

Universal I18n Framework
for Office Applications

Technical Overview

Dieter Loeschky, Staff Engineer

Shanmugam Senthil, Member of Technical Staff

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
1 (800) 786.7638
1.512.434.1511

Universal I18n Framework for Office Applications

18th International Unicode Conference 2 Hong Kong, April 2001

Copyrights and Trademarks

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, California 94303, U.S.A. All rights reserved.

This documentation is distributed under licenses restricting its use. You may make copies of and redistribute it, but
you may not modify or make derivative works of this documentation without prior written authorization of Sun and its
licensors, if any.

Sun, Sun Microsystems, the Sun logo, Sun Webtop, StarSuite, StarOffice, the StarOffice logo, Java, JavaBeans,
JavaScript, and the Java Coffee Cup are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

UNIX ® is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Universal I18n Framework for Office Applications

18th International Unicode Conference 3 Hong Kong, April 2001

Contents
Contents ...3

Overview...5

StarSuite Architecture..6

System Abstraction Layer... 7

Operating System Layer ...7

Runtime Library...7

Standard Template Library..7

Visual Class Library ..7

Infrastructure Layer... 8

Virtual Operating System Layer ..8

Tools Libraries ..8

Universal Network Objects..8

Universal Content Broker ..11

Compound Objects ...11

Scripting and Basic Library ...12

Framework Layer.. 12

Application Framework Library..12

SVX Library...12

Application Layer .. 13

StarSuite Internationalization ...13

Transition from Single Byte Character to Unicode ..13

Old I18n Framework under Unicode ...14

Unicode-based I18n Framework Requirements..15

I18n Framework as UNO Component .. 15

Unicode 3.0 Support ... 15

Encapsulation ... 15

Universal I18n Framework for Office Applications

18th International Unicode Conference 4 Hong Kong, April 2001

Pluggable Locale Support .. 15

Collation.. 16

Number Formatter .. 16

Calendar ... 16

Break Iterator .. 16

StarSuite I18n Framework Architecture..17

Character Classification ..19

Locale Data...19

Break Iterator ..20

Transliteration ...20

Collation..21

Find / Replace...22

Customizing Locale Specific Modules..22

Adding a New Locale.. 22

Modifying Locale Behavior ... 23

I18n Framework is Universal and Extensible ..24

Conclusion...25

Reference ...25

Contacts..26

Acknowledgements..26

Universal I18n Framework for Office Applications

18th International Unicode Conference 5 Hong Kong, April 2001

Universal I18n Framework
for Office Applications

Abstract

Internationalization (i18n) of an application is complete only if any locale support can be added without
changing the application binary. Development platforms like win32® and Java® provide i18n APIs to
internationalize applications that will run on windows and Java platforms only. A cross-platform office
productivity application such as StarSuite® cannot use the i18n APIs provided by the underlying
platform because these i18n APIs are inconsistent and insufficient to support desktop applications. The
StarSuite I18n framework provides a rich set of i18n APIs to internationalize StarSuite applications using
the Universal Network Objects (UNO) component model. This i18n framework is platform-independent
and can run on any platform on which StarSuite is supported. The i18n framework is universally
accessible to any CORBA or COM components irrespective of their programming language via the
UNO remote bridges for CORBA and OLE.

Overview
StarSuite (the asian name of StarOffice®) is a complete, extensible, cross-platform
personal productivity application suite. It comes along with several productivity
applications such as StarSuite Writer for document authoring, StarSuite Calc for
spreadsheets, StarSuite Impress for presentations and StarSuite Draw for image
editing. Sun Microsystems has provided most of the source code of this product
through open source licensing. The open source project is called OpenOffice.org.

The whole StarSuite architecture is based on a layered approach. The layered
approach is one of the important facts to allow the easy porting of the technology to
a wide range of different system platforms. There are four well-defined layers, each
covering a special area of the functionality.

System Abstraction Layer
This layer encapsulates all system specific APIs and provides a consistent object-
oriented API to access system resources in a platform-independent manner.

Infrastructure Layer
A Platform-independent environment for building applications, components and
services is provided by this layer. It covers many aspects of an object-oriented API
for a complete object-oriented platform including a component model, scripting,
compound documents, etc.

Universal I18n Framework for Office Applications

18th International Unicode Conference 6 Hong Kong, April 2001

Framework Layer
To allow the reuse of implementations in different applications, this layer provides
the framework or environment for each application and all shared functionality like
common dialogs, file access or configuration management

Application Layer
All OpenOffice.org applications are part of this layer. The way these applications
interact is based on the lower layers.

StarOffice 5.2 is a single-byte application where components were built as shared
objects and linked to build a huge monolithic application. It supports most of the
European locales but not multi-byte locales such as Japanese, Chinese and Korean.
The current version StarSuite 6.0 uses Unicode in order to support all European,
Asian and BiDi languages. This article will discuss the details around the following
issues:

• The layered architecture that provides platform independence.

• Tutorial on UNO component model with an example.

• Migration of StarSuite from single-byte to Unicode.

• Universal Internationalization Framework.

• Tips to help localization developers to customize and extend StarSuite for
their market needs.

