Mahout has a distributed implementation of Stochastic Singular Value Decomposition 1 using the parallelization strategy comprehensively defined in Nathan Halko’s dissertation “Randomized methods for computing low-rank approximations of matrices” 2.
Given an \(m\times n\)
matrix \(\mathbf{A}\)
, a target rank \(k\in\mathbb{N}_{1}\)
, an oversampling parameter \(p\in\mathbb{N}_{1}\)
,
and the number of additional power iterations \(q\in\mathbb{N}_{0}\)
,
this procedure computes an \(m\times\left(k+p\right)\)
SVD \(\mathbf{A\approx U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\)
:
Create seed for random \(n\times\left(k+p\right)\)
matrix \(\boldsymbol{\Omega}\)
. The seed defines matrix \(\mathbf{\Omega}\)
using Gaussian unit vectors per one of suggestions in [Halko, Martinsson, Tropp].
\(\mathbf{Y=A\boldsymbol{\Omega}},\,\mathbf{Y}\in\mathbb{R}^{m\times\left(k+p\right)}\)
Column-orthonormalize \(\mathbf{Y}\rightarrow\mathbf{Q}\)
by computing thin decomposition \(\mathbf{Y}=\mathbf{Q}\mathbf{R}\)
.
Also, \(\mathbf{Q}\in\mathbb{R}^{m\times\left(k+p\right)},\,\mathbf{R}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)
; denoted as \(\mathbf{Q}=\mbox{qr}\left(\mathbf{Y}\right).\mathbf{Q}\)
\(\mathbf{B}_{0}=\mathbf{Q}^{\top}\mathbf{A}:\,\,\mathbf{B}\in\mathbb{R}^{\left(k+p\right)\times n}\)
.
If \(q>0\)
repeat: for \(i=1..q\)
:
\(\mathbf{B}_{i}^{\top}=\mathbf{A}^{\top}\mbox{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\)
(power iterations step).
Compute Eigensolution of a small Hermitian \(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}=\mathbf{\hat{U}}\boldsymbol{\Lambda}\mathbf{\hat{U}}^{\top}\)
,
\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\)
.
Singular values \(\mathbf{\boldsymbol{\Sigma}}=\boldsymbol{\Lambda}^{0.5}\)
,
or, in other words, \(s_{i}=\sqrt{\sigma_{i}}\)
.
If needed, compute \(\mathbf{U}=\mathbf{Q}\hat{\mathbf{U}}\)
.
If needed, compute \(\mathbf{V}=\mathbf{B}_{q}^{\top}\hat{\mathbf{U}}\boldsymbol{\Sigma}^{-1}\)
.
Another way is \(\mathbf{V}=\mathbf{A}^{\top}\mathbf{U}\boldsymbol{\Sigma}^{-1}\)
.
Mahout dssvd(...)
is implemented in the mahout math-scala
algebraic optimizer which translates Mahout’s R-like linear algebra operators into a physical plan for both Spark and H2O distributed engines.
def dssvd[K: ClassTag](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int = 0):
(DrmLike[K], DrmLike[Int], Vector) = {
val drmAcp = drmA.checkpoint()
val m = drmAcp.nrow
val n = drmAcp.ncol
assert(k <= (m min n), "k cannot be greater than smaller of m, n.")
val pfxed = safeToNonNegInt((m min n) - k min p)
// Actual decomposition rank
val r = k + pfxed
// We represent Omega by its seed.
val omegaSeed = RandomUtils.getRandom().nextInt()
// Compute Y = A*Omega.
var drmY = drmAcp.mapBlock(ncol = r) {
case (keys, blockA) =>
val blockY = blockA %*% Matrices.symmetricUniformView(n, r, omegaSeed)
keys -> blockY
}
var drmQ = dqrThin(drmY.checkpoint())._1
// Checkpoint Q if last iteration
if (q == 0) drmQ = drmQ.checkpoint()
var drmBt = drmAcp.t %*% drmQ
// Checkpoint B' if last iteration
if (q == 0) drmBt = drmBt.checkpoint()
for (i <- 0 until q) {
drmY = drmAcp %*% drmBt
drmQ = dqrThin(drmY.checkpoint())._1
// Checkpoint Q if last iteration
if (i == q - 1) drmQ = drmQ.checkpoint()
drmBt = drmAcp.t %*% drmQ
// Checkpoint B' if last iteration
if (i == q - 1) drmBt = drmBt.checkpoint()
}
val (inCoreUHat, d) = eigen(drmBt.t %*% drmBt)
val s = d.sqrt
// Since neither drmU nor drmV are actually computed until actually used
// we don't need the flags instructing compute (or not compute) either of the U,V outputs
val drmU = drmQ %*% inCoreUHat
val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s))
(drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k))
}
Note: As a side effect of checkpointing, U and V values are returned as logical operators (i.e. they are neither checkpointed nor computed). Therefore there is no physical work actually done to compute \(\mathbf{U}\)
or \(\mathbf{V}\)
until they are used in a subsequent expression.
The scala dssvd(...)
method can easily be called in any Spark or H2O application built with the math-scala
library and the corresponding Spark
or H2O
engine module as follows:
import org.apache.mahout.math._
import decompositions._
import drm._
val(drmU, drmV, s) = dssvd(drma, k = 40, q = 1)
approximations of matrices](http://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf)