
1

YOU DON'T LOVE ME
YET

●Stephan Bergmann
–Software Engineer
●Sun Microsystems, Inc.

1

2

YOU DON'T LOVE ME YET
―Roky Erickson

– The story so far:
— What has changed?
— Why did you do that?
— And now its broken!
– The road ahead

2

3

OpenOffice.org 3

• ...comes in three layers:
> Top layer is brand specific (plain OOo, BrOffice,

StarOffice, ...).
– The user should only have to interact with this layer.

> Middle layer is generic OOo basis.
– The bulk of the files goes here.

> Bottom layer is UNO Runtime Environment (URE).
– Could serve other applications, too.

• Multiple brand layers (OOo 3, SO 9) share a basis
layer.

• Multiple basis layers (3.0, 3.1) share a URE layer.

4

Layers? What Layers?

• For the average user, nothing changes:
> OOo still comes as a single installation set.
> All the executables are still found in

C:\Program Files\OpenOffice.org 3\program.
> It still sometimes behaves silly and crashes.

5

Oh, Layers!

• Only when you dig deeper than the graphical
frontend will you notice the changes.
> “Where is that libvclli.so I want to replace with a freshly

built bugfix version?”
> “I can no longer debug soffice.bin from msdev!”
> “My Python application that starts OOo in the

background no longer works. What a shame.” (“Yes, I
know. I'm sorry.”)

> “I told it to install to C:\MyOOo. It actually installs to
C:\MyOOo\OpenOffice.org 3. Keep it short, man!”

> ...

6

Why?

• A simple, modular code base would have many
benefits:
> If you want to use only part of it, you should also only

need to build, test, ship, and install part of it.
> If you produce multiple products, you should build, test,

ship, and install common parts just once:
– Different products like URE, OpenOffice.org, OpenOffice.org

SDK, BrOffice, StarOffice, StarOffice SDK, StarSuite contain
common parts.

– Some parts are independent of platform (unxlngi6, unxsols4,
wntmsci10, etc.).

– Some parts are independent of locale (en-US, de, ja, etc.).
– Some parts do not change across versions.

(from OooCon ’07)

7

Because!

• Concrete packages contain full paths, and some are
shared across products: the shared parts can only
have one path
> no way to have the basis in /opt/openoffice.org3.0 or

/opt/staroffice9

• But can't we keep everything together?
> multiple products would be thrown together in one

directory tree
– products could not have files with identical names (e.g., soffice)
– the products' names could not be reflected in the single tree's

pathname

(from FOSDEM ’08)

8

A Means to an End

• It is important to remember that splitting OOo into
three layers was a means to an end, not an end in
itself.
> Platforms that have no requirement for the split do not

need the split (Windows, Mac OS X).
> However, it is also considered important to keep OOo

and its source code as uniform as possible across the
various platforms.

9

The Good, the Bad, and the Ugly

• On average Unix (Linux, Solaris: ELF, packages like
RPM, DEB), the split works well.
> Ready to reap the benefits.

• On Mac OS X with a single dmg installation file,
there comes no benefit from splitting.
> Still internally has three layers (for consistency).
> Move to other packaging formats in the future?

• On Windows, splitting apparently works against the
platform.
> DLL hell, here we come!

10

Packages (Linux, Solaris)

• Different products (OOo, BrOffice, StarOffice, ...)
share packages with identical names and identical
content.
> At the moment, packages are still built multiple times.
> At the moment, should-be identical packages sometimes

still vary slightly.

• I just discovered Novell publishes identically named
packages with (I assume) slightly different content.
> Can cause problems if you install multiple products on

one machine.
> How shall we handle this?

11

ELF Libraries (Linux, Solaris)

• Symbolic links between layers (basis-link, ure-link).
• RPATH $ORIGIN/../basis-link/program and

$ORIGIN/../ure-link/lib in OOo ELF files will find
libraries.

• Extension UNO components are guaranteed to
have available preloaded URE libraries without
having to specify where to find them.