StarSuite Architecture

SFX

VCL STL RTL OSL

OS/ GUI

St
ar

Su
ite

 A
PI

Application
Layer

Framework
Layer

Infrastructure
Layer

System Abstraction
Layer

I18N SVX

VOS

TOOLS

SBL

UNO

SO

UCB

SW SC SD

Fig 1: StarSuite Architecture

Universal I18n Framework for Office Applications

18th International Unicode Conference 7 Hong Kong, April 2001

System Abstraction Layer
The System Abstraction Layer (SAL) abstracts the system level functions required
to run StarSuite. The SAL is divided into many modules. All platform-dependent
implementation takes place below this layer or is part of optional modules. In order
to port StarSuite to another platform, the SAL should be re-implemented with
platform-dependent code and recompiled with the rest of the modules. To reduce
the porting effort, the set of functionality provided by the SAL is reduced to a
minimal set available on every platform. It is not mandatory to port all SAL
modules to run StarSuite. Some modules like telephony and speech recognition are
optional. StarSuite can still run without these modules with limited functionality.
Also, for some systems the layer includes some implementations to emulate some
functionality or behavior. For example on systems where no native multi-threading
is supported, the layer can support so called user land threads. The SAL is made up
of the following modules.

Operating System Layer
The Operating System Layer (OSL) encapsulates all the operating system specific
functionality for using and accessing system specific resources like files, memory,
sockets, pipes, etc. The OSL is a very thin layer with an object-oriented API. In
contrast to the upper layer, this object-oriented API is a C-API. This allows easy
porting of this layer to different platforms using different implementation
languages. For embedded systems or Internet appliances, for example, an assembler
language can be used to realize the implementation.

Runtime Library
The Runtime Library (RTL) provides all semi-platform-independent functionality.
There is an implementation for string classes provided. Routines for the conversion
of strings to different character sets are implemented. The memory management
functionality resides in this module.

Standard Template Library
As generic container library, the Standard Template Library (STL) is used. It
supplies implementations for lists, queues, stacks, maps, etc.

Visual Class Library
The Visual Class Library (VCL) is one of the core libraries of OpenOffice.org
technology. The VCL encapsulates all access to the different underlying GUI
systems. The implementation is separated into two major parts. One is completely
platform-independent and includes an object-oriented 2D graphics API with
metafiles, fonts, raster operations and the whole widget set used by the
OpenOffice.org suite. This approach virtually guarantees that all widgets have the
same behavior independently of the GUI system used on the different platforms.

Universal I18n Framework for Office Applications

18th International Unicode Conference 8 Hong Kong, April 2001

The look&feel and the functionality of the widgets are also the same on all
platforms.

Because of this design, VCL does not encapsulate the native widgets or controls of
the underlying GUI system. The platform-dependent part implements a 2D-graphic
drawing canvas used by the platform-independent parts. This canvas redirects all
functionality directly to the underlying GUI system. Currently, there is
implementation for Win32, X-Windows, OS/2 and Apple Macintosh. The access to
the printing functionality, clipboard and drag&drop is also realized inside the VCL.

Infrastructure Layer
Virtual Operating System Layer

To make the usage of system resources like files, threads, sockets, etc. more
convenient, the Virtual Operating System layer (VOS) encapsulates all the
functionality of the operating system layer into C++ classes. The C++ classes offer
easy access to all system resources in an object-oriented way.

Tools Libraries
There are different small libraries forming a set of tool functionality. There is an
implementation for structured storages available. Other implementations provide a
generic registry, typesafe management and persistence of property data.

Universal Network Objects
In order to eliminate the complexities in integrating several StarSuite components,
Universal Network Objects (UNO) defines a communication model among
distributed objects. The Universal Network Objects (UNO) is an interface-based
object model (like COM or CORBA) that is used to integrate all StarSuite
components. The UNO is designed to be as efficient as COM with additional
features. The UNO object model defines interfaces with its own Interface
Definition Language (IDL). A UNO component can implement this interface in any
programming language like C++ or Java. The UNO component registers itself into
a platform-independent binary repository called the UNO repository against a UNO
service name. The UNO Runtime Environment (URE) locates, instantiates and
controls the life cycle of a UNO component requested by the UNO service name.
The URE uses the UNO repository to locate and instantiate the UNO components.
The URE can also locate and communicate with UNO objects instantiated on a
remote host. The URE can automatically marshal parameters if the target
component is developed using a different language or running on a remote host. If
the URE discovers that the target component is developed with the same language
and running under the same process, the interaction between them is the same as a
function call. If all StarSuite components are run in a single process, there is no
overhead in making a function call from one UNO component to another.

Universal I18n Framework for Office Applications

18th International Unicode Conference 9 Hong Kong, April 2001

UNO components can make use of other components developed with
CORBA/COM and vice versa using URE remote bridges for CORBA and OLE.
The UNO object model is network-aware so that the different StarSuite
components can be running in different machines and interacting seamlessly
without any special modification. This feature is the key architecture used in Sun
Webtop. Sun Webtop is the next generation of office productivity tools that run by
way of a browser and do not need to be installed on local machines. The client that
runs on the browser has a bare minimum of components to display the StarSuite
front end (like VCL) and the client interacts with the back-end server that runs
heavyweight components like StarSuite Writer using UNO. Sun Webtop aims to
supply Office Suite applications by using browsers and the Internet.

