, The Apache Software Foundation ™
T http://www.apache.org/

LOGYJ

Apache Log4j 2
v.2.4
User's Guide

The Apache Software Foundation 2015-09-20

Table of Contents i

Table of Contents

Table of CoNtents i
INtrOdUCTION .. 1
ATCNItBCIUIE . 3
Log4j 1.X MIigration e 10
AP 16
CoNfigUIatioN .. 19
Web Applications and JSPS ... 50
PIUGINS 58
LOOKUPS o 62
AP P BN IS 70
LAY OULS . 127
OIS 150
ASYNC LOQQEIS .ot 163
TV X 177
LOogging Separation ...t 184
EXtending LOQ4d] ...ooor 186
Extending Log4j Configuration ..., 194
Custom Log Levels ... 199

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

Table of Contents

©2015,

The Apache Software Foundation

ALL RIGHTS RESERVED.

1 Introduction 1

Introduction

1.1 Welcome to Log4j 2!

1.1.1 Introduction

Almost every large application includesits own logging or tracing API. In conformance with this
rule, the E.U. SEMPER project decided to write its own tracing API. Thiswasin early 1996. After
countless enhancements, several incarnations and much work that API has evolved to become log4j,
apopular logging package for Java. The package is distributed under the Apache Software License,
afully-fledged open source license certified by the open source initiative. The latest log4j version,
including full-source code, class files and documentation can be found at http://logging.apache.or g/
logdj/2.x/index.html.

Inserting log statements into code is alow-tech method for debugging it. It may also be the only way
because debuggers are not aways available or applicable. Thisisusualy the case for multithreaded
applications and distributed applications at large.

Experience indicates that |ogging was an important component of the development cycle. It offers
several advantages. It provides precise context about a run of the application. Once inserted into the
code, the generation of logging output requires no human intervention. Moreover, log output can
be saved in persistent medium to be studied at alater time. In addition to its use in the development
cycle, asufficiently rich logging package can also be viewed as an auditing tool.

AsBrian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of
Programming":

As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a
variable or two. One reason isthat it is easy to get lost in details of complicated data structures and
control flow; we find stepping through a program less productive than thinking harder and adding
output statements and self-checking code at critical places. Clicking over statements takes longer
than scanning the output of judiciously-placed displays. It takes less time to decide where to put print
statements than to single-step to the critical section of code, even assuming we know where that is.
More important, debugging statements stay with the program; debugging sessions are transient.

Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause
scrolling blindness. To aleviate these concerns, logdj is designed to be reliable, fast and extensible.
Since logging is rarely the main focus of an application, the log4j API strivesto be simple to
understand and to use.

1.1.2 Log4j 2

Log4j 1.x has been widely adopted and used in many applications. However, through the years
development on it has lowed down. It has become more difficult to maintain due to its need to
be compliant with very old versions of Java. Its alternative, SLF4J/Logback made many needed
improvements to the framework. So why bother with Log4j 2?7 Here are afew of the reasons.

1. Log4j 2 isdesigned to be usable as an audit logging framework. Both Log4j 1.x and Logback
will lose events while reconfiguring. Log4j 2 will not. in Logback exceptions in Appenders are
never visible to the application. In Log4j 2 Appenders can be configured to allow the exception
to percolate to the application

2. Logdj 2 contains next-generation lock-free Asynchronous Loggers based onthe LMAX
Disruptor library. In multi-threaded scenarios Asynchronous Loggers have 10 times higher
throughput and orders of magnitude lower latency than Log4j 1.x and Logback.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.semper.org
http://www.opensource.org
http://logging.apache.org/log4j/2.x/index.html
http://logging.apache.org/log4j/2.x/index.html
https://lmax-exchange.github.io/disruptor/
https://lmax-exchange.github.io/disruptor/

1 Introduction 2

3. Logdj 2 usesa Plugin system that makes it extremely easy to extend the framework by adding
new Appenders, Filters, Layouts, Lookups, and Pattern Converters without requiring any
changesto Logdj.

4. Dueto the Plugin system configuration is ssmpler. Entries in the configuration do not require a
class name to be specified.

5. Support for custom log levels. Custom log levels can be defined in code or in configuration.

6. Support for lambda expressions. Client code running on Java 8 can use lambda expressions to
lazily construct alog message only if the requested log level is enabled. Explicit level checks are
not needed, resulting in cleaner code.

7. Support for Message objects. Messages allow support for interesting and complex constructs
to be passed through the logging system and be efficiently manipulated. Users are freeto create
theirown Message typesand write custom Layouts, Filtersand Lookups to manipulate
them.

8. Log4j 1.x supports Filters on Appenders. Logback added TurboFiltersto alow filtering of
events before they are processed by a Logger. Logdj 2 supports Filters that can be configured to
process events before they are handled by a Logger, as they are processed by a Logger or on an
Appender.

9. Many Logback Appenders do not accept a Layout and will only send datain afixed format.
Most Log4j 2 Appenders accept a Layout, allowing the data to be transported in any format
desired.

10Layoutsin Log4j 1.x and Logback return a String. This resulted in the problems discussed at
Logback Encoders. Log4j 2 takes the simpler approach that Layouts always return a byte array.
This has the advantage that it means they can be used in virtually any Appender, not just the ones
that write to an OutputStream.

11The Syslog Appender supports both TCP and UDP as well as support for the BSD syslog and
the RFC 5424 formats.

12L og4j 2 takes advantage of Java 5 concurrency support and performslocking at the lowest level
possible. Log4j 1.x has known deadlock issues. Many of these are fixed in Logback but many
Logback classes still require synchronization at afairly high level.

13It is an Apache Software Foundation project following the community and support model used
by all ASF projects. If you want to contribute or gain the right to commit changes just follow the
path outlined at Contributing

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logback.qos.ch/manual/encoders.html
http://logback.qos.ch/manual/encoders.html
http://tools.ietf.org/html/rfc5424
http://jakarta.apache.org/site/contributing.html

2 Architecture 3

2 Architecture

2.1 Architecture

2.1.1 Main Components
Log4j uses the classes shown in the diagram below.

class Logdj Classes /

LoggerContext 1 1 Configuration 1 0. Filter
o
[
1
1
1 1
StrSubstitutor StrLookup
1 1 1
o.* i B o~
Logger LoggerConfig g Appender) Layout
name: Sting g - “T - name: Siring 0.* 0.=|- name: Sting|1 0.1
parent: LoggerCenfig

2 T

Filter Filter

Applications using the Log4j 2 API will request a Logger with a specific name from the LogManager.
The LogManager will locate the appropriate LoggerContext and then obtain the Logger from it. If the
Logger must be created it will be associated with the LoggerConfig that contains either a) the same
name as the Logger, b) the name of a parent package, or c) the root LoggerConfig. LoggerConfig
objects are created from Logger declarations in the configuration. The LoggerConfig is associated
with the Appenders that actually deliver the LogEvents.

2.1.1.1 Logger Hierarchy
The first and foremost advantage of any logging APl over plain Syst em out . pri ntl n residesin
its ability to disable certain log statements while allowing others to print unhindered. This capability

assumes that the logging space, that is, the space of all possible logging statements, is categorized
according to some devel oper-chosen criteria.

In Log4j 1.x the Logger Hierarchy was maintained through a relationship between Loggers. In Log4j
2 thisrelationship no longer exists. Instead, the hierarchy is maintained in the relationship between
LoggerConfig objects.

Loggers and LoggerConfigs are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule:

Named Hierar chy

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 4

A LoggerConfig is said to be an ancestor of another LoggerConfig if its name followed
by adot is aprefix of the descendant logger name. A LoggerConfig is said to be a parent
of achild LoggerConfig if there are no ancestors between itself and the descendant
LoggerConfig.

For example, the LoggerConfig named " com f oo" isa parent of the LoggerConfig named
"com f oo. Bar". Similarly, "j ava" isaparent of "j ava. uti | " and an ancestor of
"java.util.Vector". Thisnaming scheme should be familiar to most devel opers.

The root LoggerConfig resides at the top of the LoggerConfig hierarchy. It is exceptional in
that it always existsand it is part of every hierarchy. A Logger that is directly linked to the root
LoggerConfig can be obtained as follows:

Logger | ogger = LogManager. get Logger (LogManager. ROOT_LOGGER NAME) ;

Alternatively, and more simply:

Logger | ogger = LogManager . get Root Logger () ;

All other Loggers can be retrieved using the LogManager.getLogger static method by passing the
name of the desired Logger. Further information on the Logging API can be found in the Log4j 2
API.

2.1.1.2 LoggerContext

The LoggerContext acts as the anchor point for the Logging system. However, it is possible to have
multiple active LoggerContexts in an application depending on the circumstances. More details on the
LoggerContext arein the Log Separation section.

2.1.1.3 Configuration

Every LoggerContext has an active Configuration. The Configuration contains all the Appenders,
context-wide Filters, LoggerConfigs and contains the reference to the StrSubstitutor. During
reconfiguration two Configuration objects will exist. Once all Loggers have been redirected to the
new Configuration, the old Configuration will be stopped and discarded.

2.1.1.4 Logger

As stated previously, Loggers are created by calling LogManager.getLogger. The Logger itself
performs no direct actions. It smply has a name and is associated with a LoggerConfig. It extends
AbstractLogger and implements the required methods. As the configuration is modified Loggers may
become associated with a different LoggerConfig, thus causing their behavior to be modified.

2.Retrieving Loggers

Calling the LogManager . get Logger method with the same name will always return areference to
the exact same Logger object.

For example, in

Logger x
Logger y

LogManager . get Logger ("wonbat ") ;
LogManager . get Logger ("wonbat ") ;

x and y refer to exactly the same Logger object.

Configuration of the log4j environment istypically done at application initialization. The preferred
way is by reading a configuration file. Thisis discussed in Configuration.

Log4j makes it easy to name Loggers by software component. This can be accomplished by
instantiating a Logger in each class, with the logger name equal to the fully qualified name of the

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 5

class. Thisisauseful and straightforward method of defining loggers. Asthe log output bears the
name of the generating Logger, this naming strategy makes it easy to identify the origin of alog
message. However, thisis only one possible, albeit common, strategy for naming loggers. Log4j does
not restrict the possible set of loggers. The developer is free to name the loggers as desired.

Since naming Loggers after their owning classis such a common idiom, the convenience method
LogManager . get Logger () isprovided to automatically use the calling classs fully qualified class
name as the Logger name.

Nevertheless, naming loggers after the class where they are located seems to be the best strategy
known so far.

2.1.1.5 LoggerConfig

LoggerConfig objects are created when Loggers are declared in the logging configuration. The
LoggerConfig contains a set of Filters that must allow the LogEvent to pass before it will be passed to
any Appenders. It contains references to the set of Appenders that should be used to process the event.

2.Log Levels

LoggerConfigswill be assigned aLog Level. The set of built-in levelsincludes TRACE, DEBUG,
INFO, WARN, ERROR, and FATAL. Log4j 2 also supports custom log levels. Another mechanism
for getting more granularity isto use Markersinstead.

Log4j 1.x and Logback both have the concept of "Level Inheritance”. In Logdj 2, Loggers and
LoggerConfigs are two different objects so this concept is implemented differently. Each Logger
references the appropriate LoggerConfig which in turn can reference its parent, thus achieving the
same effect.

Below are five tables with various assigned level values and the resulting levels that will be associated
with each Logger. Note that in all these casesif the root LoggerConfig is not configured a default
Level will be assigned to it.

root root DEBUG DEBUG

X root DEBUG DEBUG

X.Y root DEBUG DEBUG

XY.Z root DEBUG DEBUG
Example 1

In example 1 above, only the root logger is configured and hasaLog Level. All the other Loggers
reference the root LoggerConfig and useits Level.

root root DEBUG DEBUG
X X ERROR ERROR
XY XY INFO INFO
XY.Z XY.Z WARN WARN

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch/manual/architecture.html#effectiveLevel

2 Architecture 6

Example 2
In example 2, al loggers have a configured LoggerConfig and obtain their Level from it.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

XY.Z X.Y.Z WARN WARN
Example 3

In example 3, theloggersr oot , X and X. Y. Z each have a configured L oggerConfig with the same
name. The Logger X. Y does not have a configured LoggerConfig with a matching name so uses the
configuration of LoggerConfig X since that is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

X.Y.Z X ERROR ERROR
Example 4

In example 4, the loggersr oot and X each have a Configured LoggerConfig with the same name.
Theloggers X. Y and X. Y. Z do not have configured LoggerConfigs and so get their Level from the
LoggerConfig assigned to them, X, sinceit is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y INFO INFO

X.YZ X ERROR ERROR
Example 5

In example 5, the loggersr oot . X, and X. Y each have a Configured L oggerConfig with the same
name. The logger X. YZ does not have configured LoggerConfig and so getsits Level from the
LoggerConfig assigned to it, X, sinceit isthe LoggerConfig whose name has the longest match to the
start of the Logger's name. It is not associated with LoggerConfig X. Y since tokens after periods must

match exactly.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 7

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y ERROR

X.Y.Z X.Y ERROR
Example 6

In example 6, LoggerConfig X.Y it has no configured level so it inheritsitslevel from LoggerConfig
X. Logger X.Y.Z uses LoggerConfig X.Y since it doesn't have a L oggerConfig with a name that
exactly matches. It too inheritsits logging level from LoggerConfig X.

Thetable below illustrates how Level filtering works. In the table, the vertical header shows the
Level of the LogEvent, while the horizontal header shows the Level associated with the appropriate
LoggerConfig. The intersection identifies whether the LogEvent would be allowed to pass for further
processing (Y es) or discarded (NO).

YES YES YES YES YES YES NO
YES NO NO NO NO NO NO
YES YES NO NO NO NO NO
YES YES YES NO NO NO NO
YES YES YES YES NO NO NO
YES YES YES YES YES NO NO
YES YES YES YES YES YES NO
NO NO NO NO NO NO NO
2.1.1.6 Filter

In addition to the automatic log Level filtering that takes place as described in the previous section,
Logd4j provides Filtersthat can be applied before control is passed to any LoggerConfig, after

control is passed to a LoggerConfig but before calling any Appenders, after control is passed to a
LoggerConfig but before calling a specific Appender, and on each Appender. In a manner very similar
to firewall filters, each Filter can return one of three results, Accept , Deny or Neut r al . A response
of Accept means that no other Filters should be called and the event should progress. A response of
Deny means the event should be immediately ignored and control should be returned to the caller. A
response of Neut r al indicates the event should be passed to other Filters. If there are no other Filters
the event will be processed.

Although an event may be accepted by a Filter the event still might not be logged. This can happen
when the event is accepted by the pre-LoggerConfig Filter but is then denied by a LoggerConfig filter
or isdenied by all Appenders.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 8

2.1.1.7 Appender

The ability to selectively enable or disable logging requests based on their logger is only part of the
picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output
destination is called an Appender. Currently, appenders exist for the console, files, remote socket
servers, Apache Flume, IMS, remote UNIX Syslog daemons, and various database APIs. See the
section on Appenders for more details on the various types available. More than one Appender can be
attached to a Logger.

An Appender can be added to a Logger by calling the addL oggerAppender method of the current
Configuration. If a LoggerConfig matching the name of the Logger does not exist, one will be created,
the Appender will be attached to it and then all Loggers will be notified to update their LoggerConfig
references.

Each enabled logging request for a given logger will be forwarded to all the appendersin
that Logger's L ogger Config aswell asthe Appenders of the L ogger Config's parents. In other
words, Appenders are inherited additively from the LoggerConfig hierarchy. For example, if a
console appender is added to the root logger, then all enabled logging requests will at least print
on the console. If in addition afile appender is added to a LoggerConfig, say C, then enabled
logging requests for C and C's children will print in afile and on the console. It is possible to
override this default behavior so that Appender accumulation is no longer additive by setting

addi tivity="fal se" ontheLogger declaration in the configuration file.

The rules governing appender additivity are summarized below.
Appender Additivity

The output of alog statement of Logger L will go to all the Appendersin the LoggerConfig
associated with L and the ancestors of that LoggerConfig. Thisisthe meaning of the term
"appender additivity".

However, if an ancestor of the LoggerConfig associated with Logger L, say P, hasthe
additivity flag set to f al se, then L's output will be directed to all the appendersin L's
LoggerConfig and it's ancestors up to and including P but not the Appendersin any of the
ancestors of P.

Loggers have their additivity flag set to t r ue by default.
The table below shows an example:

root Al not applicable Al The root logger
has no parent so
additivity does not

apply to it.

X A-x1, A-x2 true Al, A-x1, A-x2 Appenders of "x"
and root.

X.y none true Al, A-x1, A-x2 Appenders of "x"

and root. It would
not be typical to
configure a Logger
with no Appenders.

X.y.z A-xyzl true Al, A-x1, A-x2, A- Appenders in
xyzl "x.y.z", "x" and root.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 9

security A-sec false A-sec No appender
accumulation since
the additivity flag is
setto f al se.

security.access none true A-sec Only appenders of
"security" because
the additivity flag in
"security" is set to
fal se.

2.1.1.8 Layout

More often than not, users wish to customize not only the output destination but also the output
format. Thisis accomplished by associating a Layout with an Appender. The Layout is responsible
for formatting the LogEvent according to the user's wishes, whereas an appender takes care of sending
the formatted output to its destination. The PatternLayout, part of the standard log4j distribution, lets
the user specify the output format according to conversion patterns similar to the C language pri nt f
function.

For example, the PatternL ayout with the conversion pattern "%r [%ot] %-5p %c - Yom%n" will output
something akin to:

176 [nain] INFO org.foo.Bar - Located nearest gas station.

Thefirst field is the number of milliseconds elapsed since the start of the program. The second field
isthe thread making the log request. The third field isthe level of the log statement. The fourth field
isthe name of the logger associated with the log request. The text after the '-' is the message of the
statement.

Log4j comes with many different Layouts for various use cases such as JSON, XML, HTML, and
Syslog (including the new RFC 5424 version). Other appenders such as the database connectorsfill in
specified fields instead of a particular textual layout.

Just as importantly, logdj will render the content of the log message according to user specified
criteria. For example, if you frequently need to log Or anges, an object type used in your current
project, then you can create an OrangeM essage that accepts an Orange instance and pass that to Log4j
so that the Orange object can be formatted into an appropriate byte array when required.

2.1.1.9 StrSubstitutor and StrLookup

The StrSubstitutor classand StrLookup interface were borrowed from Apache Commons Lang
and then modified to support evaluating LogEvents. In addition the Interpolator class was borrowed
from Apache Commons Configuration to alow the StrSubstitutor to evaluate variables that from
multiple StrLookups. It too was maodified to support evaluating LogEvents. Together these provide
amechanism to allow the configuration to reference variables coming from System Properties, the
configuration file, the ThreadContext Map, StructuredData in the LogEvent. The variables can either
be resolved when the configuration is processed or as each event is processed, if the component is
capable of handling it. See Lookups for more information.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

https://commons.apache.org/proper/commons-lang/

3 Log4j 1.x Migration 10

Log4j 1.x Migration

3.1 Migrating from Log4j 1.x

3.1.1 Using the Log4j 1.x bridge

Perhaps the simplest way to convert to using Log4j 2 isto replace the log4j 1.x jar file with Log4
2'sl og4j - 1. 2- api . j ar . However, to use this successfully applications must meet the following
requirements:

1. They must not access methods and classes internal to the Log4j 1.x implementation such as
Appender s, Logger Reposi t ory or Cat egor y'scal | Appender s method.

2. They must not programmatically configure Logé4j.

3. They must not configure by calling the classes DOMConf i gur at or or
Pr opertyConfigurator.

3.1.2 Converting to the Log4j 2 API

For the most part, converting from the Log4j 1.x API to Log4j 2 should be fairly simple. Many of the
log statements will require no modification. However, where necessary the following changes must be
made.

1. Themain packagein version 1isor g. apache. | og4j , inversion 2itis
or g. apache. | oggi ng. | og4j

2. Cdlstoorg. apache. | og4j . Logger. get Logger () must be modified to
org. apache. | oggi ng. | og4j . LogManager . get Logger ().

3. Cdllstoor g. apache. | 0og4j . Logger . get Root Logger () or

or g. apache. | og4j . LogManager . get Root Logger () must be replaced with
or g. apache. | oggi ng. | og4j . LogManager . get Root Logger () .

4. Cdlstoorg. apache. | og4j . Logger . get Logger that accept aLogger Fact ory must
removetheor g. apache. | og4j . spi . Logger Fact or y and use one of Log4j 2's other
extension mechanisms.

5. Replace callsto or g. apache. | 0og4j . Logger . get Ef f ecti veLevel () with
or g. apache. | oggi ng. | og4j . Logger. get Level ().

6. Remove callsto or g. apache. | og4j . LogManager . shut down() , they are not needed in
version 2 because the Log4j Core now automatically adds a VM shutdown hook on start up to
perform any Core clean ups.

7. Cdlstoorg. apache. | og4j . Logger. set Level () or similar methods
are not supported in the API. Applications should remove these. Equivalent
functionality is provided in the Log4j 2 implementation classes, see
org. apache. | oggi ng. |1 og4j . core. confi g. Confi gurator. setLevel (), but may leave
the application susceptible to changesin Log4j 2 internals.

8. Where appropriate, applications should convert to use parameterized messages instead of String
concatenation.

9.0rg. apache. | og4j . MDCand or g. apache. | og4j . NDC have been replaced by the Thread
Context.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/MDC.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/NDC.html

3 Log4j 1.x Migration

3.1.3 Configuring Log4j 2

Although the Log4j 2 configuration syntax is different than that of Log4j 1.x, most, if not all, of
the same functionality is available. Below are the example configurations for Log4j 1.x and their
counterpartsin Log4j 2.

3.1.3.1 Sample 1 - Simple configuration using a Console Appender
Log4j 1.x XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j:configuration xmns:log4j="http://jakarta. apache.org/log4j/'>
<appender nane="STDOUT" cl ass="org. apache. | og4j. Consol eAppender" >
<l ayout cl ass="org. apache. | og4j.PatternLayout">
<param nane="Conversi onPattern" value="% %5p [%] %2} (%: %) - %n"/>
</l ayout >
</ appender >
<cat egory nane="org. apache. | og4j.xm ">
<priority value="info" />
</ cat egory>
<Root >
<priority value ="debug" />
<appender-ref ref="STDOUT" />
</ Root >
</ 1 og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Confi guration>
<Appender s>
<Consol e nane="STDOUT" target="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org.apache.l og4j.xm" level ="info"/>
<Root | evel ="debug">
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Confi gurati on>

3.1.3.2 Sample 2 - Simple configuration using a File Appender
Log4j 1.x XML configuration

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11

3 Log4j 1.x Migration 12

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:log4j="http://jakarta.apache.org/log4j/">
<appender nane="Al" cl ass="org. apache. | o0g4j. Fi | eAppender" >
<par am nane="Fi | e" val ue="Al.log" />
<par am nane="Append" val ue="fal se" />
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% % 5p %{2} - %®n"/>
</l ayout >
</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<cat egory nane="org. apache. | og4j.xm ">
<priority val ue="debug" />
<appender-ref ref="A1" />
</ cat egory>
<r oot >
<priority value ="debug" />
<appender-ref ref="STDOUT" />
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration>
<Appender s>
<Fil e name="Al" fil eName="Al.l|o0g" append="fal se">
<PatternLayout pattern="% %5p %{2} - %P&m"/>
</File>
<Consol e nane="STDOUT" t arget="SYSTEM OQUT" >
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org. apache. |l og4j.xm" |evel ="debug">
<Appender Ref ref="A1"/>
</ Logger >
<Root | evel ="debug">
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Configuration>

3.1.3.3 Sample 3 - SocketAppender

Log4j 1.x XML configuration. This example from Log4j 1.x is misleading. The SocketAppender does
not actually use a Layout. Configuring one will have no effect.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">

<l og4j : configuration xmns:log4j="http://jakarta.apache.org/log4j/">
<appender nanme="Al" cl ass="org. apache. | 0g4j . net. Socket Appender" >

<par am nane="Renpt eHost" val ue="1|ocal host"/ >
<param nanme="Port" val ue="5000"/>

<par am nane="Locati onl nfo" val ue="true"/>

<l ayout cl ass="org. apache. | og4j. PatternLayout">

<par am nane="Conversi onPattern" value="% % 5p %{2} - %n"/>

</l ayout >
</ appender >

<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >

<l ayout cl ass="org. apache. | og4j. PatternLayout">

<par am nane="Conver si onPattern" val ue="% % 5p [%]

</l ayout >

</ appender >

<cat egory nane="org. apache. | og4j.xm ">
<priority val ue="debug"/>
<appender-ref ref="A1"/>

</ cat egory>

<r oot >
<priority val ue="debug"/>
<appender-ref ref="STDOUT"/>

</ Root >

</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration>
<Appender s>
<Socket nane="Al" host="I|ocal Host" port="5000">
<Seri al i zedLayout/ >
</ Socket >
<Consol e nane="STDOUT" t arget="SYSTEM OQUT" >
<PatternLayout pattern="9%l %5p [%] %2} (%: A)
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org. apache.l og4j.xm" | evel ="debug">
<Appender Ref ref="Al1"/>
</ Logger >
<Root | evel ="debug" >
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Configuration>

3.1.3.4 Sample 4 - AsyncAppender
Log4j 1.x XML configuration using the AsyncAppender.

%2} (%:%) - %dm"/>

- Yt/ >

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:|log4j="http://jakarta.apache. org/log4j/" configDebug="true">
<appender nanme="ASYNC' cl ass="org. apache. | og4j . AsyncAppender" >
<appender-ref ref="TEMP"/>
</ appender >
<appender nanme="TEMP" cl ass="org. apache. | o0g4j. Fi | eAppender" >
<param nanme="Fi | e" val ue="tenp"/>
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/ >
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="debug">
<Appender s>
<Fi |l e name="TEMP" fileNane="tenp">
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</File>
<Async name="ASYNC'>
<Appender Ref ref="TEMP"/>
</ Async>
</ Appender s>
<Logger s>
<Root | evel ="debug">
<Appender Ref ref="ASYNC'/ >
</ Root >
</ Logger s>
</ Confi guration>

3.1.3.5 Sample 5 - AsyncAppender with Console and File
Log4j 1.x XML configuration using the AsyncAppender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

14

3 Log4j 1.x Migration 15

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:|log4j="http://jakarta.apache. org/log4j/" configDebug="true">
<appender nanme="ASYNC' cl ass="org. apache. | og4j . AsyncAppender" >
<appender-ref ref="TEMP"/>
<appender -ref ref="CONSOLE"/ >
</ appender >
<appender nane="CONSOLE" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<appender nanme="TEMP" cl ass="org. apache. | 0g4j. Fi | eAppender" >
<param nanme="Fi | e" val ue="tenp"/>
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %m"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/ >
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration. Note that the Async Appender should be configured after the appenders
it references. Thiswill allow it to shutdown properly.

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug">
<Appender s>
<Consol e nane="CONSOLE" target="SYSTEM OQUT" >
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</ Consol e>
<Fil e name="TEMP" fileNane="tenp">
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</File>
<Async name="ASYNC'>
<Appender Ref ref="TEMP"/>
<Appender Ref ref="CONSOLE"/ >
</ Async>
</ Appender s>
<Logger s>
<Root | evel ="debug">
<Appender Ref ref="ASYNC'/ >
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 16

4.1 Log4j 2 AP

4.1.1 Overview

The Log4j 2 API provides the interface that applications should code to and provides the adapter
components required for implementers to create alogging implementation. Although Log4j 2 is
broken up between an API and an implementation, the primary purpose of doing so was not to allow
multiple implementations, although that is certainly possible, but to clearly define what classes and
methods are safe to use in "normal” application code.

4.1.1.1 Hello World!

No introduction would be compl ete without the customary Hello, World example. Hereisours. First,
a Logger with the name "HelloWorld" is obtained from the LogManager. Next, the logger is used

to write the "Hello, World!" message, however the message will be written only if the Logger is
configured to allow informational messages.

i mport org.apache. | oggi ng. | 0g4j.LogManager;
i mport org.apache. | oggi ng. | o0g4j. Logger;

public class HelloWwrld {
private static final Logger |ogger = LogManager.getLogger ("HelloWrld");
public static void main(String[] args) {
l ogger.info("Hello, World!");
}
}

The output from the call to logger.info() will vary significantly depending on the configuration used.
See the Configuration section for more details.

4.1.1.2 Substituting Parameters

Frequently the purpose of logging is to provide information about what is happening in the system,
which requires including information about the objects being manipulated. In Log4j 1.x this could be
accomplished by doing:

if (1ogger.isDebugEnabled()) {
| ogger. debug("Logging in user " + user.getNane() + " with birthday " + user.getBirthdayCal endar());

}

Doing this repeatedly has the effect of making the code feel like it is more about logging than the

actual task at hand. In addition, it resultsin the logging level being checked twice; once on the call to
isDebugEnabled and once on the debug method. A better alternative would be:

| ogger. debug("Logging in user {} with birthday {}", user.getNane(), user.getBirthdayCal endar());

With the code above the logging level will only be checked once and the String construction will only
occur when debug logging is enabled.

4.1.1.3 Formatting Parameters

Substituting parameters leaves formatting up to you if t oSt ri ng() isnot what you want. To
facilitate formatting, you can use the same format strings as Java's Formatter. For example:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html#syntax

4 API 17

public static Logger |ogger = LogManager. get FormatterLogger (" Foo");

| ogger. debug("Logging in user % wth birthday %", user.getNanme(), user.getBirthdayCal endar());

| ogger. debug("Logging in user %$s with birthday %@%tm 9%@2$te, %2$t Y', user.getNanme(), user.getBirthdayCal endar
| ogger . debug(" I nteger. MAX_VALUE = %d", |nteger. MAX VALUE);

| ogger . debug("Long. MAX_VALUE = %d", Long. MAX VALUE);

To use aformatter Logger, you must call one of the LogManager getFormatterL ogger method. The
output for this example shows that Calendar toString() is verbose compared to custom formatting:

2012-12-12 11:56: 19,633 [nain] DEBUG User John Smith with birthday java.util.G egorianCal endar[time=?, areFie
2012-12-12 11:56: 19,643 [nain] DEBUG User John Smith with birthday 05 23, 1995

2012-12-12 11:56: 19, 643 [mai n] DEBUG | nteger. MAX_VALUE = 2, 147, 483, 647

2012-12-12 11:56: 19, 643 [mai n] DEBUG Long. MAX VALUE = 9, 223, 372, 036, 854, 775, 807

4.1.1.4 Mixing Loggers with Formatter Loggers

Formatter loggers give fine-grained control over the output format, but have the drawback that the
correct type must be specified (for example, passing anything other than a decimal integer for a %d
format parameter gives an exception).

If your main usage isto use {} -style parameters, but occasionally you need fine-grained control over
the output format, you can usethe pri nt f method:

public static Logger |ogger = LogManager. getLogger("Foo0");

| ogger . debug(" Openi ng connection to {}...", soneDataSource);
| ogger.printf(Level.INFO "Logging in user %$s wth birthday %2$tm %2$te, ¥2$tY", user.getName(), user.getBir

4.1.1.5 Java 8 lambda support for lazy logging

Inrelease 2.4, the Logger interface adds support for lambda expressions. This allows client code to
lazily log messages without explicitly checking if the requested log level is enabled. For example,
previously you would write:

/1 pre-Java 8 style optimization: explicitly check the log Ievel
/1 to make sure the expensiveQperation() nmethod is only called if necessary
if (logger.isTraceEnabl ed()) {
| ogger.trace("Some |ong-running operation returned {}", expensiveQOperation());

}

With Java 8 you can achieve the same effect with alambda expression. Y ou ho longer need to
explicitly check the log level:

/1 Java-8 style optimzation: no need to explicitly check the log |evel:
/1 the | anbda expression is not evaluated if the TRACE | evel is not enabl ed
| ogger.trace("Sonme | ong-running operation returned {}", () -> expensiveQOperation());

4.1.1.6 Logger Names

Most logging implementations use a hierarchical scheme for matching logger names with logging
configuration. In this scheme the logger name hierarchy is represented by '.' charactersin the
logger name, in afashion very similar to the hierarchy used for Java package names. For example,
org.apache.logging.appender and org.apache.logging.filter both have org.apache.logging as their
parent. In most cases, applications name their loggers by passing the current class's name to

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 18

LogManager.getLogger. Because this usage is so common, Log4j 2 provides that as the default when
the logger name parameter is either omitted or is null. For example, in both examples below the
Logger will have a name of "org.apache.test. MyTest".

package org. apache. test;
public class MyTest {

private static final Logger |ogger = LogManager. get Logger (M/Test. cl ass. get Nane())
package org. apache. test;

public class MyTest {
private static final Logger |ogger = LogManager. getLogger ()

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 19

Configuration

5.1 Configuration

Inserting log requests into the application code requires afair amount of planning and effort.
Observation shows that approximately 4 percent of code is dedicated to logging. Consequently, even
moderately sized applications will have thousands of logging statements embedded within their code.
Given their number, it becomes imperative to manage these log statements without the need to modify
them manually.

