.org 3.0

• Based on OpenOffice.org X11 for Mac OSX
project that started about five years ago

• Functionality matches and exceeds other ports
• Good system integration
• User Interface is conceptually a cross-platform port
• Extensions work nicely
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More Technical Details

• Mac OSX 10.4 and newer required
• Cocoa vs. Carbon
• 64bit vs. 32bit, x86 vs. PPC
• The port has been accomplished almost exclusively 

by extending OOo's cross-platform layer code
▪ Application development on that platform is usually 

specifically for that system
▪ a pragmatic approach

• Better accessibility than competitors
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Text status

• Coretext vs. ATSUI
• Justified Text
• Vertical Writing
• Beyond the unicode baseplane
• BiDirectional Text
• PDF-export
• Advanced Typographic Font Features
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Development

• Specifics of a Productivity Suite
▪ Long-Livedness
▪ Compatibility
▪ View Independence

• Typical Porting Problems
▪ Multi-Platform vs. Optimal Integration

• Code Refactoring
▪ Why is it needed?
▪ A successful recipe
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Porting Approaches

• Top-Down
▪ Allows a clean and modern design
▪ Everybody likes rewritten code

• Bottom-Up
▪ Getting things done
▪ Don't impact other ports
▪ Efficient code reuse
▪ Less Regressions
▪ Ready for stabilization branches
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Careful Refactoring (1)

• Understand new requirements
• Understand existing interfaces+code
• Blackbox the obsoleted code
• Understand the existing use cases
• Sanitize the blackbox's interface
• Reuse the old code for implementing the sanitized 

interface
• Implement obsoleted interfaces with the sanitized 

ones



9

Careful Refactoring (2)

• Replace obsoleted code
▪ make old/new codepaths easily switchable

• Extend the sanitized interface
▪ can often be merged into the existing interface

• Make other layers use the sanitized interfaces
▪ eventually add helper methods

• Remove the obsoleted parts of the old interface
➔ The cleaner interface helps a lot with porting
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Careful Refactoring: An Example

• XOR is very difficult to implement in Quartz
for a good reason:
the concept of directly messing with pixel bits has 
been obsolete for a long time already!

• Why was it still used?
It is a clever trick to implement complex clipping on 
graphics systems that have minimal capabilities

Example: Polygon Clipping via XOR trick
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The XOR Example (2)

How does the obsolete 
implementation trick work:
a)Enable XOR drawing mode
b)Draw the background
c)Enable BLACK drawing mode
d)Draw the clipping polygon
e)Enable XOR drawing mode
f) Redraw the background as in b)
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The XOR Example (3)
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The Need to Refactor

• When interfaces do not suffice
• Often a result of missing separation of interface and 

implementation
▪ implementation trick as interface
▪ the implementation trick becomes obsolete

• Different approach to fixing depending on whether 
the project is in an early or a stabilization phase

A different kind of bug



14

Implementation vs. Interface

• Bitmap as array of pixels
▪ the XOR example
▪ color space, dithering
▪ previews, extracts, etc.

• Clipping polygon vs clipping rectangles
• Unicode codepoint vs. uint16/uint32
• a modern example

The root cause of many problems
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Implementation vs. Interface

• #10 0x1fa901a6 in 
std::for_each<__gnu_cxx::__normal_iterator<rtl::Reference<canvas::Sprite> const*, 
std::vector<rtl::Reference<canvas::Sprite>, std::allocator<rtl::Reference<canvas::Sprite> > > 
>, boost::_bi::bind_t<void, void (*)(OutputDevice&, basegfx::B2DPoint const&, 
rtl::Reference<canvas::Sprite> const&), 
boost::_bi::list3<boost::reference_wrapper<VirtualDevice>, 
boost::reference_wrapper<basegfx::B2DPoint const>, boost::arg<1> (*)()> > > 
(__first={_M_current = 0x1f779120}, __last={_M_current = 0x1f779124}, __f={f_ = 
0x1fa5d28c <vclcanvas::(anonymous namespace)::spriteRedrawStub2(OutputDevice&, 
basegfx::B2DPoint const&, rtl::Reference<canvas::Sprite> const&)>, l_ = 
{<storage3<boost::reference_wrapper<VirtualDevice>,boost::reference_wrapper<const 
basegfx::B2DPoint>,boost::arg<1> (*)()>> = 
{<storage2<boost::reference_wrapper<VirtualDevice>,boost::reference_wrapper<const 
basegfx::B2DPoint> >> = {<storage1<boost::reference_wrapper<VirtualDevice> >> = {a1_ = 
{t_ = 0x1f769a30}}, a2_ = {t_ = 0xbfffe578}}, <No data fields>}, <No data fields>}}) at 
/usr/include/c++/4.0.0/bits/stl_algo.h:158rn example

A modern example
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Help to improve
• As a user

▪ use it
▪ find problems
▪ isolate problems

• As an expert
▪ provide expertise and suggestions

• As a developer
▪ find the root cause in the code
▪ provide a patch to fix the root cause
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Isolating problems

• make a problem reproducable
• reduce the test case to be obvious and minimal

▪ find the point where the problem starts/goes away

• provide a screenshot for visual problems
• submit a crash report for stability problems
• test it with other versions
• test it on other platforms
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TODOs

• More Integration
• Smoother Graphics
• Better Performance
• Printer Pull Model
• Better PDF-export
• Apple Script



Questions & Answers