The key advantage of using UNO to develop all StarSuite components is the
flexibility to run the whole StarSuite application on a fat client as well as on a thin
browser without modifying the application binary. Even though the UNO was
developed for StarSuite, it can also be used independently outside StarSuite. The
UNO Development Kit (UDK)[3] provides a set of tools for developing a UNO
component, which can be platform-independent. The UDK has the following
components:

UNO IDL compiler – Parses IDL files and updates binary repository

cppumaker – Generates C++ header files from IDL

javamaker – Generates Java interface files from IDL

UNO Runtime Environment (URE) - Works on the binary repository to locate a
component to provide a specified service, performs parameter data marshalling if
the components are developed using different languages. It is bundled with VOS in
order to be able to develop platform-independent components.

regcomp, regview – Utilities to register a component in the binary repository and
view the contents of binary repository in plain text.

VOS library – The URE comes with a VOS library that abstracts most of operating
system calls, hence it makes it a lot easier to develop components using the UNO.
The UNO components are available to other CORBA/COM components and vice
versa through remote bridges. This feature makes StarSuite components accessible
to components with CORBA/COM.

All the components in framework layer and above are implemented as UNO
components. This helps to create a very flexible system and also the extension of
the system at runtime. The interaction between the components is the same; either
StarSuite runs as a monolithic application on the client or runs in Sun Webtop as a
client/server application. Developing a UNO object can be illustrated by a simple
example.

Universal I18n Framework for Office Applications

18th International Unicode Conference 10 Hong Kong, April 2001

Example- Develop a UNO component to convert from inches to centimeters and
vice versa and write another program that uses this UNO component.

Step #1 – Write the component interface using IDL.

module com {module sun { module star { module util
/* name space com.sun.star.util – uniquely identify the interface*/
interface convertMeasurement :com::sun::star::Xinterface
{

// Name of interface must be inherited from Xinterface
 float inchToMeter(float num);
 float meterToInch (float num);
 }

The interface name is convertMeasurement that is uniquely identified by name space
com.sun.star.util .

Step #2 – Use unoidl command to create/update UNO repository (say
applicat.rdb) with new interface

Step #3 – Assume that you decided to implement the interface in C++. Use
command cppumaker applicat.rdb org.openoffice.tools.ConvertMeasurement
IconvertMeasurement.hxx

The IconvertMeasurement.hxx looks like:

name com {name sun {name star { name util { //C++ namespace
class XconvertMeasurement : public com::sun::star::Xinterface {
 virtual salFloat inchoMeter (salFloat num) =0;
 //salFloat – abstract level of float;
 virtual salFloat meterToInch (salFloat num) =0;
}

Step #4 – Start your implementation by developing a C++ object that extends the
abstract class XconvertMeasurement and implements the pure virtual functions.

Step #5 – The component is registered against a UNO service name. Add the
following two C functions to your C++ component. The code is not complete for
more details refer to the UNO guide.

 void component_writeInfo() {
 registerKey (“MeasurementConverter”, “FooConverterImpl”)

}// This implementation is uniquely identified with name
fooConverterImpl in UNO repository, this function registers
FooConverterImpl against a UNO service name MeasurementConverter

::com::sun::star::uno::Reference<ConvertMeasurement> foo_builder () {
 return new ConvertMeasurement();
} // This function is C function acts as builder of ConvertMeasurement
object

void * component_getFactory(String implName) {
 if implName==”FooConverterImpl” {
 createSingleFactory(pServiceManager, implName, foo_builder);

Universal I18n Framework for Office Applications

18th International Unicode Conference 11 Hong Kong, April 2001

// let URE know foo_builder is the function that can construct
object FooConverterImpl
}

}

Step #6 – Compile the components and convert into DLL.

Step #7 – Use regcomp command to register the DLL into UNO repository. Regcomp

command calls the component_writeinfo function in the DLL with handle to
repository. The function registers the service name offered by the
ConvertMeasurement component against its own unique implementation name.

The development of the component is complete.

Step #8 – Develop a program

 Xmsf = <create a instance of URE>
 XI = xmsf -> createInstance (“MeasurementConverter”);
 // Load any interface that provides the service MeasurementConverter
 Reference<XmeasurementConverter> xm(XI, UNO_QUERY);

 Xm->inchToMeter (12.2);

When the application calls createInstance function with a UNO service name, the
URE searches the UNO repository and gets the object implementation name. The
URE loads the DLL and calls the function component_getFactory() to get the
builder for this component. Using the builder, the actual object is constructed and
returned. The object is constructed using the builder function in order to control the
lifecycle of the object. More details can be found in the UNO Developers Guide.
The UDK utilities can also be used to add or remove implementation of a service.
The calling program need not be recompiled even when the implementation of the
service is replaced with another component. Interfacing the components through a
component model helps isolate the components and eliminate complicated linking
dependency.

Universal Content Broker
The Universal Content Broker (UCB) allows all upper layers to access different
kinds of structure content transparently. The UCB consists of a core and several
Universal Content Providers that are used to integrate different access protocols.
The current implementation provides content for the HTTP protocol, FTP protocol,
WebDAV protocol and access to the local file system.

The UCB not only provides access to the content, it also provides the associated
meta-information to the content. Actually, both synchronous and asynchronous
modes of operation are supported.