Configuration of Log4j 2 can be accomplished in 1 of 4 ways:

1. Through a configuration file written in XML, JSON, or YAML.

2. Programmatically, by creating a ConfigurationFactory and Configuration implementation.

3. Programmatically, by calling the APIs exposed in the Configuration interface to add components
to the default configuration.

4. Programmatically, by calling methods on the internal Logger class.

This page focuses primarily on configuring Logd4j through a configuration file. Information on
programmatically configuring Log4j can befound at Extending Log4j 2.

Note that unlike Log4j 1.x, the public Log4j 2 API does not expose methods to add, modify or remove
appenders and filters or manipulate the configuration in any way.

5.1.1 Automatic Configuration

Logd4j has the ability to automatically configure itself during initialization. When Log4j starts it will
locate al the ConfigurationFactory plugins and arrange then in weighted order from highest to lowest.
Asdelivered, Logdj contains three ConfigurationFactory implementations: one for JSON, one for
YAML, and one for XML.

1. Log4j will inspect the" | og4j . confi gur ati onFi | e" system property and, if set, will attempt
to load the configuration using the Conf i gur at i onFact or y that matches the file extension.

2. If no system property is set the Y AML ConfigurationFactory will look for | og4j 2-t est . yani
orl og4j 2-test. ynl inthe classpath.

3. If no such fileisfound the JSON ConfigurationFactory will look for | og4j 2-t est. j son or
| og4j 2-t est. j sn in the classpath.

4. If no such fileisfound the XML ConfigurationFactory will look for | og4j 2-t est. xm inthe
classpath.

5. If atest file cannot be located the Y AML ConfigurationFactory will look for | og4j 2. yanm or
| og4j 2. yml on the classpath.

6. If aYAML file cannot be located the JSON ConfigurationFactory will look for | og4j 2. j son or
| og4j 2. j sn on the classpath.

7. 1f aJSON file cannot be located the XML ConfigurationFactory will try to locate | og4j 2. xm
on the classpath.

8. If no configuration file could be located the Def aul t Conf i gur at i on will be used. This will
cause logging output to go to the console.

An example application named My App that uses log4j can be used to illustrate how thisis done.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

i mport com f o0o. Bar;

/1 Inport |og4j classes.
i mport org. apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . LogManager ;

public class M/App {

/1 Define a static logger variable so that it references the
/1 Logger instance naned "M/App".
private static final Logger |ogger = LogManager. get Logger (M/App. cl ass);

public static void main(final String... args) {
/1 Set up a sinple configuration that |ogs on the console.

| ogger.trace("Entering application.");
Bar bar = new Bar();
if (!bar.dolt()) {

| ogger.error("Didn't do it.");

}
| ogger.trace("Exiting application.");

20

My App begins by importing log4j related classes. It then defines a static logger variable with the name

My App which happens to be the fully qualified name of the class.
My App uses the Bar class defined in the package com f oo.

package com foo;
i mport org.apache. | oggi ng. | o0g4j. Logger;
i mport org.apache. | oggi ng. | 0g4j.LogManager;

public class Bar {
static final Logger |ogger = LogManager. getLogger (Bar.cl ass. get Name());

public bool ean dolt() {
| ogger.entry();
logger.error("Did it again!");
return | ogger.exit(false);

Log4j will provide a default configuration if it cannot locate a configuration file. The default
configuration, provided in the DefaultConfiguration class, will set up:

» A ConsoleAppender attached to the root logger.

» A PatternLayout set to the pattern "%d{ HH:mm:ss.SSS} [%t] %-5level %logger{ 36} - %msg
%n" attached to the ConsoleA ppender

Note that by default Log4j assigns the root logger to Level . ERROR.
The output of MyApp would be similar to:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 21

17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13:01.540 [main] ERROR MyApp - Didn't do it.

Aswas described previously, Log4j will first attempt to configure itself from configuration files. A
configuration equivalent to the default would look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="WARN'>
<Appender s>
<Consol e nane="Consol e" target="SYSTEM OQUT" >
<Patt ernLayout pattern="%l{HH nm ss.SSS} [%] %5l evel % ogger{36} - %sg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Confi guration>

Oncethefile aboveis placed into the classpath aslog4j2.xml you will get resultsidentical to those
listed above. Changing the root level to trace will result in results similar to:

17:13: 01. 540 [mai n] TRACE MyApp - Entering application.
17:13: 01. 540 [mai n] TRACE comfoo.Bar - entry
17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13: 01. 540 [main] TRACE comfoo.Bar - exit with (false)
17:13:01.540 [main] ERROR MyApp - Didn't do it.

17:13: 01. 540 [mai n] TRACE MyApp - Exiting application.

Note that status logging is disabled when the default configuration is used.

Perhapsit is desired to eliminate all the TRACE output from everything except com f oo. Bar .
Simply changing the log level would not accomplish the task. Instead, the solution is to add a new
logger definition to the configuration:

<Logger nane="com foo. Bar" |evel =" TRACE"/ >
<Root | evel =" ERROR"'>

<Appender Ref ref="STDOUT" >
</ Root >

With this configuration all log events from com f oo. Bar will be recorded while only error events
will be recorded from all other components.

5.1.2 Additivity

In the previous example al the events from com f oo. Bar were still written to the Console. Thisis
because the logger for com f 0o. Bar did not have any appenders configured while its parent did. In
fact, the following configuration

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version='
<Configuration
<Appender s>

'1.0" encodi ng="UTF- 8" ?>
st at us="WARN' >

<Consol e nanme="Consol e" target="SYSTEM OQUT" >

<PatternLayout pattern="%l{HH nm ss.SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>

</ Appender s>

<Logger s>

<Logger nane="com foo. Bar"

</ Logger >
<Root

<Appender Ref

ref =" Consol e"/ >

| evel ="error">
<Appender Ref
</ Root >
</ Logger s>
</ Configuration>

would result in

17:
17:
17:
17:
17:
17:

Notice that the trace messages from com f oo. Bar appear twice. Thisis because the appender
associated with logger com f oo. Bar isfirst used, which writes the first instance to the Console.
Next, the parent of com f 0o. Bar , which in this case isthe root logger, is referenced. The event is

13:
13:
13:
13:
13:
13:

01.
01.
01.
01.
01.
01.

540
540
540
540
540
540

[mai
[mai
[mai
[mai
[mai
[mai

ref =" Consol e"/ >

TRACE com f oo.
TRACE com f oo.
ERROR com f oo.
TRACE com f oo.
TRACE com f oo.

ERROR MyApp -

| evel ="trace">

Bar - entry
Bar - entry
Bar - Did it again!
Bar - exit (false)
Bar - exit (false)
Didn't do it.

22

then passed to its appender, which is also writes to the Console, resulting in the second instance. This

is known as additivity. While additivity can be quite a convenient feature (asin the first previous
example where no appender reference needed to be configured), in many cases this behavior is

considered undesirable and so it is possible to disable it by setting the additivity attribute on the logger
to false:

©2015,

The Apache Software Foundation -«

ALL RIGHTS RESERVED.

5 Configuration 23

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="WARN'>
<Appender s>
<Consol e nanme="Consol e" target="SYSTEM OQUT" >
<PatternLayout pattern="%l{HH nm ss.SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="com foo.Bar" |evel ="trace" additivity="fal se">
<Appender Ref ref="Consol e"/>
</ Logger >
<Root | evel ="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Configuration>

Once an event reaches alogger with its additivity set to false the event will not be passed to any of its
parent loggers, regardless of their additivity setting.

5.1.3 Automatic Reconfiguration

When configured from a File, Log4j has the ability to automatically detect changesto the
configuration file and reconfigure itself. If thenoni t or | nt er val attribute is specified on the
configuration element and is set to a non-zero value then the file will be checked the next time a

log event is evaluated and/or logged and the monitorinterval has elapsed since the last check. The
example below shows how to configure the attribute so that the configuration file will be checked for
changes only after at least 30 seconds have elapsed. The minimum interval is 5 seconds.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration nonitorlnterval ="30">

</ Confi gurati on>

5.1.4 Chainsaw can automatically process your log files (Advertising appender configurations)

Logd4j provides the ability to 'advertise’ appender configuration details for all file-based appenders
aswell as socket-based appenders. For example, for file-based appenders, the file location and the
pattern layout in the file are included in the advertisement. Chainsaw and other external systems can
discover these advertisements and use that information to intelligently process the log file.

The mechanism by which an advertisement is exposed, as well as the advertisement format, is specific
to each Advertiser implementation. An external system which would like to work with a specific
Advertiser implementation must understand how to locate the advertised configuration as well asthe
format of the advertisement. For example, a'database’ Advertiser may store configuration detailsin
adatabase table. An external system can read that database table in order to discover the file location
and the file format.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 24

Log4j provides one Advertiser implementation, a'multicastdns' Advertiser, which advertises appender
configuration details via |P multicast using the http://jmdns.sourceforge.net library.

Chainsaw automatically discovers logdj's multicastdns-generated advertisements and displays
those discovered advertisementsin Chainsaw's Zeroconf tab (if the jmdnslibrary isin Chainsaw's
classpath). To begin parsing and tailing alog file provided in an advertisement, just double-click
the advertised entry in Chainsaw's Zeroconf tab. Currently, Chainsaw only supports FileAppender
advertisements.

To advertise an appender configuration:

* Addthe JmDnslibrary from http://jmdns.sourceforge.net to the application classpath
 Set the 'advertiser' attribute of the configuration element to 'multicastdns
» Set the 'advertise' attribute on the appender element to 'true’

« If advertising a FileAppender-based configuration, set the 'advertiseURI'" attribute on the
appender element to an appropriate URI

FileA ppender-based configurations require an additional ‘advertiseURI' attribute to be specified on
the appender. The 'advertiseURI' attribute provides Chainsaw with information on how the file can be
accessed. For example, the file may be remotely accessible to Chainsaw via ssh/sftp by specifying a
Commons VFS (http://commons.apache.org/proper/commons-vis/) sftp:// URI, an http:// URI may
be used if the file is accessible through aweb server, or afile:// URI can be specified if accessing the
file from alocally-running instance of Chainsaw.

Here is an example advertisement-enabled appender configuration which can be used by alocally-
running Chainsaw to automatically tail the log file (notice the file:// advertiseURI):

Please note, you must add the ImDnslibrary from http://jmdns.sour cefor ge.net to your
application classpath in order to advertise with the 'multicastdns advertiser.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration advertiser="mnulticastdns">
</ Configuration>

<Appender s>

<File name="Filel" fileNane="output.log" bufferedl O="fal se" advertiseURI ="file://path/to/output.log"

</File>
</ Appender s>

5.1.5 Configuration Syntax

As the previous examples have shown as well as those to follow, Log4j alows you to easily redefine
logging behavior without needing to modify your application. It is possible to disable logging for
certain parts of the application, log only when specific criteria are met such as the action being
performed for a specific user, route output to Flume or alog reporting system, etc. Being able to do
this requires understanding the syntax of the configuration files.

The configuration element in the XML file accepts several attributes:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

advert

http://jmdns.sourceforge.net
http://jmdns.sourceforge.net
http://commons.apache.org/proper/commons-vfs/
http://jmdns.sourceforge.net

5 Configuration 25

advertiser (Optional) The Advertiser plugin name which will
be used to advertise individual FileAppender or
SocketAppender configurations. The only Advertiser
plugin provided is 'multicastdns".

dest Either "err", which will send output to stderr, or a file
path or URL.

monitorinterval The minimum amount of time, in seconds, that must
elapse before the file configuration is checked for
changes.

name The name of the configuration.

packages A comma separated list of package names to

search for plugins. Plugins are only loaded once per
classloader so changing this value may not have any
effect upon reconfiguration.

schema Identifies the location for the classloader to located the
XML Schema to use to validate the configuration. Only
valid when strict is set to true. If not set no schema
validation will take place.

shutdownHook Specifies whether or not Log4j should automatically
shutdown when the JVM shuts down. The shutdown
hook is enabled by default but may be disabled by
setting this attribute to "disable”

status The level of internal Log4j events that should be
logged to the console. Valid values for this attribute

are "trace", "debug"”, "info", "warn", "error" and "fatal".

Log4j will log details about initialization, rollover and
other internal actions to the status logger. Setting
status="trace" is one of the first tools available
to you if you need to troubleshoot log4j.

strict Enables the use of the strict XML format. Not
supported in JISON configurations.

verbose Enables diagnostic information while loading plugins.

Logd4j can be configured using two XML flavors; concise and strict. The concise format makes
configuration very easy as the element names match the components they represent however it cannot
be validated with an XML schema. For example, the ConsoleA ppender is configured by declaring an
XML element named Console under its parent appenders element. However, element and attribute
names are are not case sensitive. In addition, attributes can either be specified as an XML attribute or
asan XML element that has no attributes and has atext value. So

<Pat t er nLayout pattern="%®n"/>

and

<Pat t er nLayout >
<Pat t er n>%n</ Pat t er n>
</ Patt ernLayout >

are equivalent.

The file below represents the structure of an XML configuration, but note that the elementsin italics
below represent the concise element names that would appear in their place.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="nanel">val ue</ property>
<Property nanme="nanme2" val ue="val ue2"/>
</ Properties>
<

filter ... />
<Appender s>
<
appender ... >
<
filter ... />
</
appender >
</ Appender s>
<Logger s>

<Logger nane="nanel">
<

filter ... />
</ Logger >
<Root | evel ="l evel ">
<Appender Ref ref="nanme"/>
</ Root >

</ Logger s>
</ Configuration>

See the many examples on this page for sample appender, filter and logger declarations.

5.Strict XML

In addition to the concise XML format above, Log4j allows configurations to be specified in a
more "normal” XML manner that can be validated using an XML Schema. This is accomplished by
replacing the friendly element names above with their object type as shown below. For example,
instead of the ConsoleAppender being configuerd using an element named Console it isinstead
configured as an appender element with atype attribute containing "Console".

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

26

5 Configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="nanel">val ue</ property>
<Property nanme="nanme2" val ue="val ue2"/>
</ Properties>

<Filter type="type" ... />
<Appender s>
<Appender type="type" nanme="nane">
<Filter type="type" ... />
</ Appender >
</ Appender s>
<Logger s>
<Logger nane="nanel">
<Filter type="type" ... />
</ Logger >
<Root |evel ="l evel ">
<Appender Ref ref="nanme"/>
</ Root >

</ Logger s>
</ Configuration>

Below is a sample configuration using the strict format.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 28

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug" strict="true" nane="XM.Confi gTest"
packages="org. apache. | oggi ng. | og4j .test">
<Properties>
<Property nanme="fil ename">target/test.| og</Property>
</ Properties>
<Filter type="ThresholdFilter" |evel ="trace"/>

<Appender s>
<Appender type="Consol " nanme="STDOUT" >
<Layout type="PatternLayout" pattern="%n MDC¥X%"/ >
<Filters>
<Filter type="MarkerFilter" marker="FLON onMatch="DENY" onM smat ch="NEUTRAL"/ >
<Filter type="MarkerFilter" marker="EXCEPTI ON' onMat ch="DENY" onM smat ch="ACCEPT"/ >
</Filters>

</ Appender >

<Appender type="Consol " nanme="FLOW >
<Layout type="PatternLayout" pattern="%{1}.9M %n Y%ex%"/><!-- class and |ine nunber -->
<Filters>

<Filter type="MarkerFilter" marker="FLON onMatch="ACCEPT" onM smat ch="NEUTRAL"/ >
<Filter type="MarkerFilter" marker="EXCEPTI ON' onMat ch="ACCEPT" onM smat ch="DENY"/>
</Filters>
</ Appender >
<Appender type="File" name="File" fileNane="${fil enane}">
<Layout type="PatternLayout">
<Pattern>%d % %{1.} [%] %Pm</Pattern>
</ Layout >
</ Appender >
<Appender type="List" name="List">
</ Appender >
</ Appender s>

<Logger s>
<Logger nane="org. apache. | oggi ng. | og4j.test1" |evel ="debug" additivity="fal se">
<Filter type="ThreadContextMapFilter">
<KeyVal uePair key="test" val ue="123"/>
</Filter>
<Appender Ref ref="STDOUT"/ >
</ Logger >

<Logger nane="org. apache. | oggi ng. | o0g4j.test2" |evel ="debug" additivity="fal se">
<Appender Ref ref="File"/>
</ Logger >

<Root |evel ="trace">
<Appender Ref ref="List"/>
</ Root >

</ Logger s>

</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 29

5.1.5.2 Configuration with JSON

In addition to XML, Log4j can be configured using JSON. The JSON format is very similar to the
concise XML format. Each key represents the name of a plugin and the key/value pairs associated
with it are its attributes. Where akey contains more than asimple value it itself will be a subordinate
plugin. In the example below, ThresholdFilter, Console, and PatternLayout are all plugins while the
Console plugin will be assigned avalue of STDOUT for its name attribute and the Threshol dFilter
will be assigned alevel of debug.

{ "configuration": { "status": "error", "name": "RoutingTest",
"packages": "org.apache.logging.|og4j.test",
"properties": {
"property": { "name": "fil enane",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
H
"ThresholdFilter": { "level": "debug" },

"appenders": {
"Consol e": { "name": "STDOUT",
"PatternLayout": { "pattern": "%®m" }

H
"List": { "name": "List",
"ThresholdFilter": { "level": "debug" }
H
"Routing": { "nane": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"RollingFile": {
"nane": "Rolling-${sd:type}", "fileNane": "${fil enane}",
"filePattern": "target/rollingl/testl-${sd:type}.% .l o0g.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] Y%it@"},
" Si zeBasedTri ggeringPolicy": { "size": "500" }
}
H
{ "AppenderRef": "STDOUT", "key": "Audit"},
{ "AppenderRef": "List", "key": "Service"}
]
}
}
H
"l oggers": {
"l ogger": { "nane": "EventLogger", "level": "info", "additivity": "false",
"AppenderRef": { "ref": "Routing" }},
"root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}
}

Note that in the RoutingAppender the Route element has been declared as an array. Thisisvalid
because each array element will be a Route component. Thiswon't work for elements such as
appenders and filters, where each element has a different name in the concise format. Appenders and
filters can be defined as array elements if each appender or filter declares an attribute named "type"

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 30

that contains the type of the appender. The following exampleillustrates this as well as how to declare
multiple loggers as an array.

{ "configuration": { "status": "debug", "name": "RoutingTest",
"packages": "org.apache.| ogging.l og4j.test",
"properties": {

“"property": { "name": "fil ename",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
H
"ThresholdFilter": { "level": "debug" },
"appenders": {
"appender": [
{ "type": "Console", "nanme": "STDOUT", "PatternLayout": { "pattern": "%mm" }},
{ "type": "List", "name": "List", "ThresholdFilter": { "level": "debug" }},
{ "type": "Routing", "name": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"RollingFile": {
"nane": "Rolling-${sd:type}", "fileNane": "${filenane}",
"filePattern": "target/rollingl/testl-${sd:type}.%.log.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] %?m"},
" Si zeBasedTri ggeringPolicy": { "size": "500" }
}
H
{ "AppenderRef": "STDOUT", "key": "Audit"},
{ "AppenderRef": "List", "key": "Service"}
]
}
}
]
H
"l oggers": {
"l ogger": [
{ "name": "EventLogger", "level": "info", "additivity": "false",
"AppenderRef": { "ref": "Routing" }},
{ "name": "comfoo.bar", "level": "error", "additivity": "false",
"AppenderRef": { "ref": "Console" }}
1.
"root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}
}
}

The JSON support uses the Jackson Data Processor to parse the JSON files. These dependencies must
be added to a project that wants to use JSON for configuration:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 31

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-core</artifactld>
<versi on>${j ackson2Ver si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-databi nd</artifactld>
<versi on>${j ackson2Ver si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-annotations</artifactld>
<ver si on>${j ackson2Ver si on} </ ver si on>

</ dependency>

5.1.5.3 Configuring loggers

An understanding of how loggerswork in Logdj is critical before trying to configure them. Please
reference the Logdj architecture if more information is required. Trying to configure Log4j without
understanding those concepts will lead to frustration.

A LoggerConfig is configured using the| ogger element. Thel ogger eement must have a name
attribute specified, will usually have aleve attribute specified and may also have an additivity
attribute specified. The level may be configured with one of TRACE, DEBUG, INFO, WARN,
ERROR, ALL or OFF. If no level is specified it will default to ERROR. The additivity attribute may
be assigned avalue of true or false. If the attribute is omitted the default value of false will be used.

A LoggerConfig (including the root LoggerConfig) can be configured with properties that will be
added to the properties copied from the ThreadContextMap. These properties can be referenced from
Appenders, Filters, Layouts, etc just asif they were part of the ThreadContext Map. The properties
can contain variables that will be resolved either when the configuration is parsed or dynamically
when each event islogged. See Property Substitution for more information on using variables.

The LoggerConfig may also be configured with one or more AppenderRef elements. Each appender
referenced will become associated with the specified LoggerConfig. If multiple appenders are
configured on the LoggerConfig each of them be called when processing logging events.

Every configuration must have aroot logger. If oneis not configured the default root LoggerConfig,
which has alevel of ERROR and has a Console appender attached, will be used. The main differences
between the root logger and other loggers are

1. Theroot logger does not have a name attribute.

2. The root logger does not support the additivity attribute since it has no parent.

5.1.5.4 Configuring Appenders

An appender is configured either using the specific appender plugin's name or with an appender
element and the type attibute containing the appender plugin's name. In addition each appender must
have a name attribute specified with a value that is unique within the set of appenders. The name will
be used by loggers to reference the appender as described in the previous section.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 32

Most appenders also support alayout to be configured (which again may be specified either using the
specific Layout plugin's name as the element or with "layout” as the element name along with atype
attribute that contains the layout plugin's name. The various appenders will contain other attributes or
elements that are required for them to function properly.

5.1.5.5 Configuring Filters
Logd4j allows afilter to be specified in any of 4 places:

1. At the same level asthe appenders, loggers and properties elements. These filters can accept or
reject events before they have been passed to a LoggerConfig.

2. In alogger element. These filters can accept or reject events for specific loggers.

3. In an appender element. These filters can prevent or cause events to be processed by the
appender.

4. In an appender reference element. These filters are used to determine if a Logger should route the
event to an appender.

Although only asinglefi | t er element can be configured, that element may bethefil t er s element
which represents the CompositeFilter. Thefi | t er s element allows any number of fi | t er elements
to be configured within it. The following example shows how multiple filters can be configured on the
ConsoleAppender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 33

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug" name="XM.ConfigTest" packages="org. apache. | ogging.|log4j.test">
<Properties>
<Property nanme="fil ename">target/test.| og</Property>
</ Properties>
<Threshol dFilter |evel ="trace"/>

<Appender s>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="%n MDCY¥X%"/ >
</ Consol e>
<Consol e nanme="FLOW >

<l-- this pattern outputs class nane and |ine nunber -->
<PatternLayout pattern="%1}.%M %n Y%ex%"/ >
<filters>

<Mar ker Fi | ter marker="FLON onMat ch="ACCEPT" onM smat ch="NEUTRAL"/ >
<Mar ker Fi | t er mar ker =" EXCEPTI ON' onMat ch="ACCEPT" onM smat ch="DENY"/ >
</[filters>
</ Consol e>
<File nane="File" fileName="${fil enane}">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
</File>
<Li st name="List">
</ List>
</ Appender s>

<Logger s>
<Logger nane="org. apache. | oggi ng. | og4j.test1" |evel ="debug" additivity="fal se">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
<Appender Ref ref="STDOUT"/ >
</ Logger >

<Logger nane="org. apache. | oggi ng. | o0g4j.test2" |evel ="debug" additivity="fal se">
<Property nanme="user">${sys: user. nane} </ Property>
<Appender Ref ref="File">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
</ Appender Ref >
<Appender Ref ref="STDOUT" |evel ="error"/>
</ Logger >

<Root |evel ="trace">
<Appender Ref ref="List"/>
</ Root >

</ Logger s>

</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 34

5.1.5.6 Configuration with Properties

As of version 2.4, Log4j now supports configuration via properties files. Note that the property syntax
isNOT the same as the syntax used in Log4j 1. Like the XML and JSON configurations, properties
configurations define the configuration in terms of plugins and attributes to the plugins.

The properties configuration requires that you list the identifiers of the appenders, filters and loggers,
in a comma separated list in properties with those names. Each of those components will then be
expected to be defined in sets of properties that begin with component.identifier. The identifier

does not have to match the name of the component being defined but must uniquely identify all the
attributes and subcomponents that are part of the component. Each individual component MUST have
a"type" attribute specified that identifies the component's Plugin type.

Unlike the base components, when creating subcomponents you cannot specify an element containing
alist of identifiers. Instead, you must define the wrapper element with its type asis shown in the
policies definition in the rolling file appender below. Y ou then define each of the subcomponents
below that wrapper element, as the TimeBasedTriggeringPolicy and SizeBasedTriggeringPolicy are
defined below.

Properties configuration files support the advertiser, monitorinterval, name, packages,
shutdownHook, status, and verbose attrbutes. See Configuration Syntax for the definitions of these
attributes.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

status = error
nane = PropertiesConfig

property.filename = target/rolling/rollingtest.l|og

filters = threshold

filter.threshold.type = Threshol dFil ter
filter.threshold.level = debug

appenders = console, rolling, |ist

appender. consol e. type = Consol e
appender. consol e. nane = STDOUT
appender. consol e. | ayout. type = PatternLayout
appender. consol e. | ayout . pattern = %m

appender.rol ling.type Rol I'i ngFi | e

appender.rolling.name = RollingFile

appender.rolling.fileNane = ${fil enane}
appender.rolling.filePattern = target/rolling2/test1-%l{Mdd-yy-HH mmss}-% .| o0g.gz
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = % % %{1.} [%] % &
appender.rolling.policies.type = Policies
appender.rolling.policies.tinme.type = Ti meBasedTri ggeri ngPol i cy
appender.rolling.policies.time.interval = 2
appender.rolling.policies.time.modulate = true
appender.rolling. policies.size.type = Si zeBasedTri ggeri ngPolicy
appender.rolling.policies.size.size=100MB

appender.list.type = List

appender.|ist.name = List

appender.list.filters = threshold
appender.list.filter.threshold.type = ThresholdFilter
appender.list.filter.threshold.level = error

| oggers = rolling

| ogger.rolling.name = org. apache. | oggi ng. | 0og4j . core. appender.rolling
| ogger.rolling.level = debug

logger.rolling.additivity = fal se

| ogger.rolling. appenderRefs = rolling

| ogger.rolling. appenderRef.rolling.ref = RollingFile

root Logger.level = info

r oot Logger . appender Ref s = st dout
r oot Logger . appender Ref . st dout . ref = STDOUT

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 36

5.1.6 Property Substitution

Log4j 2 supports the ability to specify tokensin the configuration as references to properties defined
elsewhere. Some of these properties will be resolved when the configuration file is interpreted while
others may be passed to components where they will be evaluated at runtime. To accomplish this,
Log4j usesvariations of Apache Commons Lang's StrSubstitutor and StrLookup classes. In a
manner similar to Ant or Maven, this allows variables declared as ${ nane} to be resolved using
properties declared in the configuration itself. For example, the following example shows the filename
for the rolling file appender being declared as a property.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="debug" nanme="RoutingTest" packages="org. apache. | ogging.|log4j.test">
<Properties>
<Property nanme="fil ename">target/rollingl/rollingtest-$${sd:type}.|og</Property>
</ Properties>
<Threshol dFil ter |evel ="debug"/>

<Appender s>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Li st name="List">
<Threshol dFil ter |evel ="debug"/>
</ List>
<Rout i ng nane="Routing">
<Rout es pattern="%$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l og.gz">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] % Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol l'i ngFi | e>
</ Rout e>
<Rout e ref="STDOUT" key="Audit"/>
<Route ref="List" key="Service"/>
</ Rout es>
</ Rout i ng>
</ Appender s>

<Logger s>
<Logger nane="Event Logger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routing"/>
</ Logger >

<Root |evel="error">
<Appender Ref ref="STDOUT"/ >
</ Root >

</ Logger s>

</ Confi guration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

https://commons.apache.org/proper/commons-lang/

5 Configuration 37

While thisis useful, there are many more places properties can originate from. To accommodate this,
Log4j also supports the syntax ${ pr ef i x: name} where the prefix identifiestells Log4j that variable
name should be evaluated in a specific context. The contexts that are built in to Logj4 are:

bundle Resource bundle. The format is
${ bundl e: Bundl eNane: Bundl eKey} .
The bundle name follows package
naming conventions, for example:
${ bundl e: com domai n. Messages: MyKey}.

ctx Thread Context Map (MDC)

date Inserts the current date and/or time using the specified
format

env System environment variables

jvmrunargs A JVM input argument accessed through

JMX, but not a main argument; see
RuntimeMXBean.getinputArguments(). Not available
on Android.

log4j Log4j configuration properties. The expressions
${1 0g4j : confi gLocati on} and
${1 0g4j : confi gPar ent Locat i on}
respectively provide the absolute path to the log4j
configuration file and its parent folder.

main A value set with
MapLookup.setMainArguments(String[])

map A value from a MapMessage

sd A value from a StructuredDataMessage. The key "id"
will return the name of the StructuredDatald without
the enterprise number. The key "type" will return the
message type. Other keys will retrieve individual
elements from the Map.

sys System properties

A default property map can be declared in the configuration file. If the value cannot be located in
the specified lookup the value in the default property map will be used. The default map is pre-
populated with avalue for "hostName" that is the current system's host name or 1P address and the
"contextName" with is the value of the current logging context.

Aninteresting feature of StrLookup processing isthat when avariable reference is declared with
multiple leading '$' characters each time the variable is resolved the leading '$' is simply removed. In
the previous example the "Routes’ element is capable of resolving the variable at runtime. To allow
thisthe prefix value is specified as a variable with two leading '$' characters. When the configuration
fileisfirst processed the first variable is ssimply removed. Thus, when the Routes element is evaluated
at runtime it is the variable declaration "${ sd:type} " which causes the event to be inspected for a
StructuredDataM essage and if oneis present the value of its type attribute to be used as the routing
key. Not all elements support resolving variables at runtime. Components that do will specifically call
that out in their documentation.

If no value isfound for the key in the Lookup associated with the prefix then the value associated
with the key in the properties declaration in the configuration file will be used. If no valueis found the

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--
http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

5 Configuration 38

variable declaration will be returned as the value. Default values may be declared in the configuration
by doing:

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="type">Audit </ property>
</ Properties>

</ Configuration>

As a footnote, it is worth pointing out that the variables in the RollingFile appender declaration will
also not be evaluated when the configuration is processed. Thisis simply because the resolution

of the whole RollingFile element is deferred until a match occurs. See RoutingAppender for more
information.

5.1.7 XInclude

XML configuration files can include other fileswith XInclude. Here is an example log4j2.xml file
that includes two other files:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration xmns: xi ="http://ww.w3. org/ 2001/ Xl ncl ude"
stat us="warn" name=" Xl ncl udeDenp" >
<properties>
<property nanme="fil enane" >xi ncl ude- deno. | og</ property>
</ properties>
<Threshol dFilter |evel ="debug"/>
<xi :include href="10g4j-xincl ude-appenders. xm" />
<xi :include href="10g4j-xinclude-1oggers.xm" />
</ confi guration>

log4j-xinclude-appenders.xml:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<appender s>
<Consol e name="STDOUT" >
<PatternLayout pattern="%dn" />
</ Consol e>
<File nane="File" fileName="${filenane}" bufferedl O="true" imediateFl ush="true">
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
</File>
</ appender s>

logd4j-xinclude-loggers.xml:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.xml.com/lpt/a/1009

5 Configuration 39

<?xm version="1.0" encodi ng="UTF-8"?>
<l ogger s>
<l ogger nane="org. apache. | oggi ng. | o0g4j.test1" |evel ="debug" additivity="fal se">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123" />
</ Thr eadCont ext MapFi | t er >
<Appender Ref ref="STDOUT" />
</ | ogger >

<l ogger nane="org. apache. | oggi ng. | og4j.test2" |evel ="debug" additivity="fal se">
<Appender Ref ref="File" />
</ | ogger >

<root |evel="error">
<Appender Ref ref="STDOUT" />
</ r oot >
</ | ogger s>

5.1.8 Status Messages

Troubleshooting tip for the impatient:

« Before a configuration is found, status logger level can be controlled with system property
or g. apache. | oggi ng. | og4j . si npl el og. St at usLogger . | evel .