12

Mac OS X Libraries

• Symbolic links between layers (basis-link, ure-link).
• @loader_path/../basis-link/program and

@loader_path/../ure-link/lib in Mach-O files will find
libraries.

• Extension UNO components are guaranteed to find
URE libraries through @executable_path/urelibs
symbolic link.

13

Windows Libraries

• Fake symbolic links between layers (basis-link, ure-
link text files).

• Wrapper executables extending PATH ensure EXEs
and DLLs (including extension UNO components)
find libraries.
> Prior experiments with mis-using /DELAYLOAD hooks

failed.
> Extending PATH fails when system directories happen to

contain DLLs with same names (C:\Windows\libxml2.dll
comes before URE layer libxml2.dll from PATH in
Windows DLL search order).
– Mainly a problem with external DLLs (libxml2.dll, python23.dll).

14

Windows Assemblies

• An assembly bundles one or more DLLs.
> It has a unique tag (name, version, publicKeyToken).
> A DLL/EXE has a manifest declaring that it depends on a

specific assembly version.

• Private assemblies are part of an application
installation.
> They must reside in the same directory as the EXE.

• Shared side-by-side assemblies are available
globally.
> They must reside in C:\Windows\WinSxS.

15

Shared Side-by-Side Assemblies

• Turn libxml2.dll into a side-by-side assembly:
> Add a libxml2.manifest stating “this is version 1.0.0.0 of

libxml2.dll used by OpenOffice.org.”
> Specify /MANIFESTDEPENDENCY when linking against

libxml2.dll.
> When installing OOo, install libxml2 assembly into

C:\Windows\WinSxS, instead of installing libxml2.dll into
C:\Program Files\OpenOffice.org 3\URE\bin\libxml2.dll.
– We already do that for the Microsoft.VC90.CRT assembly.

> During building (and for smoketest OOo installations
done while building), ensure libxml2 assembly is present
as private assembly in every directory where it is
needed.

16

Really!?

• Do that for all external DLLs (< 40).
• Things become more and more baroque.
• Are we working against the platform? (An

executable and its DLLs typically are in the same
directory on Windows.)

• Or is this the way the external libraries should
already have been packaged in the first place, by
their respective maintainers?

17

Layer Free Windows?

• For some time, we shared layers on Windows, too.
> Abandoned it as it had no real benefits.
> Now every product contains private copies of all three

layers (similar to Mac OS X).

• Lumping together the three layers would not be
trivial, however.
> For example, unify $URE_LAYER/bin with

$BASIS_LAYER/program without symbolic links!

• Cross-platform consistency has its merits, too.

18

Was It Worth the Pain?

• If nothing else, it forced the code to be more explicit
about where it finds things.
> Similar to the infamous Java class path cleanup (which

unearthed gems like Thread.getContextClassLoader).
> Still, I at least consider being explicit a Good Thing. (“You

pedantic party-pooper!”)

• After all, it was a necessary first step for the specific
way to modularity we chose to walk on.

19

Explicit dlopen

• dlopen(“foo”) with no slash in filename works in
implementation-defined manner:
> Relative to calling code's location on Linux, Solaris.
> Relative to current working directory on Mac OS X.

• rtl_loadModule(“foo”) calls (i.e., dlopen(“foo”) calls)
in OOo source code failed for Mac port.
> Mac port added complicated patch to rtl_loadModule.

• Calls failed on all platforms after layer split.
> rtl_loadModule now requires a full path.
> No complicated patch for Mac OS X needed any more.

20

Onwards

• Get Windows DLL handling under control.
• Reorganize the build process so that packages for

multiple products are only built once.
> That is, finally bring in the harvest.

• Reorganize the build process so that independent
parts can be built independently.
> Can ease the experience of working on OOo code for

newcomers and experts alike.
> Novell is also working on this.

21

I LOVE YOU SO MUCH
IT HURTS

―Floyd Tillman

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