Compound Objects
The Compound Object (SO) implementation provides the functionality for building
compound documents, in which, for example, a spreadsheet is embedded in a word-
processing document.

Universal I18n Framework for Office Applications

18th International Unicode Conference 12 Hong Kong, April 2001

The current implementation provides a platform-independent implementation of all
this functionality for compound documents and for embedding visual controls like
multi-media players or different kind of viewers. All the content of a compound
document is stored in a structured storage. The current implementation is
compatible to the OLE structure storage format. This allows access to OLE
compound documents on every platform where OpenOffice.org is available. On the
Microsoft Windows platform, the implementation interacts with the OLE services
and thus allows tight integration of all OLE-capable applications.

Scripting and Basic Library
The scripting functionality provided with StarSuite is a BASIC dialect featuring an
interpreter that parses the source statements and generates meta-instructions. These
instructions can be executed directly by the supplied meta-instructions processor or
can be made persistent in modules or libraries for later access. All functionality
supplied by the upper-level application components is accessed via a scripting
interface in the component technology. This helps ensure that new components
using the component technology can be fully scriptable without a huge amount of
effort.

The scripting interfaces are also implemented as components that enable easy
integration of other scripting languages. The interfaces provide functionality like
core reflection and introspection similar to the functionality of the Java platform.

Framework Layer
Application Framework Library

The Application Framework Library (SFX) provides an environment for all
applications. All functionality shared by all applications and not provided by any
other layer is realized here. For the framework, every visual application has to
provide a shell and can provide several views. The library provides all basic
functionality so only the application-specific features have to be added.

The framework is also responsible for content detection and aggregation. Template
management is provided here as well as configuration management. The
framework is related to the compound documents in some ways, because of the
functionality for merging or switching menu bars and toolbars. In addition, this
library makes it possible for applications to be customized.

SVX Library
The SVX library provides shared functionality for all applications not related to a
framework. Therefore, part of the library is a complete object-oriented drawing
layer which is used by several applications for graphic editing and output. Also a
complete 3D-rendering system is part of the drawing functionality.

Universal I18n Framework for Office Applications

18th International Unicode Conference 13 Hong Kong, April 2001

The common dialogs for font selection, find and replace, transliteration etc. are all
part of this library. Also, the complete database connectivity is realized here.

Application Layer
All applications such as the word processing application, spreadsheet application,
presentation application, drawing application, charting application, etc. form this
layer. All of these applications are realized as shared libraries, which are loaded by
the application framework at runtime. The framework provides the environment for
these applications and also provides the functionality by way of which these
applications can interact.

StarSuite Internationalization
In StarOffice 5.2, applications were monolithic and supported only single-byte
locales (western and eastern European). The StarOffice 5.2 i18n framework was
based on a class International with tables containing data for specific
language/country values. Separators (date, decimal, thousands,...), currency
symbols et al, were obtained by calls to methods like GetNumDecimalSep(). Class
International also provided methods for character classification, toUpper(),

toLower(), case insensitive StringCompare() and so on. The StarOffice 5.2 i18n
framework APIs supported single-byte only and linked locale data with the binary.
Since locale data was bound with binary data at the time of compilation, it was
necessary to recompile the product for any locale data modification.

The decision was made to use Unicode in StarSuite 6.0 in order to enable Western
European, Eastern European, Chinese, Japanese and Korean scripts with the new
i18n framework based on UNO. Migration was done in a phased manner with the
first step being to move the single-byte code base into Unicode, then continuing to
use the single-byte i18n framework with some special wrapper classes and finally
implementing the new Unicode-based i18n framework to replace the old one.

Transition from Single Byte Character to Unicode
StarOffice 5.2 was built on a single-byte character model and could not support any
multi-byte characters. Fortunately, character representation was done using C++
String class and was platform-independent. Another advantage is that over 80% of
the source code is system-independent. Hence, about 7 million lines of C++ code
was transitioned to Unicode in less than four weeks using the following approach:

Universal I18n Framework for Office Applications

18th International Unicode Conference 14 Hong Kong, April 2001

Renaming of the old class String
Renaming of class String to class ByteString and #define String ByteString.

Create a new class UniString
Implementation of a class UniString including conversions from and to class
ByteString for several character encodings. The class UniString was designed to
have the same methods and functionality as the class ByteString. Stream methods
were added to write ByteString from UniString and to read ByteString into
UniString.

Use macro switch String to UniString
By #define String UniString the entire StarSuite code uses UniString. Since
UniString class has all the methods of ByteString, the string class is replaced
seamlessly. All file reading/writing code had to be changed to explicitly read and
write ByteString. Stream operators << and >> were implemented for ByteString but
had not been implemented for UniString, in order to force every developer to use
the right methods.

Miscellaneous
The Resource system was enabled to read UTF-8 strings and display Unicode.
Additional Unicode file and clipboard I/O had to be implemented.

The macro conversion does not apply to all the modules. For example a token
parser’s (for example a RTF or HTML) tokens must not change to Unicode because
they always contain only ASCII characters. Only specific content or names must
change to Unicode.

StarSuite introduced new code converters to convert from Unicode to the legacy
code set and vice versa in order to load and save data in files like configuration
files, database files or other file formats, such as a user-defined binary format or a
third party format (text, RTF, WinWord, etc.).