« After a configuration is found, status logger level can be controlled in the configuration file with the "status"
attribute, for example: <Conf i gurati on status="trace">.

Just asit is desirable to be able to diagnose problems in applications, it is frequently necessary to

be able to diagnose problems in the logging configuration or in the configured components. Since
logging has not been configured, "normal" logging cannot be used during initialization. In addition,
normal logging within appenders could create infinite recursion which Log4j will detect and cause the
recursive events to be ignored. To accomodate this need, the Log4j 2 API includesa StatusL ogger.
Components declare an instance of the StatusL ogger similar to:

protected final static Logger |ogger = StatusLogger.getlLogger();

Since StatusLogger implements the Log4j 2 API's Logger interface, al the normal Logger methods
may be used.

When configuring Log4j it is sometimes necessary to view the generated status events. This can

be accomplished by adding the status attribute to the configuration element or a default value can

be provided by setting the "L ogdjDefaultStatusL evel” system property. Valid values of the status
attribute are "trace”, "debug", "info", "warn", "error" and "fatal”. The following configuration has the
status attribute set to debug.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>;
<Configuration status="debug" nanme="RoutingTest">
<Properties>
<Property nanme="fil ename">target/rollingl/rollingtest-$${sd:type}.|og</Property>
</ Properties>
<Threshol dFi l ter |evel ="debug"/>

<Appender s>
<Consol e name="STDOUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Li st nane="List">
<Threshol dFi Il ter |evel ="debug"/>
</ List>
<Routi ng nanme="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l o0g.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFil e>
</ Rout e>
<Rout e ref="STDOUT" key="Audit"/>
<Route ref="List" key="Service"/>
</ Rout es>
</ Rout i ng>
</ Appender s>

<Logger s>
<Logger nane="EventLogger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routing"/>
</ Logger >

<Root |evel="error">
<Appender Ref ref="STDOUT"/ >
</ Root >

</ Logger s>

</ Configuration>

During startup this configuration produces:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

40

5 Configuration 41

2011-11-23 17:08: 00, 769 DEBUG Generated plugins in 0.003374000 seconds

2011-11-23 17:08: 00, 789 DEBUG Cal I i ng createProperty on class org. apache. | oggi ng. | o0g4j . core.
config.Property for element property with paranms(name="fil ename",
val ue="target/rollingl/rollingtest-${sd:type}.log")

2011-11-23 17:08: 00, 792 DEBUG Cal | i ng confi gureSubstitutor on class org.apache. | oggi ng. | o0g4j.
core.config.plugins.PropertiesPlugin for el ement properties with
parans(properties={fil ename=target/rollingl/rollingtest-${sd:type}.log})

2011-11-23 17:08: 00, 794 DEBUG Generated plugins in 0.001362000 seconds

2011-11-23 17:08: 00, 797 DEBUG Cal ling createFilter on class org.apache. | oggi ng. | o0g4j. core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMat ch="nul | ", onM smatch="nul | ")

2011-11-23 17:08: 00,800 DEBUG Cal | i ng createlLayout on class org. apache. | oggi ng. | og4j. core.
| ayout. PatternLayout for el ement PatternLayout with parans(pattern="%dn",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00, 802 DEBUG Generated plugins in 0.001349000 seconds

2011-11-23 17:08: 00, 804 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | 0og4j . core.
appender. Consol eAppender for el ement Consol e with parans(PatternLayout (%s), null,
target="nul | ", name="STDOUT", ignoreExceptions="null")

2011-11-23 17:08: 00,804 DEBUG Cal ling createFilter on class org.apache. | oggi ng.| og4j. core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMat ch="nul | ", onM smatch="nul | ")

2011-11-23 17:08: 00,806 DEBUG Cal | i ng creat eAppender on class org. apache. | oggi ng. | og4j.test.
appender . Li st Appender for elenment List with paranms(name="List", entryPerNewLi ne="null",

raw="nul |, null, Threshol dFilter (DEBUG))
2011-11-23 17:08: 00, 813 DEBUG Cal I i ng createRoute on class org. apache. | oggi ng. | 0og4j . cor e. appender.
routing. Route for element Route with parans(AppenderRef="null", key="null", Node=Route)

2011-11-23 17:08: 00, 823 DEBUG Cal | i ng createRoute on class org. apache. | oggi ng. | og4j . cor e. appender.
routing. Route for element Route with parans(Appender Ref =" STDOUT", key="Audit", Node=Route)
2011-11-23 17:08: 00, 824 DEBUG Cal | i ng createRoute on class org. apache. | oggi ng. | 0og4j . cor e. appender.
routing. Route for element Route with parans(AppenderRef ="List", key="Service", Node=Route)
2011-11-23 17:08: 00, 825 DEBUG Cal | i ng creat eRoutes on class org. apache. | oggi ng. | og4j . cor e. appender.
routing. Routes for elenment Routes with parans(pattern="${sd:type}",
rout es={ Rout e(type=dynani ¢ default), Route(type=static Reference=STDOUT key='Audit'),
Rout e(type=static Reference=List key=' Service')})
2011-11-23 17:08: 00, 827 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | og4j . cor e. appender.
routing. Routi ngAppender for el enment Routing wth parans(name="Routing",
i gnor eExceptions="nul | ", Routes({Route(type=dynanic default), Route(type=static
Ref er ence=STDOUT key='Audit'),
Rout e(type=static Reference=List key='Service')}), Configuration(RoutingTest), null, null)
2011-11-23 17:08: 00, 827 DEBUG Cal | i ng creat eAppenders on cl ass org. apache. | oggi ng. | og4j . core. confi g.
pl ugi ns. Appender sPl ugi n for el ement appenders with parans(appenders={ STDOUT, List, Routing})
2011-11-23 17:08: 00, 828 DEBUG Cal | i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
confi g. pl ugi ns. Appender Ref Pl ugi n for el ement Appender Ref w th parans(ref="Routing")
2011-11-23 17:08: 00, 829 DEBUG Cal | i ng createlLogger on class org. apache. | oggi ng. | o0g4j.core. config.
Logger Config for elenent |ogger with parans(additivity="false", |evel="info", nane="EventLogger",
Appender Ref ={ Rout i ng}, null)
2011-11-23 17:08: 00, 830 DEBUG Cal | i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
confi g. pl ugi ns. Appender Ref Pl ugi n for el ement Appender Ref w th parans(ref="STDOUT")

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 42

2011-11-23 17:08: 00,831 DEBUG Cal I i ng createlLogger on class org.apache. | oggi ng. | o0g4j.core.config.
Logger Conf i g$Root Logger for el ement root with paranms(additivity="null", |evel="error",
Appender Ref ={ STDOUT}, nul|)

2011-11-23 17:08: 00, 833 DEBUG Cal | i ng createlLoggers on class org. apache. | oggi ng. | og4j . core.
config. plugins. LoggersPlugin for el enment |oggers wth parans(| oggers={EventlLogger, root})

2011-11-23 17:08: 00, 834 DEBUG Reconfi gurati on conpl eted

2011-11-23 17:08: 00, 846 DEBUG Cal | i ng createlLayout on class org. apache. | oggi ng. | o0g4j. core.
| ayout. PatternLayout for elenment PatternLayout with parans(pattern="% % %{1.} [%] %?n",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00,849 DEBUG Cal I i ng createPolicy on class org. apache. | oggi ng. | o0g4j. core.
appender.rolling. Si zeBasedTri ggeringPolicy for el ement SizeBasedTriggeringPolicy with
par ans(si ze="500")

2011-11-23 17:08: 00, 851 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | 0og4j . core.
appender. Rol | i ngFi | eAppender for element RollingFile with
parans(fil eName="target/rollingl/rollingtest-Unknown. | og",
filePattern="target/rollingl/test1l-Unknown.% .| og.gz", append="null", nanme="Rolling-Unknown",
bufferedl O="nul I ", imedi ateFl ush="nul | ",

Si zeBasedTri ggeri ngPol i cy(Si zeBasedTri ggeri ngPol i cy(si ze=500)), null,
Patt ernLayout (%d % %{1.} [%] % ®®), null, ignoreExceptions="null")

2011-11-23 17:08: 00, 858 DEBUG Generated plugins in 0.002014000 seconds

2011-11-23 17:08: 00, 889 DEBUG Reconfiguration started for context sun.m sc.
Launcher $Appd assLoader @7b90b39

2011-11-23 17:08: 00, 890 DEBUG Generated plugins in 0.001355000 seconds

2011-11-23 17:08: 00, 959 DEBUG Generated plugins in 0.001239000 seconds

2011-11-23 17:08: 00, 961 DEBUG Generated plugins in 0.001197000 seconds

2011-11-23 17:08: 00,965 WARN No Loggers were configured, using default

2011-11-23 17:08: 00,976 DEBUG Reconfi gurati on conpl eted

If the status attribute is set to error than only error messages will be written to the console. This makes
troubleshooting configuration errors possible. As an example, if the configuration above is changed to
have the status set to error and the logger declaration is:

<l ogger nane="Event Logger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routng"/>
</ | ogger >

the following error message will be produced.

2011-11-24 23:21: 25,517 ERROR Unabl e to | ocate appender Routng for |ogger EventlLogger

Applications may wish to direct the status output to some other destination. This can be accomplished
by setting the dest attribute to either "err” to send the output to stderr or to afile location or URL. This
can also be done by insuring the configured status is set to OFF and then configuring the application
programmeatically such as:

St at usConsol eLi stener |istener = new StatusConsol eLi stener(Level . ERROR);
St at usLogger . get Logger (). regi sterLi stener(listener);

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 43

5.1.9 Testing in Maven

Maven can run unit and functional tests during the build cycle. By default, any filesplaced insr ¢/

t est/ resour ces are automatically copied to target/test-classes and are included in the classpath
during execution of any tests. As such, placing alog4j2-test.xml into this directory will cause it to be
used instead of alog4j2.xml or log4j2.json that might be present. Thus a different log configuration
can be used during testing than what is used in production.

A second approach, which is extensively used by Log4j 2, is to set the log4j.configurationFile
property in the method annotated with @BeforeClass in the junit test class. Thiswill allow an
arbitrarily named file to be used during the test.

A third approach, also used extensively by Logdj 2, isto usethel ni ti al Logger Cont ext JUnit
test rule which provides additional convenience methods for testing. This requires adding thel og4j -
coretest-jar dependency to your test scope dependencies. For example:

public class AwesoneTest {

@rul e
public Initial LoggerContext init = new Initial LoggerContext("MTestConfig.xm");

@est
public void test SoneAwesoneFeature() {
final LoggerContext ctx = init.getContext();
final Logger |ogger = init.getLogger("org.apache. |l ogging.|og4j.ny.awesone.test.|ogger");
final Configuration cfg = init.getConfiguration();
final ListAppender app = init.getListAppender("List");
| ogger. warn(" Test nessage");
final List<LogEvent> events = app.get Events();
/1l etc.

5.1.10 System Properties

Below follows a number of system properties that can be used to control Log4j 2 behaviour. Any
spaces present in the property name are for visual flow and should be removed.

log4j.configurationFile Path to an XML or JSON Log4j 2
configuration file.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 44

Log4jContextSelector ClassLoaderContextSelector Creates the Logger Cont ext s.
An application can have one
or more active LoggerContexts
depending on the circumstances.
See Log Separation for more
details. Available context selector
implementation classes:
or g. apache. | oggi ng. | og4j . core. async
- makes all loggers asynchronous.
or g. apache. | oggi ng. | og4j . core. sel ectc
- creates a single shared
LoggerContext.
or g. apache. | oggi ng. | og4j . core. sel ectc
- separate LoggerContexts for each
web application.
or g. apache. | oggi ng. | og4j . core. sel ectc
- use JNDI to locate each web
application's LoggerContext.
or g. apache. | oggi ng. | og4j . core. osgi .E
- separate LoggerContexts for each
OSGi bundle.

Log4jLogEventFactory org.apache.logging.log4j.core.impl .D Factory class used by
LoggerConfig to create LogEvent
instances. (Ignored when the
AsyncLogger Cont ext Sel ect or
is used.)

log4j2.loggerContextFactory org.apache.logging.log4j.simple .Sim| Factory class used by
LogManager to bootstrap
the logging implementation.
The core jar provides
org. apache. | oggi ng. 1 og4j . core.inpl. Lc

log4j.configurationFactory Fully specified class
name of a class extending
org. apache. | oggi ng. | og4j . core. confi g.
If specified, an instance of this
class is added to the list of
configuration factories.

log4j.shutdownHookEnabled true Overrides the global flag for
whether or not a shutdown
hook should be used to stop a
Logger Cont ext . By default,
this is enabled and can be disabled
on a per-configuration basis.
When running with the | 0g4j -
web module, this is automatically
disabled.

log4j.shutdownCallbackRegistry org.apache.logging.log4j.core.util .De Fully specified class name
of a class implementing
ShutdownCallbackRegistry.
If specified, an instance of
this class is used instead of
Def aul t Shut downCal | backRegi stry
The specified class must have a
default constructor.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 45

log4j.Clock SystemClock Implementation of the
org. apache. | oggi ng. | og4j.core. util.d
interface that is used for
timestamping the log events.
By default,
SystemcurrentTineMIlis
is called on every log event.
You can also specify a fully
qualified class name of a custom
class that implements the Cl ock
interface.

org.apache.logging.log4j.level ERROR Log level of the default
configuration. The default
configuration is used if the
ConfigurationFactory could not
successfully create a configuration
(e.g. no log4j2.xml file was found).

disableThreadContext false Ift r ue, the ThreadContext stack
and map are disabled. (May be
ignored if a custom ThreadContext
map is specified.)

disableThreadContextStack false Ift r ue, the ThreadContext stack
is disabled.
disableThreadContextMap false Ift r ue, the ThreadContext map

is disabled. (May be ignored if a
custom ThreadContext map is
specified.)

log4j2.threadContextMap Fully specified class nhame of a
custom Thr eadCont ext Map
implementation class.

isThreadContextMaplnheritable false Iftrue usea
I nheri tabl eThr eadLocal
to implement the ThreadContext
map. Otherwise, use a plain
Thr eadLocal . (May be ignored
if a custom ThreadContext map is
specified.)

log4j2.disable.jmx false Ift r ue, Log4j configuration
objects like LoggerContexts,
Appenders, Loggers, etc. will not
be instrumented with MBeans and
cannot be remotely monitored and
managed.

log4j2.jmx.notify.async false for web apps, true otherwise Ift r ue, log4j's JMX notifications
are sent from a separate
background thread, otherwise they
are sent from the caller thread. If
the j avax. servl et . Servl et
class is on the classpath, the
default behaviour is to use
the caller thread to send JMX
notifications.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 46

log4j.skipJansi false Ift r ue, the ConsoleAppender
will not try to use the Jansi output
stream on Windows.

log4j.ignoreTCL false Ift r ue, classes are only loaded
with the default class loader.
Otherwise, an attempt is made
to load classes with the current
thread's context class loader before
falling back to the default class
loader.

org.apache.logging.log4j.uuidSequen 0 System property that may be used
to seed the UUID generation with
an integer value.

org.apache.logging.log4j.simplelog .s false If t r ue, the full ThreadContext
map is included in each
SimpleLogger log message.

org.apache.logging.log4j.simplelog .s false Ift r ue, the logger name is
included in each SimpleLogger log
message.

org.apache.logging.log4j.simplelog .s true Ift r ue, only the last component

of a logger name is included in
SimpleLogger log messages.

(E.g., if the logger name is
"mycompany.myproject.mycomponent",
only "mycomponent" is logged.

org.apache.logging.log4j.simplelog .s false Ift r ue, SimpleLogger log
messages contain timestamp
information.

org.apache.logging.log4j.simplelog .d "yyyy/MM/dd HH:mm:ss:SSS zzz" Date-time format to use. Ignored if
or g. apache. | oggi ng. | og4j . si npl el og. st
isfal se.

org.apache.logging.logj.simplelog .lo¢ system.err "system.err" (case-insensitive) logs
to System.err, "system.out" (case-
insensitive) logs to System.out,
any other value is interpreted as
a file name to save SimpleLogger
messages to.

org.apache.logging.log4j.simplelog .l ERROR Default level for new SimpleLogger
instances.
org.apache.logging.log4j.simplelog.<| SimpleLogger default log level Log level for a the SimpleLogger

instance with the specified name.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 47

org.apache.logging.log4j.simplelog .S ERROR This property is used to control the
initial StatusLogger level, and can
be overridden in code by calling
St at usLogger . get Logger () . set Level (sor
Note that the StatusLogger level is
only used to determine the status
log output level until a listener is
registered. In practice, a listener is
registered when a configuration is
found, and from that point onwards,
status messages are only sent to
the listeners (depending on their
statusLevel).

Log4jDefaultStatusLevel ERROR The StatusL ogger logs events
that occur in the logging
system to the console.

During configuration,
AbstractConfiguration registers
a StatusConsol el istener with
the StatusL ogger that may
redirect status log events from
the default console output to a
file. The listener also supports
fine-grained filtering. This
system property specifies

the default status log level

for the listener to use if the
configuration does not specify a
status level.

Note: this property is used by
the log4j-core implementation

only after aconfiguration file
has been found.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 48

log4j2.StatusLogger.level WARN Theinitial "listenersLevel"
of the StatusL ogger. If
Statusl ogger listeners are
added, the "listenerLevel" is
changed to that of the most
verbose listener. If any listeners
areregistered, the listenerLevel
is used to quickly determine if
an interested listener exists.

By default, Statusl ogger
listeners are added when a
configuration is found and by
the IMX StatusL oggerAdmin
MBean. For example, if

a configuration contains
<Confi guration
status="trace" >, alistener
with statusLevel TRACE is
registered and the StatusL ogger
listenerLevel is set to TRACE,
resulting in verbose status
messages displayed on the
console.

If no listeners are registered,

the listenersLevel is not

used, and the StatusL ogger

output level is determined by

St at usLogger . get Logger () . get Level ()
(see property

org. apache. | oggi ng. 1 og4j . sinpl el og . ¢

log4j2.status.entries 200 Number of StatusLogger
events that are kept in a buffer
and can be retrieved with
St at usLogger . get St at usDat a() .

AsyncLogger.ExceptionHandler See Async Logger System
Properties for details.

AsyncLogger.RingBufferSize 256 * 1024 See Async Logger System
Properties for details.

AsyncLogger.WaitStrategy Sleep See Async Logger System
Properties for details.

AsyncLogger.ThreadNameStrategy CACHED See Async Logger System
Properties for details.

AsyncLoggerConfig.ExceptionHandle See Mixed Async/Synchronous
Logger System Properties for
details.

AsyncLoggerConfig.RingBufferSize 256 * 1024 See Mixed Async/Synchronous
Logger System Properties for
details.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 49

AsyncLoggerConfig.WaitStrategy Sleep See Mixed Async/Synchronous
Logger System Properties for
details.

log4j.jul.LoggerAdapter org.apache.logging.log4j.jul .ApiLogg Default LoggerAdapter to use in the

JUL adapter. By default, if log4j-

core is available, then the class

org. apache. | oggi ng. |1 og4j .jul . CorelLog
will be used. Otherwise, the

Api Loggger Adapt er will be

used. Custom implementations

must provide a public default

constructor.

Log4j 2 System Properties

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 50

Web Applications and JSPs

6.1 Using Log4j 2 in Web Applications

Y ou must take particular care when using Log4j or any other logging framework within a Java EE
web application. It'simportant for logging resources to be properly cleaned up (database connections
closed, files closed, etc.) when the container shuts down or the web application is undeployed.
Because of the nature of class loaders within web applications, Log4j resources cannot be cleaned up
through normal means. Log4j must be "started" when the web application deploys and "shut down"
when the web application undeploys. How this works varies depending on whether your application is
a Servlet 3.0 or newer or Servlet 2.5 web application.

In either case, you'll need to add thel og4j - web module to your deployment as detailed in the
Maven, lvy, and Gradle Artifacts manual page.

To avoid problems the Log4j shutdown hook will automatically be disabled when the log4j-web jar is
included.

6.1.1 Configuration

Logd4j allows the configuration file to be specified in web.xml using thel og4j Conf i gur ati on
context parameter. Log4j will search for configuration files by:

1. If alocation is provided it will be searched for as a servlet context resource. For example, if
| og4j Confi gurati on contains"logging.xml" then Log4j will look for afile with that namein
the root directory of the web application.

2. If no location is defined Log4j will search for afile that starts with "log4j2" in the WEB-INF
directory. If more than onefileisfound, and if afile that starts with "log4j2-name” is present,
where name is the name of the web application, then it will be used. Otherwise the first file will
be used.

3. The"normal" search sequence using the classpath and file URLs will be used to locate the
configuration file.

6.1.2 Servlet 3.0 and Newer Web Applications

A Servlet 3.0 or newer web application isany <web- app> whose ver si on attribute has avalue

of "3.0" or higher. Of course, the application must also be running in a compatible web container.
Some examples are: Tomcat 7.0 and higher, GlassFish 3.0 and higher, JBoss 7.0 and higher, Oracle
WebL ogic 12c and higher, and IBM WebSphere 8.0 and higher.

6.1.2.1 The Short Story

Log4j 2 "just works" in Servlet 3.0 and newer web applications. It is capable of automatically
starting when the application deploys and shutting down when the application undeploys.
Thanksto the ServletContainerlnitializer APl added to Servlet 3.0, therelevant Fi | t er and
Ser vl et Cont ext Li st ener classes can be registered dynamically on web application startup.

Important Note! For performance reasons, containers often ignore certain JARs known not to
contain TLDs or Ser vl et Cont ai ner I niti al i zer sand do not scan them for web-fragments and
initializers. Importantly, Tomcat 7 <7.0.43 ignores al JAR files named log4j*.jar, which prevents this
feature from working. This has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change cat al i na. properti es and remove "log4j*.jar" from thej ar sToSki p

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContainerInitializer.html

6 Web Applications and JSPs 51

property. Y ou may need to do something similar on other containersif they skip scanning Log4j JAR
files.

6.1.2.2 The Long Story

The Logdj 2 Web JAR fileis aweb-fragment configured to order before any other web

fragments in your application. It containsa Ser vl et Cont ai nerlnitial i zer (

Logd4j ServletContainerInitializer) that the container automatically discovers and initializes. This adds
the LogdjServietContextListener and LogdjServletFilter to the Ser vl et Cont ext . These classes
properly initialize and deinitialize the Log4j configuration.

For some users, automatically starting Log4j is problematic or undesirable. Y ou can easily disable
thisfeature using thei sLog4j Aut ol ni ti al i zati onDi sabl ed context parameter. Simply add it
to your deployment descriptor with the value "true" to disable auto-initialization. Y ou must define the
context parameter inweb. xni . If you set in programmatically, it will be too late for Log4j to detect
the setting.

<cont ext - par an>
<par am nane>i sLog4j Autol niti al i zati onDi sabl ed</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Once you disable auto-initialization, you must initialize Log4j as you would a Servlet 2.5 web
application. Y ou must do so in away that thisinitialization happens before any other application code
(such as Spring Framework startup code) executes.

Y ou can customize the behavior of the listener and filter using the | og4j Cont ext Nane,

| og4j Confi gurati on, and/ori sLog4j Cont ext Sel ect or Naned context parameters. Read
more about thisin the Context Parameters section below. Y ou must not manually configure the
Log4j Ser vl et Cont ext Li st ener or Log4j Ser vl et Fi | t er inyour deployment descriptor (
web. xn) or in another initializer or listener in a Servlet 3.0 or newer application unless you disable
auto-initialization withi sLog4j Aut ol ni ti al i zati onDi sabl ed. Doing so will result in startup
errors and unspecified erroneous behavior.

6.1.3 Servlet 2.5 Web Applications

A Servlet 2.5 web application is any <web- app> whose ver si on attribute has avalue of "2.5." The
ver si on attribute is the only thing that matters; even if the web application is running in a Servlet
3.0 or newer container, it isa Servlet 2.5 web application if thever si on attributeis"2.5." Note that
Log4j 2 does not support Servlet 2.4 and older web applications.

If you are using Log4j in a Servlet 2.5 web application, or if you have disabled auto-initialization
withthei sLog4j Aut ol ni ti al i zati onDi sabl ed context parameter, you must configure

the LogdjServietContextListener and Log4jServletFilter in the deployment descriptor or
programmatically. The filter should match all requests of any type. The listener should be the very
first listener defined in your application, and the filter should be the very first filter defined and
mapped in your application. Thisis easily accomplished using the following web. xn1 code:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 52

<li stener>
<l i stener-cl ass>org. apache. | oggi ng. | og4j . web. Log4j Ser vl et Cont ext Li stener</1|i stener-cl ass>
</listener>

<filter>
<filter-name>l og4j ServletFilter</filter-name>
<filter-class>org. apache. | oggi ng. | 0g4j.web. Log4j ServletFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>l og4j ServletFilter</filter-name>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >FORWARD</ di spat cher >
<di spat cher > NCLUDE</ di spat cher >
<di spat cher >ERROR</ di spat cher >
<di spat cher >ASYNC</ di spat cher><!-- Servlet 3.0 w disabled auto-initialization only; not supported in
</filter-mappi ng>
Y ou can customize the behavior of the listener and filter using the | og4j Cont ext Nane,
| og4j Confi gurati on, and/ori sLog4j Cont ext Sel ect or Naned context parameters. Read more
about thisin the Context Parameters section below.

6.1.4 Context Parameters

By default, Log4j 2 usesthe Ser vl et Cont ext 's context name asthe Logger Cont ext name

and uses the standard pattern for locating the Log4j configuration file. There are three context
parameters that you can use to control this behavior. Thefirst, i sLog4j Cont ext Sel ect or Naned,
specifies whether the context should be selected using the JndiContextSelector. If

i sLog4j Cont ext Sel ect or Named is not specified or is anything other thant r ue, it isassumed to
bef al se.

If i sLog4j Cont ext Sel ect or Narred ist r ue, | og4j Cont ext Nane must be specified or

di spl ay- name must be specified inweb. xn ; otherwise, the application will fail to start with an
exception. | og4j Confi gur ati on should also be specified in this case, and must be avalid URI for
the configuration file; however, this parameter is not required.

If i sLog4j Cont ext Sel ect or Narred isnott r ue, | og4j Confi gur ati on may optionally be
specified and must be avalid URI or path to a configuration file or start with "classpath:” to denote
aconfiguration file that can be found on the classpath. Without this parameter, Log4j will use the
standard mechanisms for locating the configuration file.

When specifying these context parameters, you must specify them in the deployment descriptor (
web. xm) even in a Servlet 3.0 or never application. If you add them to the Ser vl et Cont ext within
alistener, Log4j will initialize before the context parameters are available and they will have no
effect. Here are some sample uses of these context parameters.

6.1.4.1 Set the Logging Context Name to "myApplication”

<cont ext - par an>
<par am nane>| og4j Cont ext Nane</ par am nane>
<par am val ue>nyAppl i cati on</ param val ue>
</ cont ext - par an>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html#getServletContextName()

6 Web Applications and JSPs 53

6.1.4.2 Set the Configuration Path/File/URI to "/etc/myApp/myLogging.xml"

<cont ext - par an>

<par am nane>| og4j Confi gur ati on</ par am name>

<paramval ue>file:///etc/ myApp/ myLoggi ng. xm </ param val ue>
</ cont ext - par an>

6.1.4.3 Use the Jndi Cont ext Sel ect or

<cont ext - par an>
<par am nanme>i sLog4j Cont ext Sel ect or Naned</ par am nane>
<par am val ue>t rue</ par am val ue>
</ cont ext - par an>
<cont ext - par an>
<par am nane>| og4j Cont ext Nane</ par am nanme>
<par am val ue>appW t hdndi Sel ect or </ par am val ue>
</ cont ext - par an>
<cont ext - par an>
<par am nane>| og4j Confi gur ati on</ par am name>
<paramval ue>file:///D:/conf/ myLoggi ng. xm </ param val ue>
</ cont ext - par an>

Note that in this case you must also set the "L og4j ContextSelector” system property to
"org.apache.logging.log4j.core.selector.Jndi ContextSel ector”.

6.1.5 Using Web Application Information During the Configuration

Y ou may want to use information about the web application during configuration. For example,
you could embed the web application’'s context path in the name of a Rolling File Appender. See
WebL ookup in Lookups for more information.

6.1.6 JavaServer Pages Logging

Y ou may use Log4j 2 within JSPs just as you would within any other Java code. Simple obtain
aLogger and cal its methods to log events. However, this requires you to use Java code within
your JSPs, and some development teams rightly are not comfortable with doing this. If you have a
dedicated user interface development team that is not familiar with using Java, you may even have
Java code disabled in your JSPs.

For thisreason, Log4j 2 provides a JSP Tag Library that enables you to log events without using any
Java code. To read more about using thistag library, read the Log4j Tag Library documentation.

Important Note! As noted above, containers often ignore certain JARs known not to contain TLDs
and do not scan them for TLD files. Importantly, Tomcat 7 <7.0.43 ignores all JAR files named
log4j* .jar, which prevents the JSP tag library from being automatically discovered. This does not
affect Tomcat 6.x and has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change cat al i na. properti es and remove "log4j* .jar" fromthej ar sToSki p
property. Y ou may need to do something similar on other containersif they skip scanning Log4j JAR
files.

6.1.7 Asynchronous Requests and Threads

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 54

The handling of asynchronous requests istricky, and regardless of Servlet container version or
configuration Log4j cannot handle everything automatically. When standard requests, forwards,
includes, and error resources are processed, the Log4j Ser vl et Fi | t er bindsthe Logger Cont ext
to the thread handling the request. After request processing completes, the filter unbinds the
Logger Cont ext from the thread.

Similarly, when an internal request is dispatched using aj avax. ser vl et . AsyncCont ext , the
Log4j Servl et Fi | t er alsobindsthe Logger Cont ext to the thread handling the request and
unbinds it when request processing completes. However, this only happens for requests dispatched
through the AsyncCont ext . There are other asynchronous activities that can take place other than
internal dispatched requests.

For example, after starting an AsyncCont ext you could start up a separate thread to process the
reguest in the background, possibly writing the response with the Ser vl et Qut put St r eam Filters
cannot intercept the execution of thisthread. Filters also cannot intercept threads that you start in the
background during non-asynchronous requests. Thisis true whether you use a brand new thread or a
thread borrowed from athread pool. So what can you do for these special threads?

Y ou may not need to do anything. If you didn't usethei sLog4j Cont ext Sel ect or Narmed
context parameter, there is no need to bind the Logger Cont ext to the thread. Log4j can safely
locate the Logger Cont ext on itsown. In these cases, the filter provides only very modest
performance gains, and only when creating new Logger s. However, if you did specify the

i sLog4j Cont ext Sel ect or Named context parameter with the value "true”, you will need to
manually bind the Logger Cont ext to asynchronous threads. Otherwise, Log4j will not be ableto
locateit.

Thankfully, Log4j provides a simple mechanism for binding the Logger Cont ext to asynchronous
threads in these specia circumstances. The ssimplest way to do thisisto wrap the Runnabl e instance
that is passed to the AsyncCont ext . st art () method.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 55

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;
i mport org.apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {

@verride
protected void doGet (final HttpServletRequest req, final HttpServletResponse resp) throws ServletExceptio
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . st art (WebLogger Cont ext Uti | s. wr apExecuti onCont ext (thi s. get Servl et Context (), new Runnabl e(
@verride
public void run() {
final Logger |ogger = LogManager. get Logger (Test AsyncServl et.cl ass);
| ogger.info("Hello, servliet!");
}
1)

@verride
protected void doPost (final HttpServletRequest req, final HttpServletResponse resp) throws ServletExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext.start (new Runnabl e() {
@verride
public void run() {
final Log4j WebSupport webSupport =
WebLogger Cont ext Uti | s. get WebLi f eCycl e(Test AsyncServl et . t hi s. get Servl et Context());
webSupport . set Logger Cont ext () ;
/1 do stuff
webSupport. cl ear Logger Cont ext () ;

1)

This can be slightly more convenient when using Java 1.8 and lambda functions as demonstrated
below.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 56

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;
i mport org.apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {
@verride
protected void doGet (HttpServl et Request req, HttpServletResponse resp) throws ServletException, |OExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . start (WebLogger Cont ext Uti | s. wr apExecuti onCont ext (this. getServletContext(), () -> {
final Logger |ogger = LogManager. get Logger (Test AsyncServl et.cl ass);
| ogger.info("Hello, serviet!");

D)

Alternatively, you can obtain the Log4jWebLifeCycleinstance from the Ser vl et Cont ext
attributes, call itsset Logger Cont ext method as the very first line of code in your asynchronous
thread, and call itscl ear Logger Cont ext method as the very last line of code in your asynchronous
thread. The following code demonstrates this. It uses the container thread pool to execute
asynchronous request processing, passing an anonymous inner Runnabl e to the st ar t method.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 57

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;

i mport org.apache. | oggi ng. | og4j . Logger;

i nport org. apache. | oggi ng. | og4j . web. Log4j WebLi f eCycl e;

i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {
@verride
protected void doGet (HttpServl et Request req, HttpServletResponse resp) throws ServletException, |OExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . start (new Runnabl e() {
@verride
public void run() {
final Log4j WebLifeCycle webLifeCycle =
WebLogger Cont ext Uti | s. get WebLi f eCycl e(Test AsyncSer vl et . t hi s. get Servl et Context());
webLi f eCycl e. set Logger Cont ext () ;
try {
final Logger |ogger = LogManager. getLogger (Test AsyncServl et.cl ass);
| ogger.info("Hello, servliet!");
} finally {
webLi f eCycl e. cl ear Logger Cont ext () ;

1)

Note that you must call cl ear Logger Cont ext once your thread is finished processing. Failing

to do so will result in memory leaks. If using athread pool, it can even disrupt the logging of other
web applicationsin your container. For that reason, the example here shows clearing the context in a
final Iy block, which will always execute.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 58

Plugins

7.1 Plugins

7.1.1 Introduction

Log4j 1.x alowed for extension by requiring class attributes on most of the configuration
declarations. In the case of some elements, notably the PatternLayout, the only way to add new
pattern converters was to extend the PatternLayout class and add them via code. One of goals of
Log4j 2 isto make extending it extremely easy through the use of plugins.

InLog4j 2 apluginisdeclared by adding a @Plugin annotation to the class declaration. During
initialization the Configuration will invoke the PluginManager to load the built-in Log4j plugins as
well as any custom plugins. The Pl ugi nManager locates plugins by looking in four places:

» Seridized plugin listing files on the classpath. These files are generated automatically during the
build (more details bel ow).

» (OSGi only) Serialized plugin listing files in each active OSGi bundle. A Bundl eLi st ener is
added on activation to continue checking new bundles after | og4j - cor e has started.

* A comma-separated list of packages specified by thel og4j . pl ugi n. packages system
property.

» Packages passed to the static Pl ugi nManager . addPackages method (before Log4j
configuration occurs).

» The packages declared in your log4j2 configuration file.

If multiple Plugins specify the same (case-insensitive) name, then the load order above determines
which one will be used. For example, to override the Fi | e plugin which is provided by the built-
inFi | eAppender class, you would need to place your pluginin aJAR filein the CLASSPATH
ahead of | og4j - core. j ar. Thisis not recommended; plugin name collisions will cause awarning
to be emitted. Note that in an OSGi environment, the order that bundles are scanned for plugins
generally follows the same order that bundles were installed into the framework. See getBundles()
and SynchronousBundleListener. In short, name collisions are even more unpredictable in an OSGi
environment.

Serialized plugin listing files are generated by an annotation processor contained in the log4j-

core artifact which will automatically scan your code for Log4j 2 plugins and output a metadata
filein your processed classes. There is nothing extra that needs to be done to enable this; the

Java compiler will automatically pick up the annotation processor on the class path unless you
explicitly disableit. In that case, it would be important to add another compiler pass to your build
process that only handles annotation processing using the Log4j 2 annotation processor class,

org. apache. | oggi ng. | og4j . core. config. pl ugi ns. processor. Pl ugi nProcessor.To
do this using Apache Maven, add the following execution to your maven-compiler-plugin (version 2.2
or higher) build plugin:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.osgi.org/javadoc/r5/core/org/osgi/framework/BundleContext.html#getBundles()
http://www.osgi.org/javadoc/r5/core/org/osgi/framework/SynchronousBundleListener.html

7 Plugins 59

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ groupl d>
<artifact!ld>maven-conpil er-plugin</artifactld>
<versi on>3. 1</ ver si on>
<executions>
<executi on>
<i d>l og4j - pl ugi n- processor</id>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
<phase>process- cl asses</ phase>
<configuration>
<pr oc>onl y</ proc>
<annot at i onPr ocessor s>
<annot at i onPr ocessor >or g. apache. | oggi ng. | og4j . core. confi g. pl ugi ns. processor. Pl ugi nProcessor </ annot a
</ annot at i onProcessor s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

Asthe configuration is processed the appropriate plugins will be automatically configured and
initialized. Log4j 2 utilizes afew different categories of plugins which are described in the following
sections.

7.1.2 Core

Core plugins are those that are directly represented by an element in a configuration file, such as an
Appender, Logger or Filter. Custom plugins that conform to the rules laid out in the next paragraph
may simply be referenced in the configuration, provided they are appropriate configured to be loaded
by the PluginManager.

Every Core plugin must declare a static method that is marked with a PluginFactory annotation. To
allow the Configuration to pass the correct parameters to the method, every parameter to the method
must be annotated as one of the following attribute types. Each attribute or element annotation must
include the name that must be present in the configuration in order to match the configuration item to
its respective parameter.

7.1.2.1 Attribute Types
PluginAttribute

The parameter must be convertible from a String using a TypeConverter. Most built-in
types are aready supported, but custom TypeConvert er plugins may also be provided for
more type support.

PluginElement

The parameter may represent a complex object that itself has parameters that can be
configured.

PluginConfiguration
The current Conf i gur at i on object will be passed to the plugin as a parameter.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 60

PluginNode
The current Node being parsed will be passed to the plugin as a parameter.
Required

While not strictly an attribute, this annotation can be added to any plugin factory parameter
to make it automatically validated as non- nul | and non-empty.

7.1.3 Converters

Convertersare used by PatternLayout to render the elementsidentified by the conversion pattern.
Every converter must specify itstype as " Converter" on the Plugin attribute, have a static newlnstance
method that accepts an array of Strings asits only parameter and returns an instance of the Converter,
and must have a ConverterK eys annotation present that contains the array of converter patterns that
will cause the Converter to be selected. Converters that are meant to handle L ogEvents must extend
the LogEventPatternConverter class and must implement aformat method that accepts a LogEvent
and a StringBuilder as arguments. The Converter should append the result of its operation to the
StringBuilder.

A second type of Converter isthe FileConverter - which must have "FileConverter" specified in the
type attribute of the Plugin annotation. While similar to a L ogEventPatternConverter, instead of a
single format method these Converters will have two variations; one that takes an Object and one
that takes an array of Objectsinstead of the LogEvent. Both append to the provided StringBuilder
in the same fashion as a L ogEventPatternConverter. These Converters are typically used by the
RollingFileAppender to construct the name of the file to log to.

If multiple Converters specify the same Conver t er Keys, then the load order above determines
which one will be used. For example, to override the %at e converter which is provided by the
built-in Dat ePat t er nConvert er class, you would need to place your pluginin aJAR filein
the CLASSPATH ahead of | og4j - cor e. j ar. Thisis hot recommended; pattern ConverterKeys
collisions will cause awarning to be emitted. Try to use unique ConverterKeys for your custom
pattern converters.

7.1.4 KeyProviders

Some components within Log4j may provide the ability to perform data encryption. These
components require a secret key to perform the encryption. Applications may provide the key by
creating a class that implements the SecretKeyProvider interface.

7.1.5 Lookups

Lookups are perhaps the smplest plugins of all. They must declare their type as "Lookup" on the
plugin annotation and must implement the StrLookup interface. They will have two methods; a
lookup method that accepts a String key and returns a String value and a second |ookup method
that accepts both a LogEvent and a String key and returns a String. Lookups may be referenced by
specifying ${ name:key} where name is the name specified in the Plugin annotation and key is the
name of the item to locate.

7.1.6 TypeConverters

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 61

TypeConverters are a sort of meta-plugin used for converting strings into other typesin a plugin
factory method parameter. Other plugins can already be injected viathe @l ugi nEl enent
annotation; now, any type supported by the type conversion system can be used in a

@l ugi nAt t ri but e parameter. Conversion of enum types are supported on demand and do
not require custom TypeConver t er classes. A large number of built-in Java classes are already
supported; see TypeConverters for amore exhaustive listing.

Unlike other plugins, the plugin name of aTypeConvert er is purely cosmetic. Appropriate type
converters are looked up viathe Type interface rather than via Cl ass<?> objects only. Do note that
TypeConvert er plugins must have adefault constructor.

7.2 Developer Notes

If aplugin classimplements Collection or Map, then no factory method is used. Instead, the class
isinstantiated using the default constructor, and al child configuration nodes are added to the
Col | ecti on or Map.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

8 Lookups 62

Lookups

8.1 Lookups

Lookups provide away to add values to the Log4j configuration at arbitrary places. They are a
particular type of Plugin that implementsthe StrLookup interface. Information on how to use
Lookups in configuration files can be found in the Property Substitution section of the Configuration

page.

8.1.1 Context Map Lookup

The ContextM apL ookup allows applications to store datain the Log4j ThreadContext Map and then
retrieve the values in the Log4j configuration. In the example below, the application would store the
current user'slogin id in the ThreadContext Map with the key "loginld". During initial configuration
processing the first '$ will be removed. The PatternLayout supports interpolation with Lookups and
will then resolve the variable for each event. Note that the pattern "%X{loginld}" would achieve the
same result.

<Fil e name="Application" fileNane="application.|og">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] $${ctx:|oginld} %Pn</pattern>
</ Patt er nLayout >
</File>

8.1.2 Date Lookup

The Datel ookup is somewhat unusual from the other lookups as it doesn't use the key to locate an
item. Instead, the key can be used to specify a date format string that isvalid for SimpleDateFormat.
The current date, or the date associated with the current log event will be formatted as specified.

<Rol I i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${filenanme}" filePattern="target/rollingl/test1-$${date: M\t
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>

8.1.3 Environment Lookup

The EnvironmentL ookup allows systems to configure environment variables, either in global files
such as/etc/profile or in the startup scripts for applications, and then retrieve those variables from
within the logging configuration. The example below includes the name of the currently logged in
user in the application log.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

8 Lookups

<Fi | e name="Application" fileName="application.|og">
<Patt er nLayout >
<pattern>% % %{1.} [%] $${env:USER} %dm</pattern>
</ Patt er nLayout >
</File>

8.1.4 Java Lookup

The Javal ookup alows Java environment information to be retrieved in convenient preformatted
strings using thej ava: prefix.

version The short Javaversion, like:
Java version 1.7.0 67
runtime The Javaruntime version, like:

Java(TM SE Runti ne Environnent
(build 1.7.0_67-b01) from O acle
Cor por ati on

vm The JavaVM version, like:

Java Hot Spot (TM 64-Bit Server VM
(build 24.65-b04, m xed node)

0s The OS version, like:

W ndows 7 6.1 Service Pack 1,
architecture: and64-64

locale Hardware information, like:

default |ocale: en_US, platform
encodi ng: Cpl1252

hw Hardware information, like:

processors: 4, architecture:
and64- 64, instruction sets: and64

For example:

<Fil e name="Application" fileNane="application.|og">
<PatternLayout header="${java:runtine} - ${java:vn} - ${java:os}">
<Pattern>%d %m</ Pattern>
</ Patt er nLayout >
</File>

8.1.5 Jndi Lookup

The JndiLookup alows variables to be retrieved via INDI. By default the key will be prefixed with
java.comp/env/, however if the key containsa":" no prefix will be added.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups 64

<Fi | e name="Application" fileName="application.|og">
<Patt er nLayout >
<pattern>%l % %{1.} [%] $${j ndi:Iloggi ng/context-nanme} %m</pattern>
</ Patt er nLayout >
</File>

Java's INDI moduleisnot available on Android.

8.1.6 JVM Input Arguments Lookup (IJMX)

Maps VM input arguments -- but not main arguments -- using JM X to acquire the VM arguments.
Usethe prefix j vnr unar gs to access VM arguments.

Seethe Javadocsfor java.lang.management.RuntimeM X Bean.getl nputArguments() .

Java's JM X moduleisnot available on Android.

8.1.7 Log4j Configuration Location Lookup

Log4j configuration properties. The expressions ${ | og4j : confi gLocat i on} and
${1 og4j : confi gPar ent Locat i on} respectively provide the absolute path to the log4j
configuration file and its parent folder.

The example below uses this lookup to place log filesin adirectory relative to the log4j configuration
file.

<Fil e nane="Application" fileName="${l og4j:configParentLocation}/| ogs/application.|og">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernLayout >
</File>

8.1.8 Main Arguments Lookup (Application)
This lookup requires that you manually provide the main arguments of the application to Log4j:

i nport org. apache. | oggi ng. | 0og4j . core. | ookup. Mai nMapLookup;

public static void main(String args[]) {
Mai nMapLookup. set Mai nAr gunent s(ar gs) ;

}

If the main arguments have been set, this lookup allows applications to retrieve these main argument
values from within the logging configuration. The key that follows the mai n: prefix can either be a

0-based index into the argument list, or a string, where ${ mai n: mySt ri ng} issubstituted with the

value that followsmy St ri ng in the main argument list.

For example, suppose the static void main String[] arguments are:

--file foo.txt --verbose -x bar

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/8/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

8 Lookups 65

Then the following substitutions are possible:

${main:0} --file
${main:1} f oo. t xt
${main:2} --verbose
${main:3} - X

${main:4} bar
${main:--file} f oo. t xt
${main:-x} bar
${main:bar} nul |
Example usage:

<Fil e name="Application" fileNane="application.|og">
<PatternLayout header="File: ${main:--file}">
<Pattern>%d %m</ Pattern>
</ Patt er nLayout >
</File>

8.1.9 Map Lookup
The MapLookup serves several purposes.

1. Provide the base for Properties declared in the configuration file.
2. Retrieve values from MapMessages in LogEvents.
3. Retrieve values set with MapL ookup.setMainArguments(String[])

The first item ssimply means that the MapL ookup is used to substitute properties that are defined in the
configuration file. These variables are specified without a prefix - e.g. ${ nane} . The second usage
allows avalue from the current MapMessage, if oneis part of the current log event, to be substituted.
In the example bel ow the RoutingAppender will use a different RollingFileA ppender for each unique
value of the key named "type" in the MapMessage. Note that when used this way avalue for "type"
should be declared in the properties declaration to provide a default value in case the messageis not a
MapM essage or the MapM essage does not contain the key. See the Property Substitution section of
the Configuration page for information on how to set the default values.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups

<Routi ng nanme="Routing">
<Rout es pattern="$${map: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${fil ename}"
filePattern="target/rollingl/test1-${map:type}.% .l og.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFil e>
</ Rout e>
</ Rout es>
</ Rout i ng>

8.1.10 Marker Lookup

The marker lookup alows you to use markers in interesting configurations like a routing appender.
Consider the following YAML configuration and code that logs to different files based on markers:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

66

8 Lookups 67

Configuration:
status: debug

Appender s:
Consol e:
RandomAccessFi | e:
- nane: SQL_APPENDER
fileNane: |ogs/sql.log
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"
- name: PAYLOAD_APPENDER
fileNane: |ogs/payl oad. | og
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"
- name: PERFORVANCE_APPENDER
fileNane: |ogs/perfornmance. | og
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"

Rout i ng:
nane: ROUTI NG_APPENDER
Rout es:
pattern: "$${marker:}"
Rout e:

- key: PERFORMANCE

ref: PERFORVMANCE_APPENDER
- key: PAYLOAD

ref: PAYLOAD_ APPENDER
- key: SQ

ref: SQL_APPENDER

Loggers:
Root :
level : trace
Appender Ref :

- ref: ROUTI NG_APPENDER

public static final Marker SQ. = MarkerFactory. get Marker ("SQ.");
public static final Marker PAYLOAD = Marker Factory. get Mar ker (" PAYLOAD") ;
public static final Marker PERFORMANCE = Marker Fact ory. get Mar ker (" PERFORMANCE") ;

final Logger |ogger = LoggerFactory. getLogger (Logger. ROOT_LOGGER NAME) ;

| ogger.info(SQ, "Message in Sgl.log");
| ogger. i nf o(PAYLOAD, "Message i n Payl oad.|o0g");
| ogger . i nf o(PERFORMANCE, "Message i n Performance.log");

Note the key part of the configurationispattern: "$${marker:}". Thiswill produce threelog

files, each with alog event for a specific marker. Log4j will route the log event with the SQL marker
tosql . I og, the log event with the PAYLOAD marker to payl oad. | og, and so on.

Y ou can use the notation " ${ mar ker : nanme}" and " $${ mar ker : nanme}" to check for the existence
of amarker where nane isthe marker name. If the marker exists, the expression returns the name,
otherwisenul | .

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups 68

8.1.11 Structured Data Lookup

The StructuredDatal_ookup is very similar to the MapLookup in that it will retrieve values from
StructuredDataM essages. | n addition to the Map values it will also return the name portion of
theid (not including the enterprise number) and the type field. The main difference between
the example below and the example for MapMessage is that the "type" is an attribute of the
StructuredDataM essage while "type" would have to be an item in the Map in aMapMessage.

<Rout i ng nane="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l og.gz">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] % Pn</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>
</ Rout e>
</ Rout es>
</ Rout i ng>

8.1.12 System Properties Lookup

Asit is quite common to define values inside and outside the application by using System Properties,
itisonly natural that they should be accessible via aLookup. As system properties are often defined
outside the application it would be quite common to see something like:

<Appender s>
<Fi | e name="ApplicationLog" fil eName="${sys: | ogPath}/app.log"/>
</ Appender s>

8.1.13 Web Lookup

The WebL ookup allows applications to retrieve variables that are associated with the ServlietContext.
In addition to being able to retrieve various fields in the ServletContext, WebL ookup supports looking
up values stored as attributes or configured as initialization parameters. The following table lists
various keys that can be retrieved:

attr. name Returns the ServletContext attribute with the specified
name

contextPath The context path of the web application

effectiveMajorVersion Gets the major version of the Servlet specification that
the application represented by this ServletContext is
based on.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups

effectiveMinorVersion

initParam. name

majorVersion

minorVersion

rootDir

serverinfo

servletContextName

69

Gets the minor version of the Servlet specification that
the application represented by this ServletContext is
based on.

Returns the ServletContext initialization parameter
with the specified name

Returns the major version of the Servlet API that this
servlet container supports.

Returns the minor version of the Servlet API that this
servlet container supports.

Returns the result of calling getRealPath with a value
of "/".

Returns the name and version of the servlet container
on which the servlet is running.

Returns the name of the web application as defined
in the display-name element of the deployment
descriptor

Any other key names specified will first be checked to seeif a ServletContext attribute exists with that
name and then will be checked to see if an initialization parameter of that name exists. If the key is
located then the corresponding value will be returned.

<Appender s>

<Fil e nane="ApplicationLog" fileNane="${web:rootDir}/app.log"/>

</ Appender s>

©2015, The Apache Software Foundation -«

ALL RIGHTS RESERVED.

9 Appenders 70

Appenders

9.1 Appenders

Appenders are responsible for delivering LogEventsto their destination. Every Appender must
implement the Appender interface. Most Appenders will extend AbstractAppender which

adds Lifecycleand Filterable support. Lifecycle allows components to finish initialization after
configuration has completed and to perform cleanup during shutdown. Filterable allows the
component to have Filters attached to it which are evaluated during event processing.

Appenders usually are only responsible for writing the event data to the target destination. In most
cases they delegate responsibility for formatting the event to a layout. Some appenders wrap other
appenders so that they can modify the LogEvent, handle afailure in an Appender, route the event to a
subordinate Appender based on advanced Filter criteria or provide similar functionality that does not
directly format the event for viewing.

Appenders always have a name so that they can be referenced from Loggers.

9.1.1 AsyncAppender

The AsyncAppender accepts references to other Appenders and causes LogEvents to be written to
them on a separate Thread. Note that exceptions while writing to those Appenders will be hidden from
the application. The AsyncAppender should be configured after the appendersit references to allow it
to shut down properly.

AppenderRef String The name of the Appenders to
invoke asynchronously. Multiple
AppenderRef elements can be
configured.

blocking boolean If true, the appender will wait until
there are free slots in the queue. If
false, the event will be written to the
error appender if the queue is full.
The default is true.

bufferSize integer Specifies the maximum number of
events that can be queued. The
default is 128.

errorRef String The name of the Appender to
invoke if none of the appenders can
be called, either due to errors in the
appenders or because the queue is
full. If not specified then errors will
be ignored.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

ignoreExceptions boolean

includeLocation boolean

AsyncAppender Parameters
A typical AsyncAppender configuration might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Fil e name="MFile"
<Pat t er nLayout >
<Pattern>%d % %{1.} [%]
</ Patt er nLayout >
</File>
<Async name="Async">
<Appender Ref ref="MWFile"/>
</ Async>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref
</ Root >
</ Logger s>
</ Confi gurati on>

fil eNane="1ogs/ app. | 0g">

%</ Pat t er n>

ref ="Async"/ >

9.1.2 ConsoleAppender

71

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

Extracting location is an expensive
operation (it can make logging 5

- 20 times slower). To improve
performance, location is not
included by default when adding

a log event to the queue. You

can change this by setting
includeLocation="true".

As one might expect, the ConsoleAppender writes its output to either System.err or System.out with
System.err being the default target. A Layout must be provided to format the LogEvent.

filter Filter

©2015, The Apache Software Foundation -«

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

ALL RIGHTS RESERVED.

9 Appenders

layout

follow

name

ignoreExceptions

target

Layout

boolean

String

boolean

String

ConsoleAppender Parameters

A typical Console configuration might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Configuration status="warn"

<Appender s>

name="M/App" packages="">

<Consol e nane="STDOUT" target="SYSTEM OQUT" >
<Patt er nLayout pattern="%dn"/>

</ Consol e>
</ Appender s>
<Logger s>

<Root |evel ="error">
<Appender Ref

</ Root >
</ Logger s>

ref ="STDOUT"/ >

72

The Layout to use to format the
LogEvent. If no layout is supplied
the default pattern layout of "%m
%n" will be used.

Identifies whether the appender
honors reassignments of
System.out or System.err via
System.setOut or System.setErr
made after configuration. Note that
the follow attribute cannot be used
with Jansi on Windows.

The name of the Appender.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

</ Confi guration>

9.1.3 FailoverAppender

The FailoverAppender wraps a set of appenders. If the primary Appender fails the secondary
appenders will betried in order until one succeeds or there are no more secondariesto try.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 73

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

primary String The name of the primary Appender
to use.

failovers String(] The names of the secondary
Appenders to use.

name String The name of the Appender.

retryIntervalSeconds integer The number of seconds that should

pass before retrying the primary
Appender. The default is 60.

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

FailoverAppender Parameters
A Failover configuration might look like:

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" name="M/App" packages="">
<Appender s>
<Rol l'ingFi |l e nane="Rol | i ngFi | e" fil eNane="1ogs/app.|og" filePattern="|ogs/app-%d{ M\ dd-yyyy}. | og. gz"
i gnor eExcepti ons="fal se">
<Patt er nLayout >
<Pattern>%d % %{1.} [%] % Pn</Pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFil e>
<Consol e nanme="STDOUT" target ="SYSTEM QUT" i gnor eExceptions="fal se">
<PatternLayout pattern="%dn"/>
</ Consol e>
<Fai | over nanme="Failover" primary="RollingFile">
<Fai | over s>
<Appender Ref ref="Consol e"/>
</ Fai | over s>
</ Fai | over>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Fail over"/>
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 74

9.1.4 FileAppender

The FileAppender is an OutputStreamA ppender that writes to the File named in the fileName
parameter. The FileAppender uses a FileManager (which extends OutputStreamManager) to
actually perform the file I/O. While FileAppenders from different Configurations cannot be shared,
the FileManagers can be if the Manager is accessible. For example, two web applicationsin a
servlet container can have their own configuration and safely write to the samefile if Log4j isin a
ClassL oader that is common to both of them.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

bufferedlO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedlO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

bufferSize int When bufferedIO is true, this is
the buffer size, the default is 8192
bytes.

filter Filter A Filter to determine if the

event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

immediateFlush boolean When set to true - the defaullt,
each write will be followed by
aflush. Thiswill guarantee the
datais written to disk but could
impact performance.

Flushing after every writeis
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of abatch of events, even if
immediateFlush is set to false.
This also guarantees the data
iswritten to disk but is more
efficient.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

layout Layout
locking boolean
name String
ignoreExceptions boolean

FileAppender Parameters
Here is a sample File configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<Appender s>
<File name="MFile" fil eName="1ogs/ app.|og">
<Pat t er nLayout >
<Pattern>% % %{1.} [%] %dm</Pattern>
</ Patt ernLayout >
</File>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="MWFile"/>
</ Root >
</ Logger s>
</ Confi gurati on>

9.1.5 FlumeAppender
Thisisan optional component supplied in a separate jar.

75

The Layout to use to format the
LogEvent

When set to true, 1/0 operations
will occur only while the file lock

is held allowing FileAppenders

in multiple JVMs and potentially
multiple hosts to write to the

same file simultaneously. This will
significantly impact performance
so should be used carefully.
Furthermore, on many systems
the file lock is "advisory" meaning
that other applications can perform
operations on the file without
acquiring a lock. The default value
is false.

The name of the Appender.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sources to a centralized data store. The

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://flume.apache.org/index.html

9 Appenders 76

FlumeA ppender takes LogEvents and sends them to a Flume agent as serialized Avro events for
consumption.

The Flume Appender supports three modes of operation.

1. It can act as aremote Flume client which sends Flume events via Avro to a Flume Agent
configured with an Avro Source.

2. It can act as an embedded Flume Agent where Flume events pass directly into Flume for
processing.

3. It can persist eventsto alocal BerkeleyDB data store and then asynchronously send the eventsto
Flume, similar to the embedded Flume Agent but without most of the Flume dependencies.

Usage as an embedded agent will cause the messages to be directly passed to the Flume Channel and
then control will be immediately returned to the application. All interaction with remote agents will
occur asynchronously. Setting the "type" attribute to "Embedded" will force the use of the embedded
agent. In addition, configuring agent properties in the appender configuration will also cause the
embedded agent to be used.

agents Agent[] An array of Agents to which the
logging events should be sent. If
more than one agent is specified
the first Agent will be the primary
and subsequent Agents will be
used in the order specified as
secondaries should the primary
Agent fail. Each Agent definition
supplies the Agents host and port.
The specification of agents and
properties are mutually exclusive.
If both are configured an error will
result.

agentRetries integer The number of times the agent
should be retried before failing to
a secondary. This parameter is
ignored when type="persistent" is
specified (agents are tried once
before failing to the next).

batchSize integer Specifies the number of events
that should be sent as a batch. The
default is 1. This parameter only
applies to the Flume Appender.

compress boolean When set to true the message body
will be compressed using gzip

connectTimeoutMillis integer The number of milliseconds Flume
will wait before timing out the
connection.

dataDir String Directory where the Flume write

ahead log should be written. Valid
only when embedded is set to
true and Agent elements are used
instead of Property elements.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

filter

eventPrefix

flumeEventFactory

layout

lockTimeoutRetries

maxDelayMillis

mdcExcludes

mdclIncludes

mdcRequired

mdcPrefix

name

©2015, The Apache Software Foundation -«

Filter

String

FlumeEventFactory

Layout

integer

integer

String

String

String

String

String

77

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

The character string to prepend
to each event attribute in order to
distinguish it from MDC attributes.
The default is an empty string.

Factory that generates the
Flume events from Log4j
events. The default factory is the
FlumeAvroAppender itself.

The Layout to use to format the
LogEvent. If no layout is specified
RFC5424Layout will be used.

The number of times to retry if a
LockConflictException occurs while
writing to Berkeley DB. The default
is 5.

The maximum number of
milliseconds to wait for batchSize
events before publishing the batch.

A comma separated list of mdc
keys that should be excluded from
the FlumeEvent. This is mutually
exclusive with the mdcincludes
attribute.

A comma separated list of mdc
keys that should be included in
the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute.

A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.

A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:".

The name of the Appender.

ALL RIGHTS RESERVED.

9 Appenders 78

properties Property[] One or more Property elements
that are used to configure the
Flume Agent. The properties
must be configured without
the agent name (the appender
name is used for this) and no
sources can be configured.
I nterceptors can be specified for
the source using " sources.|og4j-
source.interceptors'. All other
Flume configuration properties
are alowed. Specifying both
Agent and Property elements
will result in an error.

When used to configure in
Persistent mode the valid
properties are:

1."keyProvider" to specify the
name of the plugin to provide
the secret key for encryption.

requestTimeoutMillis integer The number of milliseconds Flume
will wait before timing out the
request.

ignoreExceptions boolean The defaultis t r ue, causing

exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

type enumeration One of "Avro", "Embedded", or
"Persistent"” to indicate which
variation of the Appender is
desired.

FlumeAppender Parameters

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, and formats the body using the RFC5424L ayout:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 79

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Fl ume nane="event Logger" conpress="true">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpriseNunber="18060" i ncludeMDC="true" appNanme="M/App"/>
</ Fl ume>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="event Logger"/>
</ Root >
</ Logger s>
</ Configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using the RFC5424L ayout, and persists encrypted eventsto
disk:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>
<Fl une nane="event Logger" conpress="true" type="persistent" dataDir="./|ogData">
<Agent host="192.168. 10. 101" port ="8800"/ >
<Agent host="192.168. 10. 102" port ="8800"/ >
<RFC5424Layout enterpri seNunber="18060" includeMDC="true" appNane="M/App"/>
<Property nane="keyProvi der">M/Secr et Provi der </ Property>
</ Fl une>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="event Logger"/>
</ Root >
</ Logger s>
</ Confi guration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using RFC5424L ayout and passes the events to an embedded
Flume Agent.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 80

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Fl ume nane="event Logger" conpress="true" type="Enbedded">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpriseNunber="18060" i ncludeMDC="true" appNanme="M/App"/>
</ Fl ume>
<Consol e name="STDOUT" >
<PatternLayout pattern="% [%] % %n"/>
</ Consol e>

</ Appender s>
<Logger s>
<Logger nane="EventLogger" |evel ="info">
<Appender Ref ref="event Logger"/>
</ Logger >

<Root | evel ="warn">
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent
using Flume configuration properties, compresses the body, formats the body using RFC5424L ayout
and passes the events to an embedded Flume Agent.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

81

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="error" name="M/App" packages="">

<Appender s>

<Fl ume nane="event Logger" conpress="true" type="Enbedded">
<Property nanme="channel s">fil e</Property>
<Property nanme="channels.file.type">file</Property>
<Property nanme="channel s.file.checkpointDir">target/file-channel/checkpoint</Property>
<Property nane="channel s.file.dataDirs">target/fil e-channel/data</Property>

<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si
<Property nanme="si

</ Fl une>

<Consol e nane=" STDOUT" >

nks"
nks.
nks.
nks.
nks.
nks.
nks.
nks.
nks.
nks.
nks.