Old I18n Framework under Unicode
The old i18n framework was based on tables that supported only single-byte
locales. It is necessary to have the new i18n framework based on the UNO
component model and able to support Unicode. Until the new i18n framework was
ready, special wrapper classes were used to interface with older i18n classes. The
special wrapper classes made it possible to move the source base to OpenOffice.org
with fully-enabled Unicode and allowed third party vendors to provide additional
locale support to StarSuite.

After successful completion of the first phase of using the old i18n framework with
the Unicode framework, the next phase of implementation of the full-featured,
comprehensive new i18n framework commenced. The following chapters discuss
the requirements, design architecture and flexibility of the framework.

Universal I18n Framework for Office Applications

18th International Unicode Conference 15 Hong Kong, April 2001

Unicode-based I18n Framework
Requirements

The requirements for this new i18n framework are based on extensibility,
pluggablity and simplicity (easy to use API and easy to modify locale data).

I18n Framework as UNO Component
StarSuite follows a layered architecture that allows the development of other
custom desktop applications. Even though the modules in the framework layer like
SVX are developed using C++, they are all UNO components and can potentially
be used by any component developed in any language. Hence, the I18n framework
should be developed as one or more UNO components, in such a way that the
custom application should be able to access the i18n framework APIs too.

Unicode 3.0 Support
StarSuite represents characters using Unicode in order to process multi-lingual
documents as well as process documents of any language irrespective of platform
locale. The I18n framework should provide correct character classification
mechanism to support the latest Unicode 3.0. Most of Unicode 2.0 implementations
tend to assume that characters can be represented by two bytes, but that does not
hold true any more. Each character may be represented using more than one code
point. The API design of the character classification should handle the situation of
multiple code points per character case correctly.

Encapsulation
All of the locale-sensitive behavior should be encapsulated in the i18n framework
APIs. For example, the user may want to search a document for a given string. The
search may include an option to perform case-insensitive search. Case-insensitive
searches make no sense for Japanese documents. For a Japanese document,
searching without distinguishing katakana-hiragana character differences makes
more sense. Such options are locale-sensitive and hence the i18n framework APIs
should encapsulate the locale-sensitive behavior to support additional locales in
StarSuite without changing the binary. StarSuite has near-future plans to support up
to 76 locales and it is becoming impossible to change the binary to support each
and every locale.

Pluggable Locale Support
Since StarSuite supports many locales, the locale support is prone to error. The
i18n framework should make the addition or modification of locale behavior easier.
If a customer finds a bug in the behavior of a specific locale, the i18n framework
should allow the removal of the buggy module and replace it with a new one

Universal I18n Framework for Office Applications

18th International Unicode Conference 16 Hong Kong, April 2001

without affecting the StarSuite binary. This is made easier by developing the
framework using UNO. The UNO tools can modify the UNO repository to change
the behavior of the locale.

Collation
A user can choose more than one collation algorithm for sorting data. This means
that the collation API must provide interface to query the collation algorithms
applicable for the locale and select one of them to sort. Collation options can be
locale-sensitive. For example in Japanese locale, the font names can be sorted
ignoring the difference between half-width and full width character. These options
are very locale-specific and cannot be specified in the application. The collation
API must provide some abstract options that map into locale-sensitive options.

Number Formatter
Much work had to be done on the number formatter since it makes extensive use of
locale data and number format codes provided by the i18n framework. New
keyword symbols, parsing methods and string output methods had to be developed
to enable it to make use of the new calendar API and to use different calendars in
the same format code. A special goal regarding calendar formats was not only the
ability to behave the same way as, for example, Japanese Microsoft Excel does but
also to extend the capabilities to be able to display any given combination of
calendar systems for a given locale as long as the locale data provides information
about them.

Calendar
The Calendar API provides an interface for performing date arithmetic based on
various calendars. Even though most of the locales by default support the
Gregorian calendar only, many locales support the Gregorian as well as other
calendars. For example, the Japanese locale supports the Emperor era calendar as
well as the Gregorian calendar. Hence, the calendar API should have the interface
to query the available calendars for any locale.

Break Iterator
The break iterator provides APIs to iterate a string by character, word, line and
sentence. Iterating character by character is essential for two reasons:

Cursor movement – UniString class has an array of code points. Since a character
can take more than one code point, cursor movement cannot be done by
incrementing/decrementing the index.

Complex text layout languages like Arabic, Thai, Indic scripts – In these scripts,
multiple characters combine to form a display cell. Cursor movement should be
calculated to jump a display cell instead of single character.

Universal I18n Framework for Office Applications

18th International Unicode Conference 17 Hong Kong, April 2001

Line breaking should be highly configurable in desktop publishing applications.
The line-breaking algorithm should be able to find a line break with or without
hyphenator. The line breaking API should support for some special characters that
are forbidden to at the end of the line or beginning of the line. The
character/word/line iteration algorithms are locale-sensitive and should be
pluggable.

StarSuite I18n Framework Architecture
I18n framework consists of several components namely Locale Data, Character
Classification, Collation, Calendar, Break Iterator and Transliteration and Search.
Each component of the framework is implemented as a UNO component. The
following figure shows the interaction between various components. The following
key architecture decisions have enabled this framework to meet all the
requirements.