>agent 1 agent 2</ Property>

agent 1. channel ">fi | e</ Property>

agent 1. t ype" >avr o</ Property>

agent 1. host nanme" >192. 168. 10. 101</ Property>
agent 1. port " >8800</ Property>

agent 1. bat ch- si ze" >100</ Property>

agent 2. channel ">fi | e</ Property>

agent 2. t ype" >avr o</ Property>

agent 2. host nane" >192. 168. 10. 102</ Property>
agent 2. port " >8800</ Property>

agent 2. bat ch- si ze" >100</ Property>

nkgr oups" >gr oupl</ Property>

nkgroups. groupl. si nks" >agent 1 agent 2</ Property>

nkgr oups. groupl. processor.type">fail over</Property>
nkgroups. groupl. processor. priority. agent1">10</Property>
nkgroups. groupl. processor. priority. agent 2">5</Property>
<RFC5424Layout enterpriseNunber="18060" i ncl udeMDC="true" appNanme="M/App"/>

<PatternLayout pattern="% [%] % %n"/>

</ Consol e>
</ Appender s>
<Logger s>

<Logger nane="EventLogger" |evel ="info">
<Appender Ref ref="event Logger"/>

</ Logger >
<Root | evel ="warn">

<Appender Ref ref="STDOUT"/ >

</ Root >
</ Logger s>
</ Configuration>

9.1.6 JDBCAppender

The JIDBCAppender writes |og eventsto arelational database table using standard JDBC. It

can be configured to obtain JDBC connections using a JNDI Dat aSour ce or a custom factory
method. Whichever approach you take, it must be backed by a connection pool. Otherwise, logging
performance will suffer greatly.

name

String Required. The name of the
Appender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

ignoreExceptions

filter

bufferSize

connectionSource

tableName

columnConfigs

boolean

Filter

int

ConnectionSource

String

ColumnConfig[]

JDBCA ppender Parameters

82

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

Required. The connections source
from which database connections
should be retrieved.

Required. The name of the
database table to insert log events
into.

Required. Information about the
columns that log event data should
be inserted into and how to insert
that data. This is represented with
multiple <Col urm> elements.

When configuring the JDBCA ppender, you must specify aConnect i onSour ce implementation
from which the Appender gets JDBC connections. Y ou must use exactly one of the <Dat aSour ce>
or <Connect i onFact or y> nested el ements.

jndiName

©2015, The Apache Software Foundation -«

String

DataSource Parameters

Required. The full, prefixed
JNDI name that the

j avax. sql . Dat aSour ce
is bound to, such as j ava: /
conp/ env/ j dbc/

Loggi ngDat abase. The
Dat aSour ce must be backed
by a connection pool; otherwise,
logging will be very slow.

ALL RIGHTS RESERVED.

9 Appenders 83

class Class Required. The fully qualified name
of a class containing a static
factory method for obtaining JDBC
connections.

method Method Required. The name of a static
factory method for obtaining
JDBC connections. This method
must have no parameters and
its return type must be either
j ava. sqgl . Connecti on or
Dat aSour ce. If the method
returns Connect i ons, it must
obtain them from a connection
pool (and they will be returned to
the pool when Log4j is done with
them); otherwise, logging will be
very slow. If the method returns a
Dat aSour ce, the Dat aSour ce
will only be retrieved once, and it
must be backed by a connection
pool for the same reasons.

ConnectionFactory Parameters

When configuring the JIDBCA ppender, use the nested <Col urm> elements to specify which columns
in the table should be written to and how to write to them. The JIDBCA ppender uses this information
to formulate aPr epar edSt at enment to insert records without SQL injection vulnerability.

name String Required. The name of the
database column.

pattern String Use this attribute to insert a value
or values from the log event in this
column using a Pat t er nLayout
pattern. Simply specify any legal
pattern in this attribute. Either
this attribute, | i t er al , or
i sEvent Ti mest anp="t r ue"
must be specified, but not more
than one of these.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 84

literal String Use this attribute to insert a literal
value in this column. The value
will be included directly in the
insert SQL, without any quoting
(which means that if you want this
to be a string, your value should
contain single quotes around it
like this: I i teral ="' Li t eral
String'"). This is especially
useful for databases that don't
support identity columns. For
example, if you are using
Oracle you could specify
literal ="NAME _OF YOUR SEQUENCE. NEXTV/
to insert a unique ID in
an ID column. Either this
attribute, pat t er n, or
i sEvent Ti nest anp="t r ue"
must be specified, but not more
than one of these.

isEventTimestamp boolean Use this attribute to insert the
event timestamp in this column,
which should be a SQL datetime.
The value will be inserted as a
j ava. sql . Types. TI MESTAMP.
Either this attribute (equal
totrue), pattern,or
i sEvent Ti nest anp must be
specified, but not more than one of
these.

isUnicode boolean This attribute is ignored unless
pat t er n is specified. If
t r ue or omitted (default),
the value will be inserted as
unicode (set NSt ri ng or
set NCl ob). Otherwise, the value
will be inserted non-unicode (
set StringorsetC ob).

isClob boolean This attribute is ignored unless
pat t er n is specified. Use this
attribute to indicate that the column
stores Character Large Objects
(CLOBs). If t r ue, the value will be
inserted as a CLOB (set Cl ob or
set NCl ob). If f al se or omitted
(default), the value will be inserted
as a VARCHAR or NVARCHAR (
set Stringorset NString).

Column Parameters

Here are a couple sample configurations for the JIDBCA ppender, as well as a sample factory
implementation that uses Commons Pooling and Commons DBCP to pool database connections:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 85

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="error">
<Appender s>
<JDBC nane="dat abaseAppender" tabl eNanme="dbo. application_| og">
<Dat aSour ce j ndi Name="j ava: / conp/ env/j dbc/ Loggi ngDat aSour ce" />
<Col umm nane="event Date" i sEvent Ti mestanp="true" />
<Col um nane="| evel " pattern="%evel" />
<Col umm nane="1| ogger" pattern="9% ogger" />
<Col umm nane="nessage" pattern="%ressage" />
<Col um nane="exception" pattern="%x{full}" />
</ JDBC>
</ Appender s>
<Logger s>
<Root | evel ="warn">
<Appender Ref ref ="dat abaseAppender"/>
</ Root >
</ Logger s>
</ Configuration>
<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="error">
<Appender s>
<JDBC nane="dat abaseAppender" tabl eName="LOGG NG APPL| CATI ON_LOG' >
<Connecti onFactory cl ass="net. exanpl e. db. Connecti onFact ory" net hod="get Dat abaseConnecti on" />
<Col um nanme="EVENT_I D" literal ="LOGAE NG APPLI CATI ON_LOG_SEQUENCE. NEXTVAL" />
<Col um nane="EVENT_DATE" i sEvent Ti nestanp="true" />
<Col um nane="LEVEL" pattern="%evel" />
<Col um nane="LOGGER' pattern="% ogger" />
<Col umm nane="MESSAGE" pattern="%ressage" />
<Col um nane="THROMBLE" pattern="%ex{full}" />
</ JDBC>
</ Appender s>
<Logger s>
<Root | evel ="warn">
<Appender Ref ref ="dat abaseAppender"/>
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 86

package net. exanpl e. db;

i mport java. sql . Connecti on;
i mport java. sql.SQ.Excepti on;
inmport java.util.Properties;

i nport javax. sql . Dat aSour ce;

i mport org. apache. cormons. dbcp. Dri ver Manager Connect i onFact ory;
i mport org. apache. cormons. dbcp. Pool abl eConnecti on;

i mport org. apache. cormons. dbcp. Pool abl eConnecti onFact ory;

i mport org. apache. cormons. dbcp. Pool i ngDat aSour ce;

i nport org. apache. cormons. pool . i npl. Generi cObj ect Pool ;

public class ConnectionFactory {
private static interface Singleton {
final ConnectionFactory | NSTANCE = new Connecti onFactory();

private final DataSource dataSource;

private ConnectionFactory() {
Properties properties = new Properties();

properties.setProperty("user", "logging");
properties. set Property("password", "abcl23"); // or get properties fromsonme configuration file
Generi cObj ect Pool <Pool abl eConnecti on> pool = new Generi cObj ect Pool <Pool abl eConnecti on>();

Dri ver Manager Connect i onFact ory connecti onFactory = new Dri ver Manager Connect i onFact or y(
"jdbc: mysql : // exanpl e. or g: 3306/ exanpl eDb", properties
)
new Pool abl eConnecti onFact or y(
connectionFactory, pool, null, "SELECT 1", 3, false, false, Connection. TRANSACTI ON_READ COW

)

t hi s. dat aSource = new Pool i ngDat aSour ce(pool) ;

public static Connection get Dat abaseConnection() throws SQ.Exception {
return Singl eton. | NSTANCE. dat aSour ce. get Connecti on();

9.1.7 JMSAppender
The JIM SAppender sends the formatted log event to a JIMS Destination.

Note that in Log4j 2.0, this appender was split into a JM SQueueA ppender and a JM STopicA ppender.
Starting in Log4j 2.1, these appenders were combined into the JM SA ppender which makes no
distinction between queues and topics. However, configurations written for 2.0 which use the
<JMsQueue/ > or <JMSTopi ¢/ > elements will continue to work with the new <JMs/ > configuration
element.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

factoryBindingName

factoryName

filter

layout

name

password

providerURL

destinationBindingName

securityPrincipalName

securityCredentials

©2015, The Apache Software Foundation -«

String

String

Filter

Layout

String

String

String

String

String

String

87

The name to locate in the
Context that provides the
ConnectionFactory. This

can be any subinterface of
Connect i onFact ory as well.
This attribute is required.

The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.

If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without
a providerURL a warning message
will be logged as this is likely to
cause problems.

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

The Layout to use to format the
LogEvent. If you do not specify a
layout, this appender will use a
SerializedLayout.

The name of the Appender.
Required.

The password to use to create the
JMS connection.

The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

The name to use to locate

the Destination. This can

be a Queue or Topi ¢, and

as such, the attribute names
queueBi ndi ngNane and

t opi cBi ndi ngNane are aliases
to maintain compatibility with the
Log4j 2.0 IMS appenders.

The name of the identity of

the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

ALL RIGHTS RESERVED.

http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Destination.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS

9 Appenders 88

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

urlPkgPrefixes String A colon-separated list of package
prefixes for the class name of
the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

userName String The user id used to create the IMS
connection.

JMSAppender Parameters
Here is a sample JM SA ppender configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="MApp">
<Appender s>
<JM5 nanme="j nsQueue" desti nati onBi ndi ngName="M/Queue"
fact or yBi ndi ngNanme="M/QueueConnect i onFact ory"/>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="j msQueue"/>
</ Root >
</ Logger s>
</ Confi gurati on>

9.1.8 JPAAppender

The JPAAppender writes log eventsto arelational database table using the Java Persistence

API 2.1. It requires the API and a provider implementation be on the classpath. It also requires
adecorated entity configured to persist to the table desired. The entity should either extend

or g. apache. | oggi ng. | og4j . core. appender. db. j pa. Basi cLogEventEntity

(if you mostly want to use the default mappings) and provide at least an @ d property, or

or g. apache. | oggi ng. | og4j . core. appender. db. j pa. Abst ract LogEvent W apperEntity
(if you want to significantly customize the mappings). See the Javadoc for these two classes for

more information. Y ou can also consult the source code of these two classes as an example of how to
implement the entity.

name String Required. The name of the
Appender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES

9 Appenders

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

bufferSize int If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

entityClassName String Required. The fully qualified
name of the concrete
LogEventWrapperEntity
implementation that has JPA
annotations mapping it to a
database table.

persistenceUnitName String Required. The name of the JPA
persistence unit that should be
used for persisting log events.

JPAAppender Parameters

Here is a sample configuration for the JPAAppender. The first XML sample is the Log4j
configuration file, the second isthe per si st ence. xm file. EclipseLink is assumed here, but
any JPA 2.1 or higher provider will do. Y ou should always create a separate persistence unit

for logging, for two reasons. First, <shar ed- cache- node> must be set to "NONE," which is
usually not desired in normal JPA usage. Also, for performance reasons the logging entity should
be isolated in its own persistence unit away from all other entities and you should use a non-JTA
data source. Note that your persistence unit must also contain <cl ass> elementsfor al of the
org. apache. | oggi ng. | 0og4j . cor e. appender . db. j pa. convert er converter classes.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="error">
<Appender s>
<JPA nane="dat abaseAppender" persi stenceUnit Name="1oggi ngPer si stenceUnit"
entityCd assName="com exanpl e. | oggi ng. JpaLogEntity" />
</ Appender s>
<Logger s>
<Root | evel ="warn">
<Appender Ref ref="dat abaseAppender"/>
</ Root >
</ Logger s>
</ Confi guration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

89

9 Appenders

<?xm version="1.0" encodi ng="UTF-8"?>
<persi stence xm ns="http://xm ns.jcp.org/xm /ns/persistence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://xm ns.jcp.org/ xm /ns/ persi stence
http://xm ns.jcp.org/ xm /ns/persistence/ persistence_2_1.xsd"

version="2.1">

90

<persi stence-unit nanme="| oggi ngPersi stenceUnit" transaction-type="RESOURCE LOCAL" >
. persi stence. j pa. Persi st enceProvi der </ provi der >

<provi der >org. ecl i pse

<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>or g. apache. | oggi ng.
<cl ass>com exanpl e. | oggi ng. JpaLogEntity</cl ass>
<non-jt a- dat a- sour ce>j dbc/ Loggi ngDat aSour ce</ non-j t a- dat a- sour ce>
<shar ed- cache- nnde>NONE</ shar ed- cache- node>

</ persi stence-unit>

</ persi st ence>
package com exanpl e. | oggi

@ntity

ng;

@abl e(nane="appl i cation_I og",
public class JpalLogEntity extends BasicLogEventEntity {
I ong serial VersionU D = 1L;

private static final
private long id = OL;

public TestEntity() {
super (nul |);

}

| 0g4j .

| 0g4j
| 0g4j

| 0g4j .

| 0g4j
| 0g4j

| 0g4j .

| 0g4j

core.

. core.
. core.

core.

. core.
. core.

core.

. core.

appender.
appender.
appender.
appender.
appender.
appender.
appender.
appender.

schema="dbo")

public TestEntity(LogEvent w appedEvent) {
super (w appedEvent) ;

@d

@ener at edVal ue(strat

@ol um(nane = "id")

public long getld() {
return this.id,

egy

db.
db.
db.
db.
db.
db.
db.
db.

j pa.
j pa.
j pa.
j pa.
j pa.
j pa.
j pa.
j pa.

Gener at i onType. | DENTI TY)

public void setld(long id) {

this.id = id;

converter.
converter.
converter.
converter.
converter.
converter.
converter.
converter.

Cont ext MapAttri but eConverter</cl ass>

Cont ext MapJsonAttri but eConverter</cl ass>
Cont ext St ackAt t ri but eConverter</class>
Cont ext St ackJsonAttri but eConverter</cl ass>
Mar ker At tri but eConverter</cl ass>

MessageAt tri but eConverter</class>

St ackTraceEl enment At tri but eConverter</cl ass
Thr owabl eAt tri but eConverter</cl ass>

/1 If you want to override the nmapping of any properties nmapped in BasicLogEventEntity,
/1 just override the getters and re-specify the annotations.

©2015, The Apache Software Foundation -«

ALL RIGHTS RESERVED.

9 Appenders

package com exanpl e. | oggi ng;

@ntity

@abl e(nane="appl i cation_| og", schema="dbo")

public class JpalLogEntity extends AbstractLogEvent WapperEntity {

private static final |ong serialVersionUD = 1L;
private long id = OL;

public TestEntity() {
super (nul l);

}

public TestEntity(LogEvent w appedEvent) {
super (w appedEvent) ;

}

@d

@ener at edVal ue(strategy = GenerationType. | DENTI TY)
@ol um(nane = "l ogEvent|d")

public long getld() {
return this.id;

}

public void setld(long id) {
this.id =id;

}

@verride

@Enuner at ed(EnunType. STRI NG

@ol um(nane = "level ")

public Level getlLevel () {
return this.get WappedEvent (). get Level ();

@verride
@ol um(nane = "l ogger")
public String getLoggerNane() {
return this.get WappedEvent (). get Logger Nane();

@verride
@ol um(nane = "nessage")
@onvert (converter = MyMessageConverter. cl ass)
public Message get Message() {
return this.get WappedEvent (). get Message();

9.1.9 KafkaAppender
The KafkaAppender log events to an Apache Kafkatopic.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

91

9 Appenders 92

topic String The Kafka topic to use. Required.

lilter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

layout Layout The Layout to use to format the
LogEvent. If you do not specify
a layout, if not specified the
formatted message as an UTF-8
encoded string will be sent to

Kafka.

name String The name of the Appender.
Required.

ignoreExceptions boolean The defaultis t r ue, causing

exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

properties Property You can set any properties
in Kafka new producer
properties. You need to set the
boot st r ap. ser ver s property,
there are sensible default values for
the others.

KafkaAppender Parameters
Hereis a sample KafkaAppender configuration snippet:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Appender s>
<Kaf ka nanme="Kaf ka" topic="1og-test">
<Patt ernLayout pattern="%late %message"/>
<Property nane="boot strap. servers">| ocal host: 9092</ Property>
</ Kaf ka>
</ Appender s>

This appender is synchronous and will block until the record has been acknowledged by the Kafka
server, timeout for this can be set with thet i meout . ns property (defaults to 30 seconds). Wrap with
Async appender to log asynchronously.

This appender requires Kafka client library

Note:Make sureto not let or g. apache. kaf ka log to a Kafka appender on DEBUG leve, since that
will cause recursive logging:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/2.x/log4j-api/apidocs/org/apache/logging/log4j/message/Message.html#getFormattedMessage()
http://logging.apache.org/log4j/2.x/log4j-api/apidocs/org/apache/logging/log4j/message/Message.html#getFormattedMessage()
http://kafka.apache.org/documentation.html#newproducerconfigs
http://kafka.apache.org/documentation.html#newproducerconfigs
http://logging.apache.org/log4j/2.x/manual/appenders.html#AsyncAppender
http://logging.apache.org/log4j/2.x/manual/appenders.html#AsyncAppender
http://search.maven.org/#artifactdetails|org.apache.kafka|kafka-clients|0.8.2.1|jar

9 Appenders 93

<?xm version="1.0" encodi ng="UTF-8"?>

<Logger s>
<Root | evel =" DEBUG' >
<Appender Ref ref="Kafka"/>
</ Root >
<Logger nane="org. apache. kaf ka" | evel ="INFO' /> <!-- avoid recursive logging -->
</ Logger s>

9.1.10 MemoryMappedFileAppender

New since 2.1. Be aware that thisis a new addition, and although it has been tested on several
platforms, it does not have as much track record as the other file appenders.

The MemoryM appedFileAppender maps a part of the specified file into memory and writes log
events to this memory, relying on the operating system's virtual memory manager to synchronize the
changes to the storage device. The main benefit of using memory mapped filesis 1/O performance.
Instead of making system calls to write to disk, this appender can simply change the program's

local memory, which is orders of magnitude faster. Also, in most operating systems the memory
region mapped actually isthe kernel's page cache (file cache), meaning that no copies need to be
created in user space. (TODO: performance tests that compare performance of this appender to
RandomA ccessFileA ppender and FileAppender.)

There is some overhead with mapping afile region into memory, especially very large regions (half
agigabyte or more). The default region size is 32 MB, which should strike a reasonable balance
between the frequency and the duration of remap operations. (TODO: performance test remapping
various sizes.)

Similar to the FileAppender and the RandomA ccessFileA ppender, MemoryM appedFileA ppender uses
aMemoryM appedFileManager to actually perform the file 1/0. While MemoryM appedFileA ppender
from different Configurations cannot be shared, the MemoryM appedFileManagers can be if the
Manager is accessible. For example, two web applicationsin a servlet container can have their own
configuration and safely write to the samefileif Log4j isin a ClassLoader that is common to both of
them.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filters Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://en.wikipedia.org/wiki/Page_cache

9 Appenders

immediateFlush

regionLength

layout

name

ignoreExceptions

Here is a sample MemoryMappedFile configuration:

©2015, The Apache Software Foundation -«

boolean

int

Layout

String

boolean

94

When set to true, each write
will be followed by acall to
MappedByteBuffer.force().
Thiswill guarantee the datais
written to the storage device.

The default for this parameter is
f al se. This meansthat the data
iswritten to the storage device
even if the Java process crashes,
but there may be datalossif the
operating system crashes.

Note that manually forcing
async on every log event
loses most of the performance
benefits of using a memory
mapped file.

Flushing after every writeis
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of abatch of events, even if
immediateFlush is set to false.
This also guarantees the data
iswritten to disk but is more
efficient.

The length of the mapped region,
defaults to 32 MB (32 * 1024

* 1024 bytes). This parameter
must be a value between 256 and
1,073,741,824 (1 GB or 2*30);
values outside this range will be
adjusted to the closest valid value.
Log4j will round the specified value
up to the nearest power of two.

The Layout to use to format the
LogEvent

The name of the Appender.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

MemoryM appedFileAppender Parameters

ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html#force()
http://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html#force()

9 Appenders 95

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Menor yMappedFi | e name="MFi |l e" fil eName="1ogs/app.|o0g">
<Patt er nLayout >
<Pattern>%d % %{1.} [%] % Pn</Pattern>
</ Patt er nLayout >
</ Menor yMappedFi | e>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="MyFile"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.11 NoSQLAppender

The NoSQL A ppender writes log events to a NoSQL database using an internal lightweight provider
interface. Provider implementations currently exist for MongoDB and A pache CouchDB, and writing
acustom provider is quite simple.

name String Required. The name of the
Appender.
ignoreExceptions boolean The defaultis t r ue, causing

exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

bufferSize int If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

NoSqlProvider NoSQLProvider<C extends Required. The NoSQL provider that
NoSQLConnection<W, T extends provides connections to the chosen
NoSQLObject<W>>> NoSQL database.

NoSQL Appender Parameters

Y ou specify which NoSQL provider to use by specifying the appropriate configuration element within
the <NoSql > element. The types currently supported are <MongoDb> and <CouchDb>. To create
your own custom provider, read the JavaDoc for the NoSQLPr ovi der , NoSQ.Connect i on, and

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

96

NoSQLObj ect classes and the documentation about creating Log4j plugins. We recommend you
review the source code for the MongoDB and CouchDB providers as a guide for creating your own

provider.

collectionName

writeConcernConstant

writeConcernConstantClass

factoryClassName

factoryMethodName

databaseName

server

port

©2015, The Apache Software Foundation -«

String

Field

Class

Class

Method

String

String

int

Required. The name of the
MongoDB collection to insert the
events into.

By default, the MongoDB provider

inserts records with the instructions

com nongodb. Wit eConcer n. ACKNOALEDGEL
Use this optional attribute to specify

the name of a constant other than

ACKNOW._EDGED.

If you specify

wr i t eConcer nConst ant,

you can use this attribute to

specify a class other than

com nongodb. Wit eConcern
to find the constant on (to create
your own custom instructions).

To provide a connection to

the MongoDB database, you

can use this attribute and

f act or yMet hodNane to specify
a class and static method to get the
connection from. The method must
return a com nongodb. DB or a
com nongodb. Mongod i ent .
If the DB is not authenticated, you
must also specify a user name
and passwor d. If you use the
factory method for providing a
connection, you must not specify
the dat abaseNane, ser ver, or
port attributes.

See the documentation for attribute
fact oryd assNane.

If you do not specify a

fact oryd assNane and

f act or yMet hodNane for
providing a MongoDB connection,
you must specify a MongoDB
database name using this
attribute. You must also specify
auser name and passwor d.
You can optionally also specify a
server (defaults to localhost),
and a por t (defaults to the default
MongoDB port).

See the documentation for attribute
dat abaseNane.

See the documentation for attribute
dat abaseNane.

ALL RIGHTS RESERVED.

9 Appenders 97

username String See the documentation for
attributes dat abaseNane and
fact oryd assNane.

password String See the documentation for
attributes dat abaseNane and
fact oryd assNane.

MongoDB Provider Parameters

factoryClassName Class To provide a connection to
the CouchDB database, you
can use this attribute and
fact or yMet hodNane
to specify a class and static
method to get the connection
from. The method must return a
org. |l i ght couch. CouchDbd i ent
ora
org. |l i ghtcouch. CouchDbProperti es.
If you use the factory method for
providing a connection, you must
not specify the dat abaseNane,
prot ocol ,server,port,
user nane, or passwor d
attributes.

factoryMethodName Method See the documentation for attribute
fact oryd assNane.

databaseName String If you do not specify a
fact oryd assNane and
f act or yMet hodNane for
providing a CouchDB connection,
you must specify a CouchDB
database name using this
attribute. You must also specify
auser nanme and passwor d.
You can optionally also specify
aprotocol (defaults to http),
ser ver (defaults to localhost),
and a port (defaults to 80 for http
and 443 for https).

protocol String Must either be "http" or "https."
See the documentation for attribute
dat abaseNane.

server String See the documentation for attribute
dat abaseNane.

port int See the documentation for attribute
dat abaseNane.

username String See the documentation for
attributes dat abaseNane.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

98

password String See the documentation for
attributes dat abaseNane.

CouchDB Provider Parameters

Here are afew sample configurations for the NoSQL A ppender:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="error">

<Appender s>

<NoSql nane="dat abaseAppender" >
<MongoDb dat abaseNane="appl i cati onDb" col |l ecti onNane="appl i cati onLog

user nanme="1o0ggi ngUser" password="abc123" />

</ NoSql >
</ Appender s>
<Logger s>
<Root | evel ="warn">
<Appender Ref ref="dat abaseAppender"/>
</ Root >
</ Logger s>

</ Configuration>
<?xm version="1.0" encodi ng="UTF- 8" ?>

<Configuration status="error">

<Appender s>
<NoSql nane="dat abaseAppender" >

server ="nongo. exanpl e. or g"

<MongoDb col | ecti onName="appl i cati onLog" factoryd assNane="org. exanpl e. db. Connecti onFact ory"

fact or yMet hodNanme="get NewMbngod i ent" />

</ NoSql >
</ Appender s>
<Logger s>
<Root | evel ="warn">
<Appender Ref ref="dat abaseAppender"/>
</ Root >
</ Logger s>

</ Configuration>
<?xm version="1.0" encodi ng="UTF- 8" ?>

<Configuration status="error">

<Appender s>
<NoSql nane="dat abaseAppender" >

<CouchDb dat abaseName="appl i cati onDb" protocol ="https" server="couch. exanpl e. org"

user nane="1oggi ngUser" password="abc123" />

</ NoSql >

</ Appender s>

<Logger s>
<Root | evel ="warn">

<Appender Ref ref="dat abaseAppender"/>

</ Root >

</ Logger s>

</ Configuration>

The following example demonstrates how log events are persisted in NoSQL databases if represented

in aJSON format:

ALL RIGHTS RESERVED.

©2015, The Apache Software Foundation -«

9 Appenders

{
"level ": "WARN',
"] ogger Nane": "com exanpl e. appli cati on. Myd ass”,
"message": "Sonething happened that you m ght want to know about.",
"source": {
"cl assNanme": "com exanpl e. applicati on. MyC ass",
"met hodNanme": "exanpl eMet hod",
"fileName": "Md ass.java",
"lineNunber": 81
H
"marker": {
"nane": "SoneMarker",
"parent" {
"nane": "SonmeParent Mar ker"
}
H
"t hreadNane": "Thread-1",
"mllis": 1368844166761,
"date": "2013-05-18T02: 29: 26. 761Z",
"thrown": {
"type": "java.sql.SQ.Exception",
"message": "Could not insert record. Connection |lost.",
"stackTrace": [
{ "classNane": "org.exanple.sql.driver.PreparedStatenent$1",
{ "classNane": "org.exanple.sql.driver.PreparedStatenent", "nethodNane":
{ "classNane": "com exanpl e. application. Myd ass", "nethodNane":
{ "classNane": "com exanpl e. application. Mai nd ass", "nethodNane":
1.
"cause": {
"type": "java.io.|CException",
"message": "Connection lost.",
"stackTrace": [
{ "classNane": "java.nio.channel s. Socket Channel ", "net hodNane":
{ "classNane": "org.exanple.sql.driver.PreparedStatenent$1",
{ "classNane": "org.exanple.sql.driver.PreparedStatenent", "nethodNane":
{ "classNane": "com exanpl e. application. Myd ass", "nethodNane":
{ "classNane": "com exanpl e. application. Mai nd ass", "nethodNane":
]
}
H
"cont ext Map": {
"I D': "86c3ad497-4e67- 4eed- 9d6a- 2e5797324d7b",
"usernanme": "JohnDoe"
H
"context Stack": [
"topltent,
"anot herltent,
"bottoml t ent
]
}

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

"met hodNanme": "responder”,
"execut eUpdat e",
"exanpl eMet hod", "fil eName":

"fil eNanme":

"fileName":
"responder”,
"execut eUpdat e",
"fileName":

" met hodNane" :

"exanpl eMet hod",
"fileName":

9 Appenders 100

9.1.12 QOutputStreamAppender

The OutputStreamA ppender provides the base for many of the other Appenders such asthe File

and Socket appenders that write the event to an Output Stream. It cannot be directly configured.
Support for immediateFlush and buffering is provided by the OutputStreamA ppender. The
OutputStreamA ppender uses an OutputStreamM anager to handle the actual 1/0, allowing the stream
to be shared by Appendersin multiple configurations.

9.1.13 RandomAccessFileAppender

As of beta-9, the name of this appender has been changed from FastFile to RandomAccessFile.
Configurations using the Fast Fi | e element no longer work and should be modified to use the
RandomAccessFi | e element.

The RandomA ccessFileAppender is similar to the standard FileAppender except it is aways

buffered (this cannot be switched off) and internally it usesaByt eBuf f er + RandomAccessFil e
instead of aBuf f er edQut put St r eam We saw a 20-200% performance improvement compared

to FileAppender with "bufferedlO=true" in our measurements. Similar to the FileAppender,

RandomA ccessFileA ppender uses a RandomA ccessFileManager to actually perform thefile

1/0. While RandomA ccessFileAppender from different Configurations cannot be shared, the
RandomA ccessFileManagers can be if the Manager is accessible. For example, two web applications
in aservlet container can have their own configuration and safely write to the samefile if Logdj isin a
ClassL oader that is common to both of them.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filters Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

immediateFlush boolean
bufferSize int
layout Layout
name String
ignoreExceptions boolean

101

When set to true - the default,
each write will be followed by
aflush. Thiswill guarantee the
dataiswritten to disk but could
impact performance.

Flushing after every writeis
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of abatch of events, even if
immediateFlush is set to false.
This also guarantees the data
iswritten to disk but is more
efficient.

The buffer size, defaults to 262,144
bytes (256 * 1024).

The Layout to use to format the
LogEvent

The name of the Appender.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

RandomA ccessFileA ppender Parameters

Here is a sample RandomA ccessFile configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Configuration status="warn" name="MApp" packages="">

<Appender s>

<RandomAccessFi |l e name="MWFile" fil eName="1|ogs/ app.| o0g">

<Patt er nLayout >

<Pattern>%d % %{1.} [%] %dm</Pattern>

</ Patt ernLayout >
</ RandomAccessFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="MWFile"/>
</ Root >
</ Logger s>
</ Confi gurati on>

©2015, The Apache Software Foundation -«

ALL RIGHTS RESERVED.

9 Appenders 102

9.1.14 RewriteAppender

The RewriteAppender allows the LogEvent to manipulated before it is processed by another
Appender. This can be used to mask sensitive information such as passwords or to inject
information into each event. The RewriteAppender must be configured with a RewritePolicy. The
RewriteAppender should be configured after any Appendersit referencesto alow it to shut down
properly.

AppenderRef String The name of the Appenders to
call after the LogEvent has been
manipulated. Multiple AppenderRef
elements can be configured.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolicy The RewritePolicy that will
manipulate the LogEvent.

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

RewriteAppender Parameters

9.1.14.1 RewritePolicy

RewritePolicy is an interface that allows implementations to inspect and possibly modify LogEvents
before they are passed to Appender. RewritePolicy declares a single method named rewrite that must
be implemented. The method is passed the LogEvent and can return the same event or create a new
one.

9.MapRewritePolicy

MapRewritePolicy will evaluate LogEvents that contain a MapMessage and will add or update
elements of the Map.

mode String "Add" or "Update"

keyValuePair KeyValuePair[] An array of keys and their values.

The following configuration shows a RewriteA ppender configured to add a product key and its value
to the MapMessage.:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 103

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Consol e nanme="STDOUT" t arget =" SYSTEM OUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Rewrite name="rewite">
<Appender Ref ref="STDOUT"/ >
<MapRewri t ePol i cy npde="Add">
<KeyVal uePai r key="product" val ue="Test Product"/>
</ MapRewr i t ePol i cy>
</Rewrite>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Rewrite"/>
</ Root >
</ Logger s>
</ Configuration>

9.PropertiesRewritePolicy

PropertiesRewritePolicy will add properties configured on the policy to the ThreadContext Map being
logged. The properties will not be added to the actual ThreadContext Map. The property values may
contain variables that will be evaluated when the configuration is processed as well as when the event
islogged.

properties Property[] One of more Property elements to
define the keys and values to be
added to the ThreadContext Map.