Standard naming convention for UNO Service names
StarSuite defines the UNO service naming convention for each locale-sensitive
component. For example the service name convention for break iterator object is
com.sun.star.i18n.impl.<locale_name>.break iterator. Each locale-sensitive
component should be registered under the UNO service naming convention. If
StarSuite is run in the Thai locale, it looks for the UNO service
com.sun.staroffice.i18n.imp.th_TH.break iterator. Developers can register
their Thai break iterator module against the service name and have it automatically

Locale Description
in XML format

Locale Data

Calendar (stub)

Gregorian (default)

Japanese (pluggable)

Collator (stub)

Unicode (default)

Japanese (pluggable)

Transliteration (stub)

IGNORE CASE

IGNORE_WIDTH

Pluggable

Pluggable locales

Character classification (stub)

Unicode

Locale-sensitive (pluggable)

En, fr, de, ja
locale objects

UNO binding
Tool transformation Tool transformation

Fig 2: StarSuite I18N Framework Architecture

Universal I18n Framework for Office Applications

18th International Unicode Conference 18 Hong Kong, April 2001

loaded by StarSuite. By following the naming convention, any locale-sensitive
component can be plugged dynamically into the StarSuite binary repository. Hence,
without recompiling StarSuite, locale behavior can be enhanced as well as new
locales plugged in.

Fallback mechanism using stubs
Since each component in the framework is a UNO component, enabling a locale
requires having all locale-sensitive components (character classification, collator)
defined for the locale. It will be very difficult to develop all the components for
each locale as most of the locales have overlapping behavior. For example collation
in the en_US locale and en_CA locale are the same. This would result in a lot of
duplicated effort. The worst case would be if StarSuite is run in a locale that is not
supported and it will not run because of the unavailability of the locale-sensitive
modules. In order to overcome this limitation, each component has a stub object as
marked in the architecture diagram to provide this fallback functionality. Stub
modules provide a UNO service that is guaranteed to be available. All StarSuite
modules request the UNO service for the stub module and pass the locale
information. Stub modules attempt to locate the locale-sensitive module using the
UNO service naming convention. The fallback order is shown in the following
table.

Order Locale

1 <language>_<country>.<varient>

2 <language>_<country>

3 <language>

4 Default component – the name of the component is
directly coded in the stub

In case of the break iterator, for the fr_CA locale, it attempts to locate a break
iterator service for fr_CA. If it is unavailable, it attempts to locate a break iterator
for fr. If it is not available, it falls back on the default break iterator. This fallback
mechanism makes locale development easier. For example, the Spanish language
has about 35 locales but they all share one collator.

The naming convention and fallback mechanism simplifies locale development and
maintainence and hence achieves truly pluggable locales. Since the stub module is
always available and the stub module always falls back on known default
implementation, StarSuite does not fail to run in unsupported locales.

Character representation
StarSuite represents strings with an array if int16 (16 bit integer). All of the i18n
framework APIs are designed to avoid the assumption that one code point, i.e. int16,

Universal I18n Framework for Office Applications

18th International Unicode Conference 19 Hong Kong, April 2001

is a character. The i18n framework APIs do not accept int16 as a character
parameter. Instead a character is represented as a separate data type; it is
represented as a string with starting index. This representation allows multiple code
points per character and the i18n framework APIs can process the characters
accordingly. In the case of a Unicode specification upgrade, the i18n framework
code has to be changed but the application layer requires no changes.

Character Classification
This module provides interface for providing information about a character, like
isAlpha(), as well as converting characters into different categories, like toUpper(),
toLower() etc. These APIs accept UniString and startIndex as parameters to
represent a character like isAlpha(UniString str, int startIdx). The stub module
attempts to locate locale-sensitive UNO objects and uses the Unicode character
classification object as a fallback object. In StarSuite, character classification
modules are extensively used in parsing strings into tokens. In order to avoid
misuse of these functionalities, parsing functions are also added as part of the
interface. The parsing functions can tell basic tokens such as name or number from
a string.

Locale Data
This module provides language, country and cultural specific data, like currency
symbol, associated with any locale. It is cumbersome to write a UNO object for
each locale, i.e. writing C++ modules for locale data is not the preferred way of
providing locale data. In order to simplify the locale data UNO object development,
several tools are provided. The locale data can be defined in XML format. The
XML data file is then passed to an XML parser to generate C++ code which in turn
is compiled into a UNO object. It is not mandatory to define locale data in an XML
file but it is the recommended way of developing new locales in StarSuite.

The Locale Data module also provides additional information specifically required
for modules like StarSuite Writer and StarSuite Calc. One example could be that
StarSuite Calc allows number formatting in different ways. The number can be
formatted using different format codes. StarSuite Calc shows a list of formats the
user can use for any given locale and it retrieves the format code from this module.
Hence, the special format code for the Japanese calendar is shown only to Japanese
users and not to English users.

Universal I18n Framework for Office Applications

18th International Unicode Conference 20 Hong Kong, April 2001

Break Iterator
StarSuite does not make an assumption that one character is one code point and that
means that edit control components cannot just increment the index by one to
calculate the next cursor position. This module provides character or word iteration
APIs to calculate the next/previous cursor position. Word break algorithms for
locales such as Japanese require a dictionary lookup to identify a meaningful word.
Line break for edit components of StarSuite can be configured with any one or
more of the following options:

• Hyphenate.

• Forbid some set of characters to begin or end the line.

• Allow some punctuation marks to render even outside the margin.

Since StarSuite uses Unicode, it has capabilities to handle multi-lingual documents.
If a Japanese document is viewed with StarSuite Writer in an English locale, it does
not make any sense to apply English dictionary rules to the Japanese document. In
order to associate correct dictionary rules, this module also provides APIs to auto-
detect the script of the string. StarSuite currently has a break iterator that works on
Unicode as a default object loaded by stub. It also comes with a dictionary based
break iterator for Japanese, Chinese locales also.

Transliteration
Transliteration maps one character into another without understanding the sematics
of word or sentence, hence it should not be confused with translation. Character
level transliteration can be applied to some scripts which have multiple writing
systems like Japanese or Chinese. A typical example of transliteration would be to
convert a half width character into a full width character in Japanese. In StarSuite,
users of edit controls can select a block of text and convert it into another text using
this module. All the transliteration modules are UNO objects and are registered in
the UNO repository using a unique UNO service name. L10n developers list the
service names of transliteration modules applicable to the locale in the Locale Data
XML file. The transliteration stub module loads the list of available transliteraiton
modules from locale data and passes to edit control. Thus, users get to see the
transliteration module applicable to the default locale only. The transliteration
module IGNORE_CASE implements the Unicode case folding algorithm, which is
different from toUpper() or toLower() as these are locale-sensitive. Transliteration
can also be used as an option in the find and replace operation. In applications like
StarSuite Writer, users can perform a search with one or more options such as case
insensitive search, ignore Katakana/Hiragana and so on. Each of these options can
be mapped into a transliteration module. The search algorithm transliterates the
string first and performs the search for an absolute match. The transliteration API

Universal I18n Framework for Office Applications

18th International Unicode Conference 21 Hong Kong, April 2001

returns the transliterated string as well as the mapping table between source
character index and target index. If the search algorithm finds a match in the
transliterated string, it uses the mapping table to find the source string that matches.
The transliteration stub API allows the cascading of more than one transliteration
module.

Collation
Collation is used by many modules in StarSuite. Since collation algorithms are
locale-sensitive, each collation algorithm is registered under unique UNO service
name. The collation stub needs to be more sophisticated than just loading localized
modules because of its wide-spread use by various components. Collation usage
can be classified in two broad categories:

User-Invoked
The user selects data from a spreadsheet and invokes sorting through the GUI. The
users of the sorting dialog may select the sorting algorithm and the sort options like
case insensitive. The sorting algorithms available as options to end-user are locale-
sensitive, i.e. the German telephone number sorting algorithm is not applicable to
the Chinese user. The UNO service name of all collation algorithms applicable to a
given locale is listed in XML locale data. The collation stub provides a separate
API (listCollatorAlgorithms(locale)) which retrieves the list of collator algorithms
applicable to a locale from locale data.

Application-Invoked
StarSuite invokes collation modules for sorting font names, file names, auto
completion, auto correction and so on. Sorting the different data items need not be
strict. For example, the font names can be sorted insensitive to case in the en_US
locale but it can be different for a Japanese locale. These collation options can be
mapped into a transliteration module. Since collation options for sorting is locale-
sensitive, they are listed in the locale data under an abstract option. StarSuite
modules pass the abstract option to the collator stub and the collator stub looks in
locale data to find out the actual transliteration modules defined for the abstract
name and applies them before invoking the actual collator algorithm. For example,
StarSuite defines an abstract option called NAME_SORT which is used for sorting
font names and file names. The abstract option is mapped into CASE_IGNORE for
the English locale and IGNORE_WIDTH for the Japanese locale.

Universal I18n Framework for Office Applications

18th International Unicode Conference 22 Hong Kong, April 2001

Find / Replace
StarSuite currently supports three types of search algorithm, namely the absolute
search, regular expression search and approximate search. The absolute search
matches the string in a document. The absolute search provides options which can
be mapped into transliteration modules. The list of search options applicable for a
locale is listed in XML locale data.

Customizing Locale Specific Modules
All the components in the StarSuite I18n framework are UNO components. Hence
the i18n components can be easily removed or added into UNO repository without
modifying the StarSuite binary. Following the naming conventions for UNO
service, names ensures that the locale-sensitive components are picked up correctly.
The new i18n framework has been architected to make locale management simple.
This i18n framework allows other vendors to add new locales to support their local
market needs as well as enhance existing locale behavior with enhanced algorithms.
For example, vendors can add a new Greek locale to meet the needs of Greek
language users or add a better dictionary based word break algorithms for a
Japanese locale, add a new calendar to the Chinese locale and so on without
modifying the StarSuite binary.

Adding a New Locale
The effort needed to create new locale support varies with the complexity of the
locale. Regional L10N developers need to develop new locales to enable StarSuite
in the locales not supported by StarSuite. The following steps highlight the steps
involved in creating a locale.

Step #1: Locale data, Calendar, Collator, Break Iterator, Character classification are
mandatory to create a locale, transliteration modules are optional.