The following configuration shows a RewriteAppender configured to add a product key and its value
to the MapMessage:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 104

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Consol e nanme="STDOUT" t arget =" SYSTEM OUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Rewrite name="rewite">
<Appender Ref ref="STDOUT"/ >
<Properti esRewitePolicy>
<Property name="user">${sys: user. nane} </ Property>
<Property name="env">${sys: environnent}</Property>
</ Properti esRewitePolicy>
</Rewrite>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Rewrite"/>
</ Root >
</ Logger s>
</ Configuration>

9.LoggerNamelLevelRewritePolicy

Y ou can use this policy to make loggersin third party code less chatty by changing event levels. The
LoggerNameL evel RewritePolicy will rewrite log event levels for a given logger name prefix. You
configure a LoggerNamel evel RewritePolicy with alogger name prefix and a pairs of levels, where a
pair defines a source level and atarget level.

loggerName String A logger name used as a prefix to
test each event's logger name.

LevelPair KeyValuePair[] An array of keys and their values,
each key is a source level, each
value a target level.

The following configuration shows a RewriteA ppender configured to map level INFO to DEBUG and
level WARN to INFO for al loggers that start with com f oo. bar .

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 105

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="MApp">
<Appender s>
<Consol e nanme="STDOUT" t arget =" SYSTEM OUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Rewrite name="rewite">
<Appender Ref ref="STDOUT"/ >
<Logger NaneLevel Rewrit ePol i cy | ogger Nanme="com f o0o. bar" >
<Level Pai r key="|NFO' val ue="DEBUG'/ >
<Level Pai r key="WARN' val ue="| NFO'/ >
</ Logger NaneLevel Rewr it ePol i cy>
</Rewrite>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Rewrite"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.15 RollingFileAppender

The RollingFileAppender is an OutputStreamA ppender that writes to the File named in the fileName
parameter and rolls the file over according the TriggeringPolicy and the RolloverPolicy. The
RollingFileAppender uses a RollingFileManager (which extends OutputStreamManager) to

actually perform thefile 1/0 and perform the rollover. While RolloverFileAppenders from different
Configurations cannot be shared, the RollingFileManagers can be if the Manager is accessible. For
example, two web applicationsin a servlet container can have their own configuration and safely
writeto the samefileif Log4j isin a ClassLoader that is common to both of them.

A RollingFileAppender requiresa TriggeringPolicy and a RolloverStrategy. The triggering
policy determinesif arollover should be performed while the RolloverStrategy defines how the
rollover should be done. If no RolloverStrategy is configured, RollingFileAppender will use the
DefaultRolloverStrategy.

File locking is not supported by the RollingFileAppender.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

bufferedlO boolean
bufferSize int

filter Filter
fileName String
filePattern String
immediateFlush boolean
layout Layout

©2015, The Apache Software Foundation -«

106

When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush

is set, when the record is written.
File locking cannot be used with
bufferedlO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

When bufferedlO is true, this is
the buffer size, the default is 8192
bytes.

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

The name of the file to write to.

If the file, or any of its parent
directories, do not exist, they will be
created.

The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on

the RolloverPolicy that is used.

The DefaultRolloverPolicy will
accept both a date/time pattern
compatible with SimpleDateFormat
and and/or a %i which represents
an integer counter. The pattern also
supports interpolation at runtime so
any of the Lookups (such as the
DateLookup can be included in the
pattern.

When set to true - the default,
each write will be followed by
aflush. Thiswill guarantee the
datais written to disk but could
impact performance.

Flushing after every writeis
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of abatch of events, even if
immediateFlush is set to false.
This also guarantees the data
iswritten to disk but is more
efficient.

The Layout to use to format the
LogEvent

ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

9 Appenders 107

name String The name of the Appender.

policy TriggeringPolicy The policy to use to determine if a
rollover should occur.

strategy RolloverStrategy The strategy to use to determine
the name and location of the
archive file.

ignoreExceptions boolean The defaultis t r ue, causing

exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

RoallingFileAppender Parameters

9.1.15.1 Triggering Policies

9.Composite Triggering Policy

The Conposi t eTri ggeri ngPol i cy combines multiple triggering policies and returnstrueif any
of the configured policies return true. The Conposi t eTri gger i ngPol i cy isconfigured simply by
wrapping other policiesin aPol i ci es element.

For example, the following XML fragment defines policies that rollover the log when the VM starts,
when the log size reaches twenty megabytes, and when the current date no longer matchesthelog’s
start date.

<Pol i ci es>
<OnStartupTriggeringPolicy />
<Si zeBasedTri ggeri ngPol i cy size="20 MB" />
<Ti neBasedTri ggeringPolicy />

</ Policies>

9.0nStartup Triggering Policy

TheOnSt art upTri ggeri ngPol i cy policy takes no parameters and causes arollover if thelog file
is older than the current IVM's start time.

Google App Engine note:

When running in Google App Engine, the OnStartup policy causes arollover if

thelog fileis older than the time when Log4J initialized. (Google App Engine

restricts access to certain classes so Log4J cannot determine VM start time with

j ava. | ang. managenent . Managenent Fact ory. get Runt i meMXBean() . get Start Ti me() and
falls back to Log4Jinitialization time instead.)

9.SizeBased Triggering Policy

The Si zeBasedTri ggeri ngPol i cy causes arollover once the file has reached the specified size.
The size can be specified in bytes, with the suffix KB, MB or GB, for example 20VB.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 108

9.TimeBased Triggering Policy

TheTi meBasedTri ggeri ngPol i cy causes arollover once the date/time pattern no longer applies
to the active file. This policy acceptsani ncr ement attribute which indicates how frequently the
rollover should occur based on the time pattern and anodul at e boolean attribute.

interval integer How often a rollover should
occur based on the most specific
time unit in the date pattern. For
example, with a date pattern with
hours as the most specific item and
and increment of 4 rollovers would
occur every 4 hours. The default
value is 1.

modulate boolean Indicates whether the interval
should be adjusted to cause the
next rollover to occur on the interval
boundary. For example, if the item
is hours, the current hour is 3 am
and the interval is 4 then then the
first rollover will occur at 4 am and
then next ones will occur at 8 am,
noon, 4pm, etc.

TimeBasedTriggeringPolicy Parameters

9.1.15.2 Rollover Strategies

9.Default Rollover Strategy

The default rollover strategy accepts both a date/time pattern and an integer from the filePattern
attribute specified on the RollingFileAppender itself. If the date/time pattern is present it will be
replaced with the current date and time values. If the pattern contains an integer it will be incremented
on each rollover. If the pattern contains both a date/time and integer in the pattern the integer will

be incremented until the result of the date/time pattern changes. If the file pattern ends with ".gz",
".zip", ".bz2", ".deflate”, ".pack200", or ".xz" the resulting archive will be compressed using the
compression scheme that matches the suffix. The formats bzip2, Deflate, Pack200 and XZ require
Apache Commons Compress. In addition, XZ requires XZ for Java. The pattern may also contain

lookup references that can be resolved at runtime such as is shown in the example below.

The default rollover strategy supports two variations for incrementing the counter. The first isthe
"fixed window" strategy. To illustrate how it works, suppose that the min attribute is set to 1, the max
attribute is set to 3, the file name is "foo.log", and the file name pattern is "foo-%i.log".

0 foo.log - All' logging is going to the
initial file.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://commons.apache.org/proper/commons-compress/
http://commons.apache.org/proper/commons-compress/
http://tukaani.org/xz/java.html

9 Appenders

1 foo.log
2 foo.log
3 foo.log
4 foo.log

foo-1.log

foo-1.log, foo-2.log

foo-1.log, foo-2.log,
foo-3.log

foo-1.log, foo-2.log,
foo-3.log

109

During the first rollover
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

During the second rollover
foo-1.log is renamed to
foo-2.log and foo.log is
renamed to foo-1.log. A
new foo.log file is created
and starts being written
to.

During the third rollover
foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

In the fourth and
subsequent rollovers,
foo-3.log is deleted,
foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

By way of contrast, when the the filelndex attribute is set to "max" but all the other settings are the
same the following actions will be performed.

0 foo.log
1 foo.log
2 foo.log
3 foo.log

©2015, The Apache Software Foundation -«

foo-1.log

foo-1.log, foo-2.log

foo-1.log, foo-2.log,
foo-3.log

ALL RIGHTS RESERVED.

All logging is going to the
initial file.

During the first rollover
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

During the second rollover
foo.log is renamed to
foo-2.log. A new foo.log
file is created and starts
being written to.

During the third rollover
foo.log is renamed to
foo-3.log. A new foo.log
file is created and starts
being written to.

9 Appenders 110

4 foo.log foo-1.log, foo-2.log, In the fourth and
foo-3.log subsequent rollovers,

foo-1.log is deleted,
foo-2.log is renamed to
foo-1.log, foo-3.log is
renamed to foo-2.log and
foo.log is renamed to
foo-3.log. A new foo.log
file is created and starts
being written to.

filelIndex String If set to "max" (the default), files
with a higher index will be newer
than files with a smaller index.
If set to "min", file renaming and
the counter will follow the Fixed
Window strategy described above.

min integer The minimum value of the counter.
The default value is 1.

max integer The maximum value of the counter.
Once this values is reached
older archives will be deleted on
subsequent rollovers.

compressionLevel integer Sets the compression level, 0-9,
where 0 = none, 1 = best speed,
through 9 = best compression. Only
implemented for ZIP files.

DefaultRolloverStrategy Parameters

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory
based on the current year and month, and will compress each archive using gzip:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 111

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
filePattern="Iogs/$${date: yyyy- M}/ app- ¥d{ M\t dd- yyyy}-% . | og. gz" >
<Patt er nLayout >
<Pattern>%d % %{1.} [%] % Pn</Pattern>
</ Patt er nLayout >
<Pol i ci es>
<Ti meBasedTri ggeri ngPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

This second example shows arollover strategy that will keep up to 20 files before removing them.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="1 ogs/ app.| o0g"
filePattern="I|ogs/$${date: yyyy- M}/ app- ¥d{ Mt dd- yyyy}-% .| og. gz">
<Pat t er nLayout >
<Pattern>%d % %{1.} [%] %dn</Pattern>
</ Patt er nLayout >
<Pol i ci es>
<Ti meBasedTri ggeringPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
<Def aul t Rol | over St rat egy max="20"/>
</ Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

Below is asample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory
based on the current year and month, and will compress each archive using gzip and will roll every 6
hours when the hour is divisible by 6:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 112

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
filePattern="1ogs/$${date: yyyy- M}/ app- %a{yyyy- M\t dd- HH} - % . | og. gz" >
<Patt er nLayout >
<Pattern>%d % %{1.} [%] % Pn</Pattern>
</ Patt er nLayout >
<Pol i ci es>

<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.16 RollingRandomAccessFileAppender

As of beta-9, the name of this appender has been changed from FastRollingFileto
RollingRandomAccessFile. Configurations using the Fast Rol | i ngFi | e element no longer work and
should be modified to usethe Rol | i ngRandomAccessFi | e element.

The RollingRandomA ccessileAppender is similar to the standard RollingFileAppender except

it is always buffered (this cannot be switched off) and internally it usesaByt eBuf f er +
RandomAccessFi | e instead of aBuf f er edQut put St r eam We saw a 20-200% performance
improvement compared to RollingFileAppender with "bufferedl O=true" in our measurements. The
RollingRandomA ccessFileA ppender writes to the File named in the fileName parameter and rolls the
file over according the TriggeringPolicy and the RolloverPolicy. Similar to the RollingFileA ppender,
RollingRandomA ccessFileAppender uses a RollingRandomA ccessFileM anager to actually perform
thefile I/0 and perform the rollover. While RollingRandomA ccesskileAppender from different
Configurations cannot be shared, the RollingRandomA ccessFileManagers can be if the Manager is
accessible. For example, two web applications in a servlet container can have their own configuration
and safely write to the samefileif Logdj isin a ClassLoader that is common to both of them.

A RollingRandomA ccessFileAppender requiresa TriggeringPolicy and a RolloverStrategy.
The triggering policy determinesif arollover should be performed while the RolloverStrategy
defines how the rollover should be done. If no RolloverStrategy is configured,
RollingRandomA ccesskileAppender will use the DefaultRolloverStrategy.

File locking is not supported by the RollingRandomA ccessFileAppender.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

filter

fileName

filePattern

immediateFlush

bufferSize

layout

name

policy

strategy

©2015, The Apache Software Foundation -«

Filter

String

String

boolean

int

Layout

String
TriggeringPolicy

RolloverStrategy

113

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

The name of the file to write to.

If the file, or any of its parent
directories, do not exist, they will be
created.

The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on the
RolloverPolicy that is used. The
DefaultRolloverPolicy will accept
both a date/time pattern compatible
with SimpleDateFormat and/or

a %i which represents an integer
counter. The pattern also supports
interpolation at runtime so any

of the Lookups (such as the
DateLookup can be included in the
pattern.

When set to true - the defaullt,
each write will be followed by
aflush. Thiswill guarantee the
dataiswritten to disk but could
impact performance.

Flushing after every writeis
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of abatch of events, even if
immediateFlush is set to false.
This also guarantees the data
iswritten to disk but is more
efficient.

The buffer size, defaults to 262,144
bytes (256 * 1024).

The Layout to use to format the
LogEvent

The name of the Appender.

The policy to use to determine if a
rollover should occur.

The strategy to use to determine
the name and location of the
archive file.

ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

9 Appenders

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while

114

appending events to be internally

logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.

You must set this to f al se when

wrapping this Appender in a

FailoverAppender.

RollingRandomA ccessFileAppender Parameters

9.1.16.1 Triggering Policies
See RollingFileAppender Triggering Policies.

9.1.16.2 Rollover Strategies
See RollingFileAppender Rollover Strategies.

Below is asample configuration that uses a RollingRandomA ccessFileA ppender with both the time
and size based triggering policies, will create up to 7 archives on the same day (1-7) that are stored in

adirectory based on the current year and month, and will compress each archive using gzip:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>

<Rol | i ngRandomAccessFi | e nane="Rol | i ngRandomAccessFi |l e" fil eNane="1| ogs/ app. | og"

filePattern="Ilogs/$${date: yyyy- M}/ app- %d{ M\t dd- yyyy}-% .| og. gz" >
<Pat t er nLayout >
<Pattern>%d % %{1.} [%] % dn</Pattern>
</ Patt er nLayout >
<Pol i ci es>
<Ti meBasedTri ggeringPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Pol i cies>
</ Rol | i ngRandomAccessFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="Rol | i ngRandomAccessFile"/>
</ Root >
</ Logger s>
</ Configuration>

This second example shows arollover strategy that will keep up to 20 files before removing them.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 115

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol | i ngRandomAccessFi | e nane="Rol | i ngRandomAccessFi |l e" fil eNane="1| ogs/ app. | og"
filePattern="Iogs/$${date: yyyy- M}/ app- ¥d{ M\t dd- yyyy}-% . | og. gz" >
<Patt er nLayout >
<Pattern>%d % %{1.} [%] % Pn</Pattern>
</ Patt er nLayout >
<Pol i ci es>
<Ti meBasedTri ggeri ngPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
<Def aul t Rol | over St rat egy max="20"/>
</ Rol | i ngRandomAccessFi | e>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Rol | i ngRandomAccessFile"/>
</ Root >
</ Logger s>
</ Configuration>

Below is a sample configuration that uses a RollingRandomA ccessFileA ppender with both the time
and size based triggering policies, will create up to 7 archives on the same day (1-7) that are stored in
adirectory based on the current year and month, and will compress each archive using gzip and will
roll every 6 hours when the hour is divisible by 6:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>
<Rol I i ngRandomAccessFi | e name="Rol | i ngRandomAccessFi |l e" fil eNane="1 ogs/app. | o0g"
filePattern="I|ogs/$${date:yyyy- M}/ app- %ad{yyyy- Mt dd- HH} - % . | og. gz" >
<Pat t er nLayout >
<Pattern>%d % %{1.} [%] %dn</Pattern>
</ Patt er nLayout >
<Pol i ci es>
<Ti meBasedTri ggeri ngPolicy interval ="6" nodul ate="true"/>
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
</ Rol I i ngRandomAccessFi | e>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="Rol|ingRandomAccessFile"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.17 RoutingAppender

The RoutingAppender eval uates LogEvents and then routes them to a subordinate Appender. The
target Appender may be an appender previously configured and may be referenced by its name or the
Appender can be dynamically created as needed. The RoutingA ppender should be configured after
any Appendersit referencesto allow it to shut down properly.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 116

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolicy The RewritePolicy that will
manipulate the LogEvent.

routes Routes Contains one or more Route
declarations to identify the criteria
for choosing Appenders.

ignoreExceptions boolean The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

RoutingAppender Parameters

9.1.17.1 Routes

The Routes element accepts asingle, required attribute named "pattern”. The pattern is evaluated
against all the registered L ookups and the result is used to select a Route. Each Route may be
configured with akey. If the key matches the result of evaluating the pattern then that Route will
be selected. If no key is specified on a Route then that Route is the default. Only one Route can be
configured as the default.

Each Route must reference an Appender. If the Route contains aref attribute then the Route will
reference an Appender that was defined in the configuration. If the Route contains an Appender
definition then an Appender will be created within the context of the RoutingAppender and will be
reused each time a matching Appender name is referenced through a Route.

Below is asample configuration that uses a RoutingAppender to route all Audit eventsto a
FlumeAppender and al other events will be routed to a RollingFileAppender that captures only the
specific event type. Note that the AuditAppender was predefined while the RollingFileAppenders are
created as needed.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders 117

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Fl ume nane="AuditLogger" conpress="true">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpriseNunber="18060" i ncludeMDC="true" appNanme="M/App"/>
</ Fl ume>
<Routi ng nanme="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${sd:type}.|og"
filePattern="${sd:type}.% .l og.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] % Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFil e>
</ Rout e>
<Rout e ref="AuditLogger" key="Audit"/>
</ Rout es>
</ Rout i ng>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Routing"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.18 SMTPAppender
Sends an e-mail when a specific logging event occurs, typically on errors or fatal errors.

The number of logging events delivered in this e-mail depend on the value of Buffer Size option.

The SMrPAppender keepsonly thelast Buf f er Si ze logging eventsin its cyclic buffer. This keeps
memory requirements at a reasonable level while still delivering useful application context. All events
in the buffer are included in the email. The buffer will contain the most recent events of level TRACE
to WARN preceding the event that triggered the email.

The default behavior isto trigger sending an email whenever an ERROR or higher severity event
islogged and to format it as HTML. The circumstances on when the email is sent can be controlled
by setting one or more filters on the Appender. As with other Appenders, the formatting can be
controlled by specifying a Layout for the Appender.

bcc String The comma-separated list of BCC
email addresses.

cc String The comma-separated list of CC
email addresses.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

bufferSize

filter

from

layout

name

replyTo

smtpDebug

smtpHost

smtpPassword

smtpPort

smtpProtocol

smtpUsername

ignoreExceptions

to

©2015, The Apache Software Foundation -«

integer

Filter

String

Layout

String
String

boolean

String

String

integer

String

String

boolean

String

SMTPAppender Parameters

118

The maximum number of log
events to be buffered for inclusion
in the message. Defaults to 512.

A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

The email address of the sender.

The Layout to use to format
the LogEvent. The default is
SerializedLayout.

The name of the Appender.

The comma-separated list of reply-
to email addresses.

When set to true enables session
debugging on STDOUT. Defaults to
false.

The SMTP hostname to send to.
This parameter is required.

The password required to
authenticate against the SMTP
server.

The SMTP port to send to.

The SMTP transport protocol (such
as "smtps”, defaults to "smtp").

The username required to
authenticate against the SMTP
server.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

The comma-separated list of
recipient email addresses.

ALL RIGHTS RESERVED.

9 Appenders 119

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<SMIP nane="Mai | " subject="Error Log" to="errors@ oggi ng. apache. org" frone"test @ oggi ng. apache. or g"
snt pHost =" 1 ocal host" snt pPort="25" bufferSi ze="50">
</ SMrP>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="Mail"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.19 SocketAppender

The Socket Appender isan OutputStreamAppender that writes its output to a remote destination
specified by a host and port. The data can be sent over either TCP or UDP and can be sent in any
format. The default format isto send a Serialized LogEvent. Log4j 2 contains a SocketServer whichis
capable of receiving serialized LogEvents and routing them through the logging system on the server.
Y ou can optionally secure communication with SSL.

name String The name of the Appender.

host String The name or address of the system
that is listening for log events. This
parameter is required.

port integer The port on the host that is listening
for log events. This parameter must
be specified.

protocol String "TCP" (default), "SSL" or "UDP".

SSL SslConfiguration Contains the configuration for the

KeyStore and TrustStore.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

immediateFail boolean When set to true, log events will
not wait to try to reconnect and will
fail immediately if the socket is not
available.

immediateFlush boolean When set to true - the default,
each write will be followed by a
flush. This will guarantee the data
is written to disk but could impact
performance.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

reconnectionDelayMillis integer
connectTimeoutMillis integer
ignoreExceptions boolean

Socket Appender Parameters
Thisis an unsecured TCP configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<Appender s>
<Socket nane="socket" host="|ocal host" port="9500">
<Serial i zedLayout />
</ Socket >
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref
</ Root >
</ Logger s>

</ Confi gurati on>

Thisisasecured SSL configuration:

ref ="socket"/ >

©2015, The Apache Software Foundation -«

120

If set to a value greater than 0,
after an error the SocketManager
will attempt to reconnect to the
server after waiting the specified
number of milliseconds. If the
reconnect fails then an exception
will be thrown (which can be
caught by the application if

i gnor eExcepti ons is setto
f al se).

The connect timeout in
milliseconds. The default

is O (infinite timeout, like
Socket.connect() methods).

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

ALL RIGHTS RESERVED.

9 Appenders 121

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Socket nanme="socket" host="1|ocal host" port="9500">
<Seri al i zedLayout />
<SSL>
<KeyStore | ocation="|0g4j 2- keystore. jks" password="changene"/>
<TrustStore |ocation="truststore.jks" password="changene"/>
</ SSL>
</ Socket >
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="socket"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.20 SyslogAppender

The Sysl ogAppender isaSocket Appender that writesits output to a remote destination specified
by a host and port in aformat that conforms with either the BSD Syslog format or the RFC 5424
format. The data can be sent over either TCP or UDP.

advertise boolean Indicates whether the appender
should be advertised.

appName String The value to use as the APP-
NAME in the RFC 5424 syslog
record.

charset String The character set to use when

converting the syslog String to a
byte array. The String must be
avalid Charset. If not specified,
the default system Charset will be
used.

connectTimeoutMillis integer The connect timeout in
milliseconds. The default
is 0 (infinite timeout, like
Socket.connect() methods).

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

9 Appenders

facility

format

host

ignoreExceptions

immediateFail

immediateFlush

©2015, The Apache Software Foundation -«

String

String

String

String

boolean

boolean

boolean

122

The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALO", "LOCAL1", "LOCALZ2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCALT". These
values may be specified as upper
or lower case characters.

If set to "RFC5424" the data will
be formatted in accordance with
RFC 5424. Otherwise, it will be
formatted as a BSD Syslog record.
Note that although BSD Syslog
records are required to be 1024
bytes or shorter the SyslogLayout
does not truncate them. The
RFC5424Layout also does not
truncate records since the receiver
must accept records of up to 2048
bytes and may accept records that
are longer.

The name or address of the system
that is listening for log events. This
parameter is required.

The default structured data id to
use when formatting according to
RFC 5424. If the LogEvent contains
a StructuredDataMessage the id
from the Message will be used
instead of this value.

The defaultis t r ue, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
setto f al se exceptions will be
propagated to the caller, instead.
You must set this to f al se when
wrapping this Appender in a
FailoverAppender.

When set to true, log events will
not wait to try to reconnect and will
fail immediately if the socket is not
available.

When set to true - the default,
each write will be followed by a
flush. This will guarantee the data
is written to disk but could impact
performance.

ALL RIGHTS RESERVED.

9 Appenders

includeMDC

loggerFields

mdcExcludes

mdclIncludes

mdcRequired

mdcPrefix

messageld

name

newlLine

port

©2015, The Apache Software Foundation -«

boolean

List of KeyValuePairs

String

String

String

String

String

String

boolean

integer

123

Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

Allows arbitrary PatternLayout
patterns to be included as
specified ThreadContext fields;

no default specified. To use,
include a >LoggerFields< nested
element, containing one or more
>KeyValuePair< elements. Each
>KeyValuePair< must have a key
attribute, which specifies the key
name which will be used to identify
the field within the MDC Structured
Data element, and a value attribute,
which specifies the PatternLayout
pattern to use as the value.

A comma separated list of mdc
keys that should be excluded from
the LogEvent. This is mutually
exclusive with the mdcincludes
attribute. This attribute only applies
to RFC 5424 syslog records.

A comma separated list of mdc
keys that should be included in

the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute. This attribute only applies
to RFC 5424 syslog records.

A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:". This
attribute only applies to RFC 5424
syslog records.

The default value to be used in the
MSGID field of RFC 5424 syslog
records.

The name of the Appender.

If true, a newline will be appended
to the end of the syslog record. The
default is false.

The port on the host that is listening
for log events. This parameter must
be specified.

ALL RIGHTS RESERVED.

9 Appenders 124

protocol String "TCP" or "UDP". This parameter is
required.
SSL SslConfiguration Contains the configuration for the

KeyStore and TrustStore.

reconnectionDelayMillis integer If set to a value greater than 0,
after an error the SocketManager
will attempt to reconnect to the
server after waiting the specified
number of milliseconds. If the
reconnect fails then an exception
will be thrown (which can be
caught by the application if
i gnor eExcepti ons is setto
fal se).

Sysl ogAppender Parameters

A sample syslogAppender configuration that is configured with two Sys| ogAppender s, one using
the BSD format and one using RFC 5424,

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<Appender s>
<Sysl og nane="bsd" host="I|ocal host" port="514" protocol ="TCP"/>
<Sysl og nane="RFC5424" for mat ="RFC5424" host="1ocal host" port="8514"
protocol =" TCP" appNanme="M/App" incl udeMDC="true"
facility="LOCALO" enterpriseNunber="18060" newLi ne="true"
messagel d="Audi t" id="App"/>
</ Appender s>
<Logger s>
<Logger nane="com nycorp" |evel ="error">
<Appender Ref ref="RFC5424"/>
</ Logger >
<Root |evel ="error">
<Appender Ref ref="bsd"/>
</ Root >
</ Logger s>
</ Confi gurati on>

For SSL this appender writes its output to a remote destination specified by a host and port over SSL
in aformat that conforms with either the BSD Syslog format or the RFC 5424 format.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Appenders

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<TLSSysl og nanme="bsd" host="1|ocal host" port="6514">
<SSL>
<KeyStore | ocation="1o0g4j 2- keystore. jks" password="changene"/>
<TrustStore | ocation="truststore.jks" password="changene"/>
</ SSL>
</ TLSSysl og>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="bsd"/>
</ Root >
</ Logger s>
</ Configuration>

9.1.21 ZeroMQ Appender
The ZeroMQ appender usesthe JeroMQ library to send log events to one or more endpoints.
Thisisasimple JeroMQ configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration name="Jer oMPppender Test" stat us="TRACE">
<Appender s>
<Jer oMQ nane="Jer oMQPAppender" >
<Property nanme="endpoi nt">tcp://*:5556</ Property>
<Property nanme="endpoi nt">i pc://info-topic</Property>
</ Jer oM>
</ Appender s>
<Logger s>
<Root |evel ="info">
<Appender Ref ref="Jer oMPAppender"/>
</ Root >
</ Logger s>
</ Confi guration>

The table below describes al options. Please consult the JeroMQ and ZeroM Q documentation for
details.

name String The name of the Appender.
Layout Layout The Layout of the Appender.
Filters Filter The Filters of the Appender.
Property Property One or more Property elements,

named endpoi nt .

ignoreExceptions boolean If true, exceptions will be logged

125

and suppressed. If false errors will

be logged and then passed to the
application.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

https://github.com/zeromq/jeromq

9 Appenders 126

affinity long The ZMQ_AFFINITY option.
Defaults to 0.
backlog long The ZMQ_BACKLOG option.

Defaults to 100.

delayAttachOnConnect boolean The
ZMQ_DELAY_ATTACH_ON_CONNECT
option. Defaults to false.

identity byte[] The ZMQ_IDENTITY option.
Defaults to none.

ipv4Only boolean The ZMQ_IPV4ONLY option.
Defaults to true.

linger long The ZMQ_LINGER option. Defaults
to -1.

maxMsgSize long The ZMQ_MAXMSGSIZE option.
Defaults to -1.

rcvHwm long The ZMQ_RCVHWM option.
Defaults to 1000.

receiveBufferSize long The ZMQ_RCVBUF option.
Defaults to 0.

receiveTimeOut int The ZMQ_RCVTIMEO option.
Defaults to -1.

reconnectlVL long The ZMQ_RECONNECT _IVL

option. Defaults to 100.

reconnectlVLMax long The
ZMQ_RECONNECT_IVL_MAX
option. Defaults to 0.

sendBufferSize long The ZMQ_SNDBUF option.
Defaults to 0.

sendTimeOut int The ZMQ_SNDTIMEO option.
Defaults to -1.

sndHwm long The ZMQ_SNDHWM option.
Defaults to 1000.

tcpKeepAlive int The ZMQ_TCP_KEEPALIVE
option. Defaults to -1.

tcpKeepAliveCount long The ZMQ_TCP_KEEPALIVE_CNT
option. Defaults to -1.

tcpKeepAliveldle long The ZMQ_TCP_KEEPALIVE_IDLE

option. Defaults to -1.

tcpKeepAlivelnterval long The
ZMQ_TCP_KEEPALIVE_INTVL
option. Defaults to -1.

xpubVerbose boolean The ZMQ_XPUB_VERBOSE
option. Defaults to false.

JeroMQ Parameters

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts 127

Layouts

10.1 Layouts

An Appender uses a Layout to format a LogEvent into aform that meets the needs of whatever will
be consuming the log event. In Log4j 1.x and Logback Layouts were expected to transform an event
into a String. In Log4j 2 Layouts return a byte array. This allows the result of the Layout to be useful
in many more types of Appenders. However, this means you need to configure most Layouts with a
Charset to ensure the byte array contains correct values.

Theroot class for layouts that use a Charset is

org. apache. | oggi ng. 1 og4j . core. | ayout . Abstract Stri ngLayout

where the default there is UTF-8. Each layout that extends

org. apache. | oggi ng. | og4j . core. | ayout . Abst ract Stri ngLayout can provideitsown
default. See each layout below.

10.1.1 CSV Layouts

The CSV layout can be used in two ways: First, using CsvPar anet er Layout to log event
parametersto create a custom database, usually to alogger and file appender uniquely configured for
this purpose. Second, using CsvLogEvent Layout to log events to create a database, as an alternative
to using afull DBMS or using a JDBC driver that supports the CSV format.

The CsvPar anet er Layout converts an event's parametersinto a CSV record, ignoring the message.
Tolog CSV records, you can use the usual Logger methodsi nf o() , debug() , and so on:

I ogger.info("lgnored", valuel, value2, val ue3)

Which will create the CSV record:

val uel, value2, value3

Alternatively, you can use a Obj ect Ar r ayMessage, which only carries parameters:

| ogger.info(new bj ect ArrayMessage(val uel, val ue2, value3));

The layouts CsvParameterLayout and CsvL ogEventL ayout are configured with the following
parameters:

format String One of the predefined formats:
Def aul t, Excel , MySQ_,
RFC4180, TDF. See
CSVFormat.Predefined.

delimiter Character Sets the delimiter of the format to
the specified character.

escape Character Sets the escape character of the
format to the specified character.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
https://commons.apache.org/proper/commons-csv/archives/1.2/apidocs/org/apache/commons/csv/CSVFormat.Predefined.html
https://commons.apache.org/proper/commons-csv/archives/1.2/apidocs/org/apache/commons/csv/CSVFormat.Predefined.html

10 Layouts 128

quote Character Sets the quoteChar of the format to
the specified character.

guoteMode String Sets the output quote policy
of the format to the specified
value. One of: ALL, M NI VAL,
NON_NUMERI C, NONE.

nullString String Writes null as the given nullString
when writing records.

recordSeparator String Sets the record separator of the
format to the specified String.

charset Charset The output Charset.

header Sets the header to include when Desc.

the stream is opened.

footer Sets the footer to include when the Desc.
stream is closed.

CsvParameterLayout and CsvL ogEventL ayout
Logging asa CSV eventslooks like this:

| ogger . debug("one={}, two={}, three={}", 1, 2, 3);

Produces a CSV record with the following fields:

1. Time Nanos

2. Time Millis
3. Level
4. Thread Name

5. Formatted M essage
6. Logger FQCN

7. Logger Name

8. Marker

9. Thrown Proxy
10Source

11Context Map
12Context Stack

0, 1441617184044, DEBUG nui n, "one=1, two=2, three=3", org.apache. | ogging.!| og4j.spi.AbstractLogger,,,, org. apache

10.1.2 JSONLayout

Appends a series of JSON events as strings serialized as bytes. This layout requires Jackson jar files
(see pom.xml for details).

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts 129

10.1.2.1 Complete well-formed JSON vs. fragment JSON

If you configure conpl et e="t r ue", the appender outputs awell-formed JSON document. By
default, with conpl et e="f al se", you should include the output as an external filein a separate file
to form awell-formed JSON document.

A well-formed JSON document follows this pattern:

[
{
"l ogger":"com foo.Bar",
"timestanp”:"1376681196470",
"level ": "I NFO',
“thread":"min",
"message": " Message flushed with i mediate flush=true"

"l ogger":"com foo.Bar",

"tinmestanp":"1376681196471",

"l evel ":"ERROR",

"thread":"min",

"message": "Message flushed with i medi ate flush=true",

"throwabl e":"java.l ang. |11 egal Argunent Excepti on: badarg\\n\\tat org.apache. | oggi ng.| o0g4j.core. appender.JS

If conpl et e="f al se", the appender does not write the JSON open array character "[" at the start of
the document. and "]" and the end.

This approach enforces the independence of the JSONL ayout and the appender where you embed it.

10.1.2.2 Encoding

Appenders using this layout should have their char set set to UTF- 8 or UTF- 16, otherwise events
containing non-ASCII characters could result in corrupted log files. If not specified, this layout uses
UTF-8.

10.1.2.3 Pretty vs. compact JSON

By default, the JSON layout is not compact (a.k.a. not "pretty") with conpact =" f al se",
which means the appender uses end-of-line characters and indents lines to format the text. If
conpact ="t rue", then no end-of-line or indentation is used. Message content may contain, of
course, escaped end-of-lines.

charset String The character set to use when
converting the HTML String to a
byte array. The value must be a
valid Charset. If not specified,
UTF-8 will be used.

compact boolean If true, the appender does not
use end-of-lines and indentation.
Defaults to false.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

10 Layouts 130

eventEol boolean If true, the appender appends
an end-of-line after each record.
Defaults to false. Use with
eventEol=true and compact=true to
get one record per line.

complete boolean If true, the appender includes the
JSON header and footer. Defaults
to false.

properties boolean If true, the appender includes the

thread context in the generated
JSON. Defaults to false.

locationinfo boolean If true, the appender includes
the location information in the
generated JSON. Defaultsto
false.

Generating location
information is an expensive
operation and may impact
performance. Use with caution.

JSON Layout Parameters

10.1.3 HTMLLayout
The HTMLLayout generates an HTML page and adds each LogEvent to arow in atable.

charset String The character set to use when
converting the HTML String to a
byte array. The value must be a
valid Charset. If not specified, this
layout uses UTF-8.

contentType String The value to assign to the Content-
Type header. The default is "text/
html".

locationinfo boolean

If true, the filename and line
number will be included in
the HTML output. The default
valueisfase

Generating location
information is an expensive
operation and may impact
performance. Use with caution.

title String A String that will appear as the
HTML title.

HTML Layout Parameters

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

10 Layouts 131

10.1.4 PatternLayout

A flexible layout configurable with pattern string. The goal of this classisto format a LogEvent and
return the results. The format of the result depends on the conversion pattern.

The conversion pattern is closely related to the conversion pattern of the printf functionin C. A
conversion pattern is composed of literal text and format control expressions called conversion
specifiers.

Note that any literal text, including Special Characters, may be included in the conversion pattern.
Special Charactersinclude\t, \n, \r, \f. Use\\ to insert a single backslash into the outpui.

Each conversion specifier starts with a percent sign (%) and is followed by optional format modifiers
and a conversion character. The conversion character specifies the type of data, e.g. category,
priority, date, thread name. The format modifiers control such things as field width, padding, left and
right justification. The following is a simple example.

L et the conversion pattern be " %-5p [%t]: %9m%n" and assume that the Log4j environment was set
to use a PatternLayout. Then the statements

Logger | ogger = LogManager. get Logger (" MyLogger");

| ogger . debug(" Message 1");

| ogger. warn(" Message 2");

would yield the output

DEBUG [nmi n]: Message 1

WARN [nmin]: Message 2

Note that there is no explicit separator between text and conversion specifiers. The pattern parser
knows when it has reached the end of a conversion specifier when it reads a conversion character. In
the example above the conversion specifier % -5p means the priority of the logging event should be
left justified to awidth of five characters.

If the pattern string does not contain a specifier to handle a Throwable being logged, parsing of
the pattern will act asif the "%XEX" specifier had be added to the end of the string. To suppress
formatting of the Throwable completely simply add "%ex{0}" as a specifier in the pattern string.

charset String The character set to use when
converting the syslog String to a
byte array. The String must be a
valid Charset. If not specified, this
layout uses UTF-8.

pattern String A composite pattern string of one or
more conversion patterns from the
table below.

replace RegexReplacement Allows portions of the resulting

String to be replaced. If configured,
the replace element must

specify the regular expression to
match and the substitution. This
performs a function similar to the
RegexReplacement converter but
applies to the whole message while
the converter only applies to the
String its pattern generates.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

10 Layouts

alwaysWriteExceptions

header

footer

noConsoleNoAnsi

regex

replacement

10.1.4.1 Patterns

boolean

String
String

boolean

PatternL ayout Parameters

String

String

RegexReplacement Parameters

The conversions that are provided with Logd4j are:

©2015, The Apache Software Foundation -«

132

Ift r ue (it is by default) exceptions
are always written even if the
pattern contains no exception
conversions. This means that if
you do not include a way to output
exceptions in your pattern, the
default exception formatter will be
added to the end of the pattern.
Setting this to f al se disables
this behavior and allows you to
exclude exceptions from your
pattern output.

The optional header string to
include at the top of each log file.

The optional footer string to include
at the bottom of each log file.

Ift r ue (default is false) and
Syst em consol e() is null, do
not output ANSI escape codes.

A Java-compliant regular
expression to match in the resulting
string. See Pattern .

The string to replace any matched
sub-strings with.

ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

10 Layouts 133

c{precision} Outputs the name of the logger that published
logger{precision} the logging event. The logger conversion
specifier can be optionally followed by precision
specifier, which consists of a decimal integer, or
a pattern starting with a decimal integer.

If aprecision specifier isgiven and itisan
integer value, then only the corresponding
number of right most components of the logger
name will be printed. If the precision contains
other non-integer characters then the name

will be abbreviated based on the pattern. If the
precision integer is less than one the right-most
token will still be printed in full. By default the
logger nameis printed in full.

%c{1} org.apache. Foo
commons.Foo

%c{2} org.apache. commons.Foo
commons.Foo

%c{1.} org.apache. o.a.c.Foo
commons.Foo

%c{1.1.~.~} org.apache. o.a.~.~.Foo
commons.test.
Foo

%c{.} org.apache.Foo
commons.test.
Foo

C{precision} Outputs the fully qualified class name of
class{precision} the caller issuing the logging request. This

conversion specifier can be optionally followed
by precision specifier, that follows the same
rules as the logger name converter.

Generating the class name of the caler (
location information) is an expensive operation
and may impact performance. Use with caution.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts 134

d{pattern} Outputs the date of the logging event. The date
date{pattern} conversion specifier may be followed by a set of
braces containing a date and time pattern string
per SimpleDateFormat .

The predefined formats are DEFAULT,
ABSCLUTE, COVPACT, DATE, | S08601, and
| SCB601_BASI C.

Y ou can also use a set of braces

containing atime zoneid per
javautil.TimeZone.getTimeZone. If no date
format specifier is given then ISO8601 format is

assumed.

%d{DEFAULT} 2012-11-02 14:34:02,781

%d{ISO8601} 2012-11-02T14:34:02,781

%d{ISO8601_BASIC} 20121102T143402,781

%d{ABSOLUTE} 14:34:02,781

%d{DATE} 02 Nov 2012
14:34:02,781

%d{COMPACT} 20121102143402781

%d{HH:mm:ss,SSS} 14:34:02,781

%d{dd MMM yyyy 02 Nov 2012

HH:mm:ss,SSS} 14:34:02,781

%d{HH:mm:ss{GMT+0} 18:34:02

%d{UNIX} 1351866842

%d{UNIX_MILLIS} 1351866842781

%d{ UNIX} outputs the UNIX timein seconds.
%d{ UNIX_MILLIS} outputs the UNIX timein
milliseconds. The UNIX timeisthe difference,
in seconds for UNIX and in milliseconds for
UNIX_MILLIS, between the current time and
midnight, January 1, 1970 UTC. While the time
unit is milliseconds, the granularity depends on
the operating system (Windows). Thisisan
efficient way to output the event time because
only a conversion from long to String takes
place, there is no Date formatting involved.

enc{pattern} Escape newlines and HTML special charactersin
encode{pattern> the specified pattern.

Allows HTML to be safely logged.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)
http://msdn.microsoft.com/en-us/windows/hardware/gg463266.aspx

10 Layouts

©2015,

enc{pattern}
encode{pattern}

ex| exception| throwable
{["none"
["full”
|depth
|"short"
|"short.className"
|"short.fileName"
|"short.lineNumber"
|"short.methodName"
|"short.message"
|"short.localizedMessage"]}

The Apache Software Foundation -«

135

Encodes special characters such as\n' and
HTML characters to help prevent log forging
and some XSS attacks that could occur when
displaying logs in aweb browser. Anytime
user provided datais logged, this can provide a
safeguard.

A typical usage would encode the message

%enc{ %

but user input could come from other locations as
well, such asthe MDC

%enc{ %rdc{ key}}

The replaced characters are:

& <, >""/ Replaced with the
corresponding HTML
entity

Outputs the Throwable trace bound to the

L oggingEvent, by default this will output the full
trace as one would normally find with acall to
Throwable.printStack Trace().

Y ou can follow the throwable conversion word
with an option in the form %throwable{option}.

% throwable{short} outputs the first line of the
Throwable.

% throwable{short.className} outputs the
name of the class where the exception occurred.

% throwable{short.methodName} outputs the
method name where the exception occurred.

% throwable{short.fileName} outputs the name
of the class where the exception occurred.

%throwable{short.lineNumber} outputs the
line number where the exception occurred.

% throwable{short.message} outputs the
message.

% throwable{short.localizedM essage} outputs
the localized message.

%throwable{n} outputsthefirst n lines of the
stack trace.

Specifying % throwable{none} or
% throwable{0} suppresses output of the
exception.

ALL RIGHTS RESERVED.

10 Layouts 136

F Outputs the file name where the logging request
file was issued.

Generating the file information (location
information) is an expensive operation and may
impact performance. Use with caution.

highlight{pattern}{style} Adds ANSI colorsto the result of the enclosed
pattern based on the current event's logging
level.

The default colors for each level are:

FATAL Bright red

ERROR Bright red

WARN Yellow

INFO Green

DEBUG Cyan

TRACE Black (looks dark grey)

The color names are ANSI names defined in the
AnsiEscape class.

The color and attribute names and are standard,
but the exact shade, hue, or value.

Black Red Greel Yello\ Blue Mage Cyan White

Black Red Greet YelloyBlue Mage Cyan White

Color table

Y ou can use the default colors with:
%ighlight{% [%] %5level: %s9%% hr owabl e}

Y ou can override the default colorsin the
optional { style} option. For example:
%ighlight{% [%] %5level: %s9%% hr owabl e}
{ FATAL=whi t e, ERROR=red, WARN=bl ue, | NFO=bl ack,
DEBUG=gr een, TRACE=bl ue}

Y ou can highlight only the a portion of the log
event:
%l [%] %highlight{%5level: %sg%% hr owabl e}

Y ou can style one part of the message and

highlight the rest the log event:

Ystyle{%l [%]}{bl ack} %i ghlight{% 5I evel :
%rsg%n% hr owabl e}

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts

K{key}
map{key}
MAP{key}

I
location

line

©2015, The Apache Software Foundation -«

137

You can also usethe STYLE key to usea

predefined group of colors:

9%ighlight{%l [%] % 5level: %rsg%% hrowabl e}
{ STYLE=Logback}

The STYLE value can be one of:
Default See above
Logback

FATAL Blinking
bright red

ERROR Bright red
WARN Red
INFO Blue
DEBUG Normal
TRACE Normal

Outputs the entriesin a MapMessage, if oneis
present in the event. The K conversion character
can be followed by the key for the map placed
between braces, asin % K{clientNumber}
wherecl i ent Nunber isthekey. Thevaluein
the Map corresponding to the key will be output.
If no additional sub-option is specified, then the
entire contents of the Map key value pair set is
output using aformat {{ keyl,vall} { key2,val2}}

Outputs location information of the caller which
generated the logging event.

The location information depends on the VM
implementation but usually consists of the fully
gualified name of the calling method followed by
the callers source the file name and line number
between parentheses.

Generating location information is an expensive
operation and may impact performance. Use with
caution.

Outputs the line number from where the logging
request was issued.

Generating line number information (location
information) is an expensive operation and may
impact performance. Use with caution.

ALL RIGHTS RESERVED.

10 Layouts

m
msg
message

M
method

marker

n

N
nano

p| level{ level= label, level= label, ...} p|
level{length= n} p| level{lowerCase= true| false}

r
relative

©2015, The Apache Software Foundation -«

138

Outputs the application supplied message associated
with the logging event.

Outputs the method name where the logging
request was issued.

Generating the method name of the caller (
location information) is an expensive operation
and may impact performance. Use with caution.

The name of the marker, if one is present.

Outputs the platform dependent line separator
character or characters.

This conversion character offers practically

the same performance as using non-portable
line separator strings such as "\n", or "\r\n".
Thus, it isthe preferred way of specifying aline
Separator.

Outputs the result of Syst em nanoTi ne() at
the time the log event was created.

Outputs the level of the logging event.

Y ou provide alevel name map in the form
"level=value, level=value" wherelevel isthe
name of the Level and valueis the value that
should be displayed instead of the name of the

Level.

For example:

% evel { WARN=War ni ng, DEBUG=Debug, ERROR=Error, TRACE=Trace,
Alternatively, for the compact-minded:

% evel { WARN=W DEBUG=D, ERROR=E, TRACE=T, |NFO=I}

More succinctly, for the same result as above,
you can define the length of the level label:

% evel {| engt h=1}

If the length is greater than alevel name length,
the layout uses the normal level name.

Y ou can combine the two kinds of options:

% evel { ERROR=Error, |ength=2}
Thisgiveyouthe Err or level name and all other
level names of length 2.

Finally, you can output lower-case level names
(the default is upper-case):

% evel {| ower Case=t r ue}

Outputs the number of milliseconds elapsed since
the JVM was started until the creation of the logging
event.

ALL RIGHTS RESERVED.

10 Layouts

replace{pattern}{regex}{substitution}

rEx["'none"|"short"|"full"|depth],[filters(packages)}
rException['none"|"short"|"full”|
depth],[filters(packages)}
rThrowable['none"|"short"|"full”|
depth],[filters(packages)}

sn
sequenceNumber

139

Replaces occurrences of 'regex’, aregular
expression, with its replacement 'substitution’
in the string resulting from evaluation of the
pattern. For example, "%replace(%omsg} {\s}{} "
will remove all spaces contained in the event
message.

The pattern can be arbitrarily complex and

in particular can contain multiple conversion
keywords. For instance, "%replace{ %logger
%msg} {\.}{/}" will replace all dots in the logger
or the message of the event with aforward slash.

The same as the %throwable conversion word
but the stack trace is printed starting with the
first exception that was thrown followed by each
subsequent wrapping exception.

The throwable conversion word can be followed
by an option in the form %r Ex{short} which
will only output the first line of the Throwable or
%rEx{n} where thefirst n lines of the stacktrace
will be printed. The conversion word can

also be followed by "filters(packages)" where
packagesisalist of package names that should
be suppressed from stack traces. Specifying
%rEx{none} or %rEx{0} will suppress printing
of the exception.

Includes a sequence number that will be incremented
in every event. The counter is a static variable so will
only be unique within applications that share the same
converter Class object.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts 140

style{pattern{ANSI style} Uses ANSI escape sequences to style the result
of the enclosed pattern. The style can consist of
acomma separated list of style names from the
following table.

Normal Normal display

Bright Bold

Dim Dimmed or faint
characters

Underline Underlined characters

Blink Blinking characters

Reverse Reverse video

Hidden

Black or FG_Black Set foreground color to
black

Red or FG_Red Set foreground color to
red

Green or FG_Green Set foreground color to
green

Yellow or FG_Yellow Set foreground color to
yellow

Blue or FG_Blue Set foreground color to
blue

Magenta or FG_Magenta Set foreground color to

magenta

Cyan or FG_Cyan Set foreground color to
cyan

White or FG_White Set foreground color to
white

Default or FG_Default Set foreground color to
default (white)

BG_Black Set background color to
black

BG_Red Set background color to
red

BG_Green Set background color to
green

BG_Yellow Set background color to
yellow

BG_Blue Set background color to
blue

BG_Magenta Set background color to
magenta

BG_Cyan Set background color to
cyan

BG_White Set background color to
white

For example:

styl e{%{1 SCB601}}{bl ack} %style{[%]}{blue} %tyl e{% 5l evel:

Y ou can also combine styles:
%l Y%i ghlight{%} %tyle{% ogger}{bright,cyan} %C{1.} %sg%

N Y D Y T I I D R

10 Layouts

t
thread

X
NDC

X{key[,key2...]}
mdc{key[,key2...]}
MDC{key[,key2...]}

u{"RANDOM" | "TIME"}
uuid

©2015, The Apache Software Foundation -«

141

Outputs the name of the thread that generated the
logging event.

Outputs the Thread Context Stack (also known as the
Nested Diagnostic Context or NDC) associated with
the thread that generated the logging event.

Outputs the Thread Context Map (also

known as the Mapped Diagnostic Context

or MDC) associated with the thread that
generated the logging event. The X conversion
character can be followed by one or more

keys for the map placed between braces, asin

% X{clientNumber} wherecl i ent Nunber is
the key. The value in the MDC corresponding to
the key will be outpuit.

If alist of keys are provided, such as % X{name,
number}, then each key that is present in the
ThreadContext will be output using the format
{name=val1, number=val2}. The key/value pairs
will be printed in the order they appear in the list.

If no sub-options are specified then the entire
contents of the MDC key value pair set is output
using aformat { keyl=vall, key2=val2}. The
key/value pairs will be printed in sorted order.

See the ThreadContext class for more details.

Includes either a random or a time-based UUID.
The time-based UUID is a Type 1 UUID that can
generate up to 10,000 unique ids per millisecond,
will use the MAC address of each host, and to try
to insure uniqueness across multiple JVMs and/or
ClassLoaders on the same host a random number
between 0 and 16,384 will be associated with each
instance of the UUID generator Class and included
in each time-based UUID generated. Because
time-based UUIDs contain the MAC address and
timestamp they should be used with care as they can
cause a security vulnerability.

ALL RIGHTS RESERVED.

10 Layouts 142

XEx{"none"["short"["full"|depth],[filters(packages)} The same as the %throwable conversion word

XException['none"|"short"|*full”| but also includes class packaging information.
depth],[filters(packages)}

xThrowable["none"|"short"|"full”| At the end of each stack element of the
depth],[filters(packages)} exception, a string containing the name of the

jar file that contains the class or the directory
the classislocated in and the "Implementation-
Version" asfound in that jar's manifest will be
added. If the information is uncertain, then the
class packaging data will be preceded by atilde,
i.e. the'~' character.

The throwable conversion word can be followed
by an option in the form % xEx{short} which
will only output the first line of the Throwable or
% XEx{n} where thefirst n lines of the stacktrace
will be printed. The conversion word can

also be followed by "filters(packages)" where
packagesisalist of package names that should
be suppressed from stack traces. Specifying

% XEx{none} or % xEx{0} will suppress printing
of the exception.

% The sequence %% outputs a single percent sign.

By default the relevant information is output asis. However, with the aid of format modifiersit is
possible to change the minimum field width, the maximum field width and justification.

The optional format modifier is placed between the percent sign and the conversion character.

Thefirst optional format modifier isthe left justification flag which isjust the minus (-) character.
Then comes the optional minimum field width modifier. Thisis adecimal constant that represents the
minimum number of charactersto output. If the dataitem requires fewer characters, it is padded on
either the left or the right until the minimum width is reached. The default isto pad on the left (right
justify) but you can specify right padding with the left justification flag. The padding character is
space. If the dataitem islarger than the minimum field width, the field is expanded to accommodate
the data. The value is never truncated.

This behavior can be changed using the maximum field width modifier which is designated by
aperiod followed by adecimal constant. If the dataitem is longer than the maximum field, then
the extra characters are removed from the beginning of the dataitem and not from the end. For
example, it the maximum field width is eight and the data item is ten characters long, then the first
two characters of the dataitem are dropped. This behavior deviates from the printf functionin C
where truncation is done from the end.

Truncation from the end is possible by appending a minus character right after the period. In that
case, if the maximum field width is eight and the dataitem is ten characters long, then the last two
characters of the dataitem are dropped.

Below are various format modifier examples for the category conversion specifier.

%20c false 20 none Left pad with spaces
if the category name
is less than 20
characters long.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts

%-20c

%.30c

%20.30c

%-20.30c

%-20.-30c

10.1.4.2 ANSI Styling on Windows

true

NA

false

true

true

20 none
none 30
20 30
20 30
20 30

Pattern Converters

143

Right pad with
spaces if the
category name
is less than 20
characters long.

Truncate from the
beginning if the
category name

is longer than 30
characters.

Left pad with spaces
if the category

name is shorter
than 20 characters.
However, if category
name is longer than
30 characters, then
truncate from the
beginning.

Right pad with
spaces if the
category name

is shorter than

20 characters.
However, if category
name is longer than
30 characters, then
truncate from the
beginning.

Right pad with
spaces if the
category name

is shorter than

20 characters.
However, if category
name is longer than
30 characters, then
truncate from the
end.

ANSI escape sequences are supported natively on many platforms but are not by default on Windows.
To enable ANSI support smply add the Jansi jar to your application and Log4j will automatically
make use of it when writing to the console.

10.1.4.3 Example Patterns

10.Filtered Throwables

This example shows how to filter out classes from unimportant packagesin stack traces.

©2015, The Apache Software Foundation -«

ALL RIGHTS RESERVED.

http://jansi.fusesource.org/

10 Layouts 144

<properties>
<property nanme="filters">org.junit,org.apache. maven, sun.refl ect,java.l ang. refl ect</property>
</ properties>

<PatternLayout pattern="%wxEx{filters(${filters})}wm"/>
The result printed to the console will appear similar to:

Exception java.lang. |l egal Argunent Exception: |11 egal Argunent

at org. apache. | oggi ng. | og4j.core. pattern. ExtendedThr owabl eTest .
t est Excepti on(Ext endedThr owabl eTest . j ava: 72) [test-cl asses/: ?]
suppressed 26 |ines

at $Proxy0. i nvoke(Unknown Source)} [?:?]
suppressed 3 lines

Caused by: java.lang. Nul | Poi nter Exception: null pointer

at org. apache. | oggi ng. | og4j.core. pattern. ExtendedThr owabl eTest .
t est Excepti on(Ext endedThr owabl eTest . j ava: 71) ~[test-cl asses/: ?]
30 nore

10.ANSI Styled

Thelog level will be highlighted according to the event'slog level. All the content that follows the
level will be bright green.

<Pat t er nLayout >
<pattern>% %i ghlight{%} %tyle{%{1.} [%] %1{bold, green}%</pattern>
</ Patt er nLayout >

10.1.5 RFC5424Layout

Asthe name implies, the RFC5424L ayout formats LogEvents in accordance with RFC 5424, the
enhanced Syslog specification. Although the specification is primarily directed at sending messages
via Sydlog, thisformat is quite useful for other purposes since items are passed in the message as self-
describing key/value pairs.

appName String The value to use as the APP-
NAME in the RFC 5424 syslog
record.

charset String The character set to use when

converting the syslog String to a
byte array. The String must be
avalid Charset. If not specified,
the default system Charset will be
used.

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://tools.ietf.org/html/rfc5424
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

10 Layouts

exceptionPattern

facility

format

immediateFlush

includeMDC

©2015, The Apache Software Foundation -«

String

String

String

String

boolean

boolean

145

One of the conversion specifiers
from PatternLayout that defines
which ThrowablePatternConverter
to use to format exceptions. Any

of the options that are valid for
those specifiers may be included.
The default is to not include the
Throwable from the event, if any, in
the output.

The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALOQ", "LOCAL1", "LOCALZ2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCALT". These
values may be specified as upper
or lower case characters.

If set to "RFC5424" the data will
be formatted in accordance with
RFC 5424. Otherwise, it will be
formatted as a BSD Syslog record.
Note that although BSD Syslog
records are required to be 1024
bytes or shorter the SyslogLayout
does not truncate them. The
RFC5424Layout also does not
truncate records since the receiver
must accept records of up to 2048
bytes and may accept records that
are longer.

The default structured data id to
use when formatting according to
RFC 5424. If the LogEvent contains
a StructuredDataMessage the id
from the Message will be used
instead of this value.

When set to true, each write will

be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

ALL RIGHTS RESERVED.

10 Layouts

loggerFields

mdcExcludes

mdclIncludes

mdcRequired

mdcPrefix

mdcld

messageld

newlLine

newLineEscape

©2015, The Apache Software Foundation -«

List of KeyValuePairs

String

String

String

String

String

String

boolean

String

RFC54241 ayout Parameters

146

Allows arbitrary PatternLayout
patterns to be included as
specified ThreadContext fields;

no default specified. To use,
include a <LoggerFields> nested
element, containing one or more
<KeyValuePair> elements. Each
<KeyValuePair> must have a key
attribute, which specifies the key
name which will be used to identify
the field within the MDC Structured
Data element, and a value attribute,
which specifies the PatternLayout
pattern to use as the value.

A comma separated list of mdc
keys that should be excluded from
the LogEvent. This is mutually
exclusive with the mdcincludes
attribute. This attribute only applies
to RFC 5424 syslog records.

A comma separated list of mdc
keys that should be included in

the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute. This attribute only applies
to RFC 5424 syslog records.

A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:". This
attribute only applies to RFC 5424
syslog records.

A required MDC ID. This attribute
only applies to RFC 5424 syslog
records.

The default value to be used in the
MSGID field of RFC 5424 syslog
records.

If true, a newline will be appended
to the end of the syslog record. The
default is false.

String that should be used to
replace newlines within the
message text.

ALL RIGHTS RESERVED.

10 Layouts 147

10.1.6 SerializedLayout

The SerializedLayout simply serializes the LogEvent into abyte array. Thisis useful when sending
messages viaJM S or viaa Socket connection. The SerializedL ayout accepts no parameters.

10.1.7 SyslogLayout

The SyslogLayout formats the LogEvent as BSD Syslog records matching the same format used by
Log4j 1.2.

charset String The character set to use when
converting the syslog String to a
byte array. The String must be a
valid Charset. If not specified, this
layout uses UTF-8.

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALO", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCAL7". These
values may be specified as upper
or lower case characters.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

newLineEscape String String that should be used to
replace newlines within the
message text.

SydloglL ayout Parameters

10.1.8 XMLLayout
Appends a series of Event elements as defined in the log4j.dtd.

10.1.8.1 Complete well-formed XML vs. fragment XML

If you configure conpl et e="t r ue", the appender outputs awell-formed XML document where
the default namespace isthe Log4j namespace" htt p: / /1 oggi ng. apache. org/ | og4j/ 2. 0/
event s". By default, with conpl et e="f al se", you should include the output as an external
entity in a separate file to form awell-formed XML document, in which case the appender uses
namespacePr ef i x with adefault of " | og4j ".

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

10 Layouts 148

A well-formed XML document follows this pattern:

<?xm version="1.0" encodi ng="UTF-8"?>
<Events xm ns="http://|oggi ng. apache. org/ | og4j/ 2.0/ events">
<Event | ogger="com foo.Bar" timestanp="1373436580419" |evel ="I NFO' t hread="mai n">
<Message><! [CDATA[This is a | og nessage 1]]></Message>
<Mar ker parent ="Parent Marker"><Child Marker></ Mar ker >
</ Event >
<Event | ogger="com foo. Baz" timestanp="1373436580420" |evel ="I NFO' t hread="main">
<Message><! [CDATA[This is a | og nessage 2]]></Message>
<Mar ker ><The Mar ker Nane></ Mar ker >
</ Event >
</ Event s>

If conpl et e="f al se", the appender does not write the XML processing instruction and the root
element.

This approach enforces the independence of the XML Layout and the appender where you embed it.

10.1.8.2 Marker

Markers are represented by aMar ker element within the Event element. The Mar ker element
appears only when a marker is used in the log message. The name of the marker's parent will be
provided in the par ent attribute of the Mar ker element. Only the leaf marker isincluded, not the full
hierarchy.

10.1.8.3 Encoding

Appenders using this layout should have their char set set to UTF- 8 or UTF- 16, otherwise events
containing non ASCII characters could result in corrupted log files. If not specified, this layout uses
UTF-8.

10.1.8.4 Pretty vs. compact XML

By default, the XML layout is not compact (ak.a. not "pretty") with conpact =" f al se",
which means the appender uses end-of-line characters and indents lines to format the XML. If
conpact ="t r ue", then no end-of-line or indentation is used. Message content may contain, of
course, end-of-lines.

10.1.9 GELF Layout
Lays out eventsin the Graylog Extended Log Format (GELF) 1.1.

This layout compresses JSON to GZIP or ZLIB (the conpr essi onType) if log event datais larger
than 1024 bytes (the conpr essi onThr eshol d). Thislayout does not implement chunking.

Configure as follows to send to a Graylog2 server:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Layouts 149

[
<Appender s>
<Socket nanme="Grayl og" protocol ="udp" host="grayl og. domai n. coni’ port="12201">
<Gel f Layout host ="soneserver" conpressi onType="G&ZI P" conpressi onThreshol d="1024">
<KeyVal uePai r key="additional Fi el d1" val ue="additional value 1"/>
<KeyVal uePai r key="additional Fi el d2" val ue="additional value 2"/>
</ Gel f Layout >
</ Socket >
</ Appender s>

]

See also:

e The GELF home page
» The GELF specification

10.1.10 Location Information

If one of the layouts is configured with alocation-rel ated attribute like HTML locationlnfo, or one of
the patterns %C or $class, %F or %file, %l or %location, %L or %line, %M or %method, L og4j
will take a snapshot of the stack, and walk the stack trace to find the location information.

Thisis an expensive operation: 1.3 - 5 times slower for synchronous loggers. Synchronous loggers
walit as long as possible before they take this stack snapshot. If no location is required, the snapshot
will never be taken.

However, asynchronous loggers need to make this decision before passing the log message to another
thread; the location information will be lost after that point. The performance impact of taking a stack
trace snapshot is even higher for asynchronous loggers: logging with location is 4 - 20 times slower
than without location. For this reason, asynchronous loggers and asynchronous appenders do not
include location information by default.

Y ou can override the default behaviour in your logger or asynchronous appender configuration by
specifyingi ncl udeLocati on="true".

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://graylog2.org/gelf
http://graylog2.org/resources/gelf/specification

11 Filters 150

11 Filters

11.1 Filters

Filters allow Log Eventsto be evaluated to determine if or how they should be published. A Filter
will be called on one of its filter methods and will return a Result, which is an Enum that has one of 3
values - ACCEPT, DENY or NEUTRAL.

Filters may be configured in one of four locations:

1. Context-wide Filters are configured directly in the configuration. Events that are rejected by
these filters will not be passed to loggers for further processing. Once an event has been accepted
by a Context-wide filter it will not be evaluated by any other Context-wide Filters nor will the
Logger's Level be used to filter the event. The event will be evaluated by Logger and Appender
Filters however.