Step #2: Find out the number of calendars applicable to this locale. If it is just
Gregorian, it is already available in StarSuite. If any other calendar is necessary,
develop the module and register against unique UNO service name. Make note of
UNO service names of calendars.

Step #3: Check if you need any special break iterator module and character
classification module. StarSuite by default provides Unicode-based character
classification and break iterator. If that is not enough, develop them and register
them against the UNO service naming convention suggested by StarSuite.

Universal I18n Framework for Office Applications

18th International Unicode Conference 23 Hong Kong, April 2001

Step #4: Develop locale data in XML format. Locale data XML file requires
information about locale like currency symbol, format codes to be used etc. In
addition to this information, a list of collators to be used and a list of calendars
applicable for this locale should also be mentioned in the XML file

Step #5: Run the XML parser to generate C++ files

Step #6: Provide C functions component_writeinfo() and component_getfactory()
to register the locale data object, break iterator object and character classification
object.

Step #7: Compile the C++ files to generate Shared Objects or DLLs

Step #8: Identify the binary repository of StarSuite (usually it is named
applicat.rdb). Run the regcomp tool to register the DLL with applicat.rdb.

Modifying Locale Behavior
The following steps are useful for l10n developers who enhance StarSuite with
value added modules for existing locales. The example shows how to add the new
Japanese Emperor calendar in addition to an existing Gregorian calendar.

The interface for the calendar is same as the interface implemented for the calendar
stub.

Use the cppumaker utility to generate an interface header file from the UNO
repository of StarSuite (usually it is called applicat.rdb).

Implement the Japanese calendar overriding the virtual methods of the interface.

Write additional C functions componenet_info() and
component_getfactory() to register the component against a unique UNO
service name.

Calendar stub reads Locale Data to find available calendar for this locale and this
needs to be changed. Obtain the locale data in XML format, add the new calendar
entry listing the UNO service name of the Japanese calendar.

Use the XML parser to convert the XML file into a C++ file.

Compile the C++ file and generate the shared object for this locale.

Universal I18n Framework for Office Applications

18th International Unicode Conference 24 Hong Kong, April 2001

I18n Framework is Universal and
Extensible

The StarSuite I18n framework has been developed with desktop applications like
StarSuite Writer and Calc in mind. This Unicode-based StarSuite i18n framework
can be considered universal in that it can be used for any application for the
following reasons:

Platform-independent because it can be ported to any platform without any
modification.

C++ applications can use this framework.

Since the components are UNO-based, an application that is developed in any
programming language can make use of these APIs as long as the programming
language binding is supported by UNO.

Since URE comes with remote bridges for CORBA and OLE, the CORBA and
COM components can access this framework using the bridge.

No assumption made about character or string representation. The framework
works with various APIs of string.

This framework is extensible. L10n developers can add new locales or enhance
existing locale components to meet market requirements of StarSuite. This
framework uses minimal features of UNO and can be migrated with any other
interfaced component model like CORBA. The i18n framework uses String APIs
from StarSuite and does not make any assumption about the length of character or
string representation. Hence it can be easily ported to any application that may use
strings and characters different than StarSuite. Thus the framework is extensible for
future desktop and office application development and ideally suited for cross
platform C++ applications.

The source code of this framework is planned to be open-sourced without giving
out third party modules. Openoffice.org L10n developers can add new locales or
enhance existing locale behavior.

Universal I18n Framework for Office Applications

18th International Unicode Conference 25 Hong Kong, April 2001

Conclusion
StarSuite is not just an office application suite, it is a completely object-oriented
platform for developing any cross-platform desktop application (like mail client,
scheduler). The new StarSuite i18n framework is Unicode based and offers a rich
set of APIs and functionality. These APIs meet the requirements of existing
applications and are also generic enough to be used for any application developed
on this platform. It provides a rich set of APIs to encapsulate all localization
behavior inside the framework to serve i18n requirements of office suite products.
The i18n framework allows localization developers to add new locales or enhance
existing locale behavior to meet regional market requirements without modifying
the StarSuite binary. The framework API is accessible to CORBA/UNO
components, which makes the StarSuite i18n framework universal.

Reference
[1] Sun Microsystems announces availability of StarOffice[tm] source code on
OpenOffice.org
http://www.sun.com/smi/Press/sunflash/2000-10/sunflash.20001016.4.html
http://www.sun.com/staroffice/openoffice/

[2] OpenOffice home page
http://www.openoffice.org

[3] OpenOffice localization and internationalization project
http://l10n.openoffice.org/

[4] UNO home page
http://udk.openoffice.org

[5] Introduction to UNO
http://udk.openoffice.org/common/man/concept/unointro.html

[6] I18n API
http://api.openoffice.org/source/browse/api/offapi/com/sun/star/i18n/

Universal I18n Framework for Office Applications

18th International Unicode Conference 26 Hong Kong, April 2001

Contacts
Dieter Loeschky
Dieter.Loeschky@germany.sun.com

Shanmugam Senthil
Shanmugam.Senthil@eng.sun.com

Acknowledgements
The i18n framework architecture, design and APIs are team work done by a
number of developers. The authors of this presentation would like to thank Ralf
Hofmann, Thomas Hosemann, Juergen Pingel and Eike Rathke for their invaluable
suggestions in architecting and designing new APIs for this i18n framework.