2. Logger Filters are configured on a specified Logger. These are evaluated after the Context-
wide Filters and the Log Level for the Logger. Eventsthat are rejected by these filters will be
discarded and the event will not be passed to a parent Logger regardless of the additivity setting.

3. Appender Filters are used to determine if a specific Appender should handle the formatting and
publication of the event.

4. Appender Reference Filters are used to determineif aLogger should route the event to an
appender.

11.1.1 BurstFilter

The BurstFilter provides a mechanism to control the rate at which LogEvents are processed by silently
discarding events after the maximum limit has been reached.

level String Level of messages to be filtered.
Anything at or below this level will
be filtered out if maxBur st has
been exceeded. The default is
WARN meaning any messages that
are higher than warn will be logged
regardless of the size of a burst.

rate float The average number of events per
second to allow.

maxBurst integer The maximum number of events
that can occur before events are
filtered for exceeding the average
rate. The default is 10 times the
rate.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 151

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Burst Filter Parameters
A configuration containing the BurstFilter might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>
<Rol I'i ngFi | e nanme="Rol | i ngFi | e" fil eNane="1ogs/ app. | og"
filePattern="Iogs/app- %{ M\ dd-yyyy}. | og. gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dn</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

11.1.2 CompositeFilter

The CompositeFilter provides away to specify more than one filter. It is added to the configuration as
afilters element and contains other filtersto be evaluated. The filters element accepts no parameters.

A configuration containing the CompositeFilter might look like:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 152

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Filters>
<Mar ker narker ="EVENT" onMat ch="ACCEPT" onM smat ch="NEUTRAL"/ >
<Dynami cThreshol dFi | ter key="logi nld" defaul t Thr eshol d=" ERROR"
onMat ch="ACCEPT" onM smat ch="NEUTRAL" >
<KeyVal uePai r key="User1" val ue="DEBUG'/ >
</ Dynani cThreshol dFi | ter >
</Filters>
<Appender s>
<File name="Audit" fileName="1ogs/audit.|og">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
</File>
<Rol l'i ngFi |l e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="|ogs/app- %d{ M} dd- yyyy}.| og. gz">
<BurstFilter level ="INFO' rate="16" naxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pn</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeri ngPolicy />
</ Rol lingFil e>

</ Appender s>
<Logger s>
<Logger nane="EventLogger" |evel ="info">
<Appender Ref ref="Audit"/>
</ Logger >

<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

11.1.3 DynamicThresholdFilter

The DynamicThresholdFilter allows filtering by log level based on specific attributes. For example,
if the user'sloginlid is being captured in the ThreadContext Map then it is possible to enable debug
logging for only that user.

defaultThreshold String Level of messages to be filtered. If
there is no matching key in the key/
value pairs then this level will be
compared against the event's level.

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the matching
value for the key and the Level to
evaluate when the key matches.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 153

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Dynamic Threshold Filter Parameters
Here is a sample configuration containing the DynamicThreshol dFilter:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="M/App" packages="">
<Dynam cThreshol dFi |l ter key="logi nl d" defaul t Thr eshol d=" ERROR"
onMat ch="ACCEPT" onM smat ch="NEUTRAL" >
<KeyVal uePai r key="User 1" val ue="DEBUG'/ >
</ Dynam cThr eshol dFi | t er >
<Appender s>
<Rol l'ingFil e name="Rol | ingFi |l e" fil eName="1 ogs/ app. | og"
filePattern="Ilogs/app-%{ M} dd-yyyy}. Il og.gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Confi gurati on>

11.1.4 MapFilter
The MapFilter alows filtering against data elements that are in a MapMessage.

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key in the
map and the value to match on.
If the same key is specified more
than once then the check for that
key will automatically be an "or"
since a Map can only contain a
single value.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 154

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Map Filter Parameters
Asin this configuration, the MapFilter can be used to log particular events:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<MapFi | t er onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="eventld" val ue="Login"/>
<KeyVal uePair key="eventld" val ue="Logout"/>
</ MapFi | ter>
<Appender s>
<Rol l'ingFil e name="Rol | i ngFi | e" fil eName="1 ogs/ app. | 0g"
filePattern="I|ogs/app-%{ MV dd-yyyy}. | og.gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernnLayout >
<Ti meBasedTri ggeri ngPolicy />
</Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Confi gurati on>

This sample configuration will exhibit the same behavior as the preceding example since the only
logger configured is the root.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 155

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="|ogs/app- %d{ M\ dd- yyyy}.| og. gz">
<BurstFilter level ="INFO' rate="16" naxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<MapFi | t er onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="event!|d" val ue="Login"/>
<KeyVal uePai r key="event!|d" val ue="Logout"/>
</ MapFil ter>
<Appender Ref ref="RollingFile">
</ Appender Ref >
</ Root >
</ Logger s>
</ Configuration>

This third sample configuration will exhibit the same behavior as the preceding examples since the
only logger configured isthe root and the root is only configured with a single appender reference.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="M/App" packages="">
<Appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="1 ogs/ app.| o0g"
filePattern="I|ogs/app- %{ M\ dd-yyyy}. | og. gz">
<BurstFilter |level ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dn</pattern>
</ Patt er nLayout >
<Ti neBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile">
<MapFi | ter onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="event|d" val ue="Login"/>
<KeyVal uePair key="eventld" val ue="Logout"/>

</ MapFi | ter>
</ Appender Ref >
</ Root >

</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters

156

11.1.5 MarkerFilter

The MarkerFilter compares the configured Marker value against the Marker that isincluded in the

LogEvent. A match occurs when the Marker name matches either the Log Event's Marker or one of its
parents.

marker String The name of the Marker to
compare.
onMatch String Action to take when the filter

matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Marker Filter Parameters

A sample configuration that only allows the event to be written by the appender if the Marker
matches:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="MApp" packages="">
<Appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="| ogs/ app. | og"
filePattern="I|ogs/app-%{ M dd-yyyy}. | og.gz">
<Mar ker Fi | ter marker="FLOW onMat ch="ACCEPT" onM smat ch="DENY"/ >
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pn</pattern>
</ Patt er nLayout >
<Ti neBasedTri ggeri ngPolicy />
</Rol i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Confi guration>

11.1.6 RegexFilter

The RegexFilter allows the formatted or unformatted message to be compared against aregular
expression.

regex String The regular expression.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 157

useRawMsg boolean If true the unformatted message will
be used, otherwise the formatted
message will be used. The default
value is false.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Regex Filter Parameters

A sample configuration that only allows the event to be written by the appender if it contains the word
"test":
<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<Appender s>
<Rol l'ingFil e name="Rol | i ngFi | e" fil eName="1 ogs/ app. | 0g"
filePattern="I|ogs/app-%{ MV dd-yyyy}. | og.gz">
<RegexFilter regex=".* test .*" onMatch="ACCEPT" onM smat ch="DENY"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeri ngPolicy />
</Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Confi gurati on>

11.1.7 StructuredDataFilter
The StructuredDataFilter is a MapFilter that also allows filtering on the event id, type and message.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 158

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key
in the map and the value to
match on. "id", "id.name",
"type", and "message" should
be used to match on the
StructuredDatald, the name portion
of the StructuredDatald, the
type, and the formatted message
respectively. If the same key is
specified more than once then the
check for that key will automatically
be an "or" since a Map can only
contain a single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

StructuredData Filter Parameters
Asin this configuration, the StructuredDataFilter can be used to log particular events:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" name="MApp" packages="">
<StructuredDat aFi | ter onMatch="ACCEPT" onM snmat ch="NEUTRAL" operator="or">
<KeyVal uePair key="id" val ue="Login"/>
<KeyVal uePai r key="id" val ue="Logout"/>
</ StructuredDataFilter>
<Appender s>
<Rol l'ingFil e name="Rol | i ngFi | e" fil eName="1 ogs/ app. | 0g"
filePattern="I|ogs/app-%{ M\ dd-yyyy}.I| og.gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeri ngPolicy />
</Rol l'i ngFi | e>
</ Appender s>
<Logger s>
<Root |evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Confi guration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 159

11.1.8 ThreadContextMapFilter

The ThreadContextM apFilter allows filtering against data el ements that are in the ThreadContext
Map.

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key in the
map and the value to match on.
If the same key is specified more
than once then the check for that
key will automatically be an "or"
since a Map can only contain a
single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

ThreadContext Map Filter Parameters
A configuration containing the ThreadContextM apFilter might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="warn" nane="MApp" packages="">
<Thr eadCont ext MapFi | t er onMat ch="ACCEPT" onM snat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="User1" val ue="DEBUG'/ >
<KeyVal uePair key="User2" val ue="WARN'/ >
</ Thr eadCont ext MapFi | t er >
<Appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="1 ogs/ app. | og"
filePattern="Ilogs/app-%{ M dd-yyyy}. | og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pn</pattern>
</ Patt ernLayout >
<Ti neBasedTri ggeringPolicy />
</ Rol li ngFi | e>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 160

The ThreadContextM apFilter can also be applied to alogger for filtering:

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" name="M/App" packages="">
<Appender s>
<Rol l'i ngFi |l e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="|ogs/app- %d{ M\ dd- yyyy}.| og. gz">
<BurstFilter level ="INFO' rate="16" naxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
<Thr eadCont ext MapFi | t er onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="foo" val ue="bar"/>
<KeyVal uePai r key="User 2" val ue="WARN'/ >
</ Thr eadCont ext MapFi | t er >
</ Root >
</ Logger s>
</ Configuration>

11.1.9 ThresholdFilter

Thisfilter returns the onMatch result if the level in the LogEvent is the same or more specific than
the configured level and the onMismatch value otherwise. For example, if the ThresholdFilter is
configured with Level ERROR and the LogEvent contains Level DEBUG then the onMismatch value
will be returned since ERROR events are more specific than DEBUG.

level String A valid Level name to match on.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Threshold Filter Parameters
A sample configuration that only allows the event to be written by the appender if the level matches:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters 161

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="|ogs/app- %d{ M\ dd- yyyy}.| og. gz">
<Threshol dFi |l ter | evel =" TRACE" onMat ch="ACCEPT" onM smat ch="DENY"/ >
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

11.1.10 TimekFilter
The time filter can be used to restrict filter to only a certain portion of the day.

start String A time in HH:mm:ss format.

end String A time in HH:mm:ss format.
Specifying an end time less than
the start time will result in no log
entries being written.

timezone String The timezone to use when
comparing to the event timestamp.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Time Filter Parameters

A sample configuration that only allows the event to be written by the appender from 5:00 to 5:30 am
each day using the default timezone:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11 Filters

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="warn" nanme="M/App" packages="">
<Appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="|ogs/app- %d{ M\ dd- yyyy}.| og. gz">
<TimeFilter start="05:00:00" end="05:30: 00" onMat ch="ACCEPT"
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFile>
</ Appender s>
<Logger s>
<Root | evel ="error">
<Appender Ref ref="RollingFile"/>
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

onM smat ch="DENY"/ >

162

12 Async Loggers 163

12 Async Loggers

12.1 Asynchronous Loggers for Low-Latency Logging

Asynchronous logging can improve your application's performance by executing the 1/0 operationsin
a separate thread. Log4j 2 makes a number of improvementsin this area.

Asynchronous L ogger s are a new addition to Log4j 2. Their aim isto return from the call to
Logger.log to the application as soon as possible. Y ou can choose between making all Loggers
asynchronous or using a mixture of synchronous and asynchronous Loggers. Making all Loggers
asynchronous will give the best performance, while mixing gives you more flexibility.

LMAX Disruptor technology. Asynchronous Loggersinternally use the Disruptor, alock-free
inter-thread communication library, instead of queues, resulting in higher throughput and lower
latency.

Asynchronous Appender s aready existed in Log4j 1.x, but have been enhanced to flush

to disk at the end of abatch (when the queue is empty). This produces the same result as
configuring "immediateFlush=true", that is, all received log events are always available on disk,
but is more efficient because it does not need to touch the disk on each and every log event.
(Async Appenders use ArrayBlockingQueue internally and do not need the disruptor jar on the
classpath.)

(For synchronous and asynchronous use) Random Access File Appender s are an alternative
to Buffered File Appenders. Under the hood, these new appenders use a ByteBuffer +
RandomA ccessFile instead of a BufferedOutputStream. In our testing this was about 20-200%
faster. These appenders can a so be used with synchronous loggers and will give the same
performance benefits. Random Access File Appenders do not need the disruptor jar on the

classpath.

12.1.1 Trade-offs

Although asynchronous logging can give significant performance benefits, there are situations where
you may want to choose synchronous logging. This section describes some of the trade-offs of
asynchronous logging.

Benefits

Higher throughput. With an asynchronous logger your application can log messages at 6 - 68
times the rate of a synchronous logger.

Lower logging latency. Latency isthetime it takesfor acall to Logger.log to return.
Asynchronous L oggers have consistently lower latency than synchronous loggers or even queue-
based asynchronous appenders. Applications interested in low latency often care not only about
average latency, but also about worst-case latency. Our performance comparison shows that
Asynchronous Loggers aso do better when comparing the maximum latency of 99% or even
99.99% of observations with other logging methods.

Prevent or dampen latency spikes during bursts of events. If the queue size is configured large
enough to handle spikes, asynchronous logging will help prevent your application from falling
behind (as much) during sudden bursts of activity.

Drawbacks

Error handling. If a problem happens during the logging process and an exception is thrown, it
isless easy for an asynchronous logger or appender to signal this problem to the application.
This can partly be alleviated by configuring an Except i onHandl er , but this may still not cover
all cases. For thisreason, if logging is part of your business logic, for exampleif you are using
Log4j as an audit logging framework, we would recommend to synchronously log those audit

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 164

messages. (Note that you can still combine them and use asynchronous logging for debug/trace
logging in addition to synchronous logging for the audit trail.)

* In somerare cases, care must be taken with mutable messages. Most of the time you don't need
to worry about this. Log4 will ensure that log messages like | ogger . debug(" My obj ect
is {}", nyQbject) will usethe state of the nyhj ect parameter at the time of the call to
| ogger . debug() . The log message will not change even if myObj ect ismodified later. Itis
safe to asynchronously log mutabl e objects because most Message implementations built-in to
Log4j take a snapshot of the parameters. There are some exceptions however: MapMessage and
StructuredDataM essage are mutable by design: fields can be added to these messages after the
message object was created. These messages should not be modified after they are logged with
asynchronous loggers or asynchronous appenders; you may or may not see the modificationsin
the resulting log output. Similarly, custom Message implementations should be designed with
asynchronous use in mind, and either take a snapshot of their parameters at construction time, or
document their thread-safety characteristics.

12.1.2 Making All Loggers Asynchronous
Requires disruptor-3.0.0.jar or higher on the classpath.

Thisis simplest to configure and gives the best performance. To make all loggers asynchronous,
add the disruptor jar to the classpath and set the system property Log4j Cont ext Sel ect or to
or g. apache. | oggi ng. | og4j . core. async. AsyncLogger Cont ext Sel ect or .

By default, location is not passed to the 1/0 thread by asynchronous loggers. If one of your layouts or
custom filters needs location information, you need to set "includel ocation=true" in the configuration
of al relevant loggers, including the root logger.

A configuration that does not require location might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<l-- Don't forget to set systemproperty
- DLog4j Cont ext Sel ect or =or g. apache. | oggi ng. | 0g4j . cor e. async. AsyncLogger Cont ext Sel ect or
to make all |oggers asynchronous. -->

<Configuration status="WARN'>
<Appender s>

<l-- Async Loggers will auto-flush in batches, so switch off imedi ateFlush. -->

<RandomAccessFi | e name="RandomAccessFil e" fil eName="async.|og" i nmedi at eFl ush="fal se" append="fal se">
<Patt er nLayout >

<Pattern>% % %{1.} [%] %n Y%ex%m</Pattern>

</ Patt er nLayout >

</ RandomAccessFi | e>

</ Appender s>
<Logger s>
<Root |evel ="info" includeLocation="fal se">
<Appender Ref ref="RandomAccessFile"/>
</ Root >

</ Logger s>
</ Confi guration>

When AsyncLogger Cont ext Sel ect or isused to make all loggers asynchronous, make sure to use
normal <r oot > and <l ogger > elements in the configuration. The AsyncL oggerContextSelector will

ensure that all loggers are asynchronous, using a mechanism that is different from what happens when
you configure <asyncRoot > or <asyncLogger >. Thelatter elements are intended for mixing async

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 165

with sync loggers. If you use both mechanisms together you will end up with two background threads,
where your application passes the log message to thread A, which passes the message to thread B,
which then finally logs the message to disk. Thisworks, but there will be an unnecessary step in the
middle.

There are afew system properties you can use to control aspects of the asynchronous logging
subsystem. Some of these can be used to tune logging performance.

AsyncLogger.ExceptionHandler nul | Fully qualified name of a
class that implements the
com | max. di srupt or. Excepti onHandl er
interface. The class needs to have
a public zero-argument constructor.
If specified, this class will be
notified when an exception occurs
while logging the messages.

AsyncLogger.RingBufferSize 256 * 1024 Size (number of slots) in
the RingBuffer used by the
asynchronous logging subsystem.
Make this value large enough
to deal with bursts of activity.
The minimum size is 128. The
RingBuffer will be pre-allocated
at first use and will never grow or
shrink during the life of the system.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers

AsynclLogger.WaitStrategy Sl eep

AsyncLogger.ThreadNameStrategy CACHED

©2015, The Apache Software Foundation -«

166

Valid values: Block, Sleep, Yield.
Bl ock is a strategy that uses

a lock and condition variable

for the 1/0O thread waiting for

log events. Block can be used
when throughput and low-latency
are not as important as CPU
resource. Recommended for
resource constrained/virtualised
environments.

Sl eep is a strategy that initially
spins, then uses a Thread.yield(),
and eventually parks for the
minimum number of nanos the OS
and JVM will allow while the 1/0
thread is waiting for log events.
Sleep is a good compromise
between performance and CPU
resource. This strategy has very
low impact on the application
thread, in exchange for some
additional latency for actually
getting the message logged.

Yi el d is a strategy that uses a
Thread.yield() for waiting for log
events after an initially spinning.
Yield is a good compromise
between performance and CPU
resource, but may use more CPU
than Sleep in order to get the
message logged to disk sooner.

Valid values: CACHED,
UNCACHED.

By default, AsyncLogger caches
the thread name in a ThreadLocal
variable to improve performance.
Specify the UNCACHED option

if your application modifies the
thread name at runtime (with
Thread. current Thread() . set Narme())
and you want to see the new thread
name reflected in the log.

ALL RIGHTS RESERVED.

12 Async Loggers 167

log4j.Clock Syst end ock Implementation of the
org. apache. | oggi ng. | og4j . core. hel per ¢
interface that is used for
timestamping the log
events when all loggers are
asynchronous.
By default,
SystemcurrentTimreMI1lis
iscaled on every log event.

Cachedd ock isan
optimization intended for low-
latency applications where
time stamps are generated
from a clock that updatesits
internal timein a background
thread once every millisecond,
or every 1024 log events,
whichever comesfirst. This
reduces logging latency a
little, at the cost of some
precision in the logged time
stamps. Unless you are logging
many events, you may see
"jumps" of 10-16 milliseconds
between log time stamps. WEB
APPLICATION WARNING:
The use of abackground
thread may cause issues for
web applications and OSGi
applications so CachedClock is
not recommended for this kind
of applications.

Y ou can also specify afully
qualified class name of a
custom class that implements
the C ock interface.

System Propertiesto configure all asynchronous loggers

12.1.3 Mixing Synchronous and Asynchronous Loggers

Requires disruptor-3.0.0.jar or higher on the classpath. There is no need to set system property
"Log4jContextSelector" to any value.

Synchronous and asynchronous loggers can be combined in configuration. This gives you more
flexibility at the cost of adlight loss in performance (compared to making all loggers asynchronous).
Use the <asyncRoot > or <asyncLogger > configuration elements to specify the loggers that

need to be asynchronous. A configuration can contain only one root logger (either a<r oot > or an
<asyncRoot > element), but otherwise async and non-async loggers may be combined. For example,
aconfiguration file containing <asynclLogger > elements can also contain <r oot > and <I ogger >
elements for the synchronous loggers.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 168

By default, location is not passed to the 1/O thread by asynchronous loggers. If one of your layouts or
custom filters needs location information, you need to set "includel ocation=true" in the configuration
of al relevant loggers, including the root logger.

A configuration that mixes asynchronous loggers might look like:

<?xm version="1.0" encodi ng="UTF-8"?>

<l-- No need to set system property "Log4j ContextSelector" to any val ue
when usi ng <asynclLogger> or <asyncRoot>. -->

<Configuration status="WARN'>
<Appender s>
<l-- Async Loggers will auto-flush in batches, so switch off imedi ateFlush. -->
<RandomAccessFi | e nane="RandomAccessFil e" fil eNane="asyncWthLocati on. | og"
i medi at eFl ush="f al se" append="fal se">
<Patt er nLayout >
<Pattern>%d % %l ass{1.} [%] % ocation %n %x%</Pattern>
</ Patt er nLayout >
</ RandomAccessFi | e>
</ Appender s>
<Logger s>
<l-- pattern |layout actually uses |location, so we need to include it -->
<AsynclLogger nane="com foo.Bar" |evel ="trace" includeLocation="true">
<Appender Ref ref="RandomAccessFile"/>

</ AsynclLogger >

<Root | evel ="info" includeLocation="true">
<Appender Ref ref="RandomAccessFile"/>

</ Root >

</ Logger s>
</ Configuration>

There are afew system properties you can use to control aspects of the asynchronous logging
subsystem. Some of these can be used to tune logging performance.

AsyncLoggerConfig.ExceptionHandle nul | Fully qualified name of a
class that implements the
com | max. di srupt or. Except i onHandl er
interface. The class needs to have
a public zero-argument constructor.
If specified, this class will be
notified when an exception occurs
while logging the messages.

AsyncLoggerConfig.RingBufferSize 256 * 1024 Size (number of slots) in
the RingBuffer used by the
asynchronous logging subsystem.
Make this value large enough
to deal with bursts of activity.
The minimum size is 128. The
RingBuffer will be pre-allocated
at first use and will never grow or
shrink during the life of the system.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 169

AsyncLoggerConfig.WaitStrategy Sl eep Valid values: Block, Sleep, Yield.
Bl ock is a strategy that uses
a lock and condition variable
for the 1/0O thread waiting for
log events. Block can be used
when throughput and low-latency
are not as important as CPU
resource. Recommended for
resource constrained/virtualised
environments.
Sl eep is a strategy that initially
spins, then uses a Thread.yield(),
and eventually parks for the
minimum number of nanos the OS
and JVM will allow while the 1/0
thread is waiting for log events.
Sleep is a good compromise
between performance and CPU
resource. This strategy has very
low impact on the application
thread, in exchange for some
additional latency for actually
getting the message logged.
Yi el d is a strategy that uses a
Thread.yield() for waiting for log
events after an initially spinning.
Yield is a good compromise
between performance and CPU
resource, but may use more CPU
than Sleep in order to get the
message logged to disk sooner.

System Properties to configure mixed asynchronous and normal loggers

12.1.4 Location, location, location...

If one of the layouts is configured with alocation-rel ated attribute like HTML locationlnfo, or one of
the patterns %C or $class, %F or %file, %l or %location, %L or %line, %M or %method, Log4j
will take a snapshot of the stack, and walk the stack trace to find the location information.

Thisis an expensive operation: 1.3 - 5 times dower for synchronous loggers. Synchronous loggers
wait as long as possible before they take this stack snapshot. If no location is required, the snapshot
will never be taken.

However, asynchronous loggers need to make this decision before passing the log message to another
thread; the location information will be lost after that point. The performance impact of taking a stack
trace snapshot is even higher for asynchronous loggers. logging with location is 4 - 20 times slower
than without location. For this reason, asynchronous loggers and asynchronous appenders do not
include location information by default.

Y ou can override the default behaviour in your logger or asynchronous appender configuration by
specifyingi ncl udeLocati on="true".

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 170

12.1.5 Asynchronous Logging Performance

The performance results below were al derived from running the PerfTest, MTPerfTest and
PerfTestDriver classes which can be found in the Log4j 2 unit test source directory. All tests were
done using the default settings (SystemClock and SleepingWaitStrategy). The methodology used was
the same for all tests:

» First, warm up the VM by logging 200,000 log messages of 500 characters.

* Repeat the warm-up 10 times, then wait 10 seconds for the 1/0 thread to catch up and buffersto
drain.

» Latency test: at less than saturation, measure how long acall to Logger.log takes. Pause for 10
microseconds * threadCount between measurements. Repeat this 5 million times, and measure
average latency, latency of 99% of observations and 99.99% of observations.

» Throughput test: measure how long it takes to execute 256 * 1024 / threadCount calls to
Logger.log and express the result in messages per second.

* Repeat the test 5 times and average the resullts.

The results below were obtained with log4j-2.0-betab, disruptor-3.0.0.beta3, 1og4j-1.2.17 and
logback-1.0.10.

12.1.5.1 Logging Throughput

The graph below compares the throughput of synchronous loggers, asynchronous appenders and
asynchronous loggers. Thisis the total throughput of all threads together. In the test with 64 threads,
asynchronous loggers are 12 times faster than asynchronous appenders, and 68 times faster than
synchronous loggers.

Asynchronous loggers throughput increases with the number of threads, whereas both synchronous
loggers and asynchronous appenders have more or less constant throughput regardless of the number
of threads that are doing the logging.

Sync vs Async Logging Throughput (msg/sec)
- higher is better

20,000,000
18,000,000 W Logdj2: Loggers all async

16,000,000 B Logdj2: Async Appender

Logdj2: Sync
14,000,000
12,000,000

10,000,000

8,000,000
6,000,000 JDK1.7.0_06 (64bit) on Solaris 10
4-care Xeon X5570 dual CPU @2 93GHz
4,000,000 with hyperthreading switched on
2,000,000 (16 virtual cores)
o 1 = L L

1thread 2threads 4threads 8threads 16threads 32 threads 64 threads

12.1.5.2 Asynchronous Throughput Comparison with Other Logging Packages

We also compared throughput of asynchronous loggers to the synchronous loggers and asynchronous
appenders available in other logging packages, specifically log4j-1.2.17 and logback-1.0.10, with
similar results. For asynchronous appenders, total logging throughput of al threads together remains

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers

171

roughly constant when adding more threads. Asynchronous loggers make more effective use of the

multiple cores available on the machine in multi-threaded scenarios.

20,000,000
18,000,000
16,000,000
14,000,000
12,000,000 |
10,000,000
8,000,000

6,000,000

Async Logging Throughput (msg/sec) - higher is better

1thread 2 threads

4 threads

4,000,000
s Bl I ol I = 1 |
. M

Bthreads 16 threads 32 threads 64 threads

W Log4j2: Loggers all async

W Logdj2: Loggers mixed sync/async

w Logdj2: Async Appender
m Logdj1: Async Appender

M Logback: Async Appender

1DK1.7.0_06 (64bit) on Solaris 10
4-core Xeon X5570 dual CPU @2.93GHz
with hyperthreading switched on
(16 virtual cores)

On Solaris 10 (64bit) with JIDK1.7.0_06, 4-core Xeon X5570 dual CPU @2.93Ghz with
hyperthreading switched on (16 virtual cores):

Log4j 2:
Loggers all
asynchronous

Log4j 2:
Loggers
mixed sync/
async

Log4j 2:
Async
Appender
Log4j1:
Async
Appender

Logback:
Async
Appender
Log4j 2:
Synchronous
Log4jl:
Synchronous

Logback:
Synchronous

©2015, The Apache Software Foundation -«

2,652,412

2,454,358

1,713,429

2,239,664

2,206,907

273,536

326,894

178,063

909,119

839,394

603,019

494,470

624,082

136,523

105,591

65,000

776,993

854,578

331,506

221,402

307,500

67,609

57,036

34,372

516,365

597,913

149,408

109,314

160,096

34,404

30,511

16,903

239,246

261,003

86,107

60,580

85,701

15,373

13,900

8,334

ALL RIGHTS RESERVED.

253,791

216,863

45,529

31,706

43,422

7,903

7,094

3,985

288,997

218,937

23,980

14,072

21,303

4,253

3,509

1,967

12 Async Loggers 172

Throughput per thread in messages/second

On Windows 7 (64bit) with JIDK1.7.0_11, 2-core Intel i5-3317u CPU @1.70Ghz with hyperthreading
switched on (4 virtual cores):

Log4j 2: 1,715,344 928,951 1,045,265 1,509,109 1,708,989 773,565
Loggers all

asynchronous

Log4j 2: 571,099 1,204,774 1,632,204 1,368,041 462,093 908,529
Loggers

mixed sync/

async

Log4j 2: 1,236,548 1,006,287 511,571 302,230 160,094 60,152
Async
Appender

Log4j1: Async 1,373,195 911,657 636,899 406,405 202,777 162,964
Appender

Logback: 1,979,515 783,722 582,935 289,905 172,463 133,435
Async
Appender

Log4j 2: 281,250 225,731 129,015 66,590 34,401 17,347
Synchronous

Log4j1: 147,824 72,383 32,865 18,025 8,937 4,440
Synchronous

Logback: 149,811 66,301 32,341 16,962 8,431 3,610
Synchronous

Throughput per thread in messages/second
12.1.5.3 Throughput of Logging With Location (includeLocation="true")

On Solaris 10 (64bit) with IDK1.7.0_06, 4-core Xeon X5570 dual CPU @2.93Ghz with
hyperthreading switched off (8 virtual cores):

Loggers all 75,862 88,775 80,240 68,077
asynchronous

Loggers mixed sync/ 61,993 66,164 55,735 52,843
async

Async Appender 47,033 52,426 50,882 36,905
Synchronous 31,054 33,175 29,791 23,628

Throughput in log messages/second per thread

As expected, logging location information has a large performance impact. Asynchronous loggers
are 4 - 20 times slower, while synchronous loggers are 1.3 - 5 times slower. However, if you do need
location information, asynchronous logging will still be faster than synchronous logging.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 173

12.1.5.4 Latency

Latency tests are done by logging at |ess than saturation, measuring how long a call to Logger.log
takes to return. After each call to Logger.log, the test waits for 10 microseconds * threadCount before
continuing. Each thread logs 5 million messages.

All the latency measurements below are results of tests run on Solaris 10 (64bit) with JIDK1.7.0_06, 4-
core Xeon X5570 dual CPU @2.93Ghz with hyperthreading switched on (16 virtual cores).

Async Logging Latency Histogram (at 64 threads)

W

Latency (nanosec)

W Logdj2: Loggers all async W Logdj1: Async Appender

10,000,000

1,000,000
100,000
10,000
1,000
100

10

1

[==]

Frequency

37—
64

128 —————
256 |——

o I—
o —
g ——

| —

512 I

1,024
2,04
8,192

16,384 I

4J

32,768 [
65,536 I —
131,072 r—
262,144 |
524,288 o—

1,048,576 me—

2,097,152

16,777,216 peeesssssss——
33,554,432
67,108,864 s
134,217,728 h
268,435,456 I

536,870,912

8,388,608
1,073,741,824

4,194,304

Note that thisislog-scale, not linear. The above graph compares the latency distributions of an
asynchronous logger and aLog4j 1.2.17 Async Appender. This shows the latency of one thread
during atest where 64 threads are logging in parallel. The test was run once for the async logger and
once for the async appender.

Log4j 2: 677 4,135 1,638 4,096 8,192 16,128
Loggers all

async

Log4j 2: 648 4,873 1,228 4,096 8,192 16,384
Loggers

mixed sync/

async

Log4j 2: 2,423 2,117,722 4,096 67,108,864 16,384 268,435,456
Async

Appender

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers 174

Log4jl: Async 1,562 1,781,404 4,096 109,051,904 16,384 268,435,456
Appender
Logback: 2,123 2,079,020 3,276 67,108,864 14,745 268,435,456
Async
Appender

Latency of acall to Logger.log() in nanoseconds

The latency comparison graph below is also log-scale, and shows the average latency of asynchronous
loggers and ArrayBlockingQueue-based asynchronous appenders in scenarios with more and more
threads running in parallel. Up to 8 threads asynchronous appenders have comparable average

latency, two or three times that of asynchronous loggers. With more threads, the average latency of
asynchronous appenders is orders of magnitude larger than asynchronous loggers.

Async Logging Average Latency
(Logger.log duration in nanoseconds) - lower is better

10,000,000
W Logdj2: Loggers all async
1,000,000 -) .
M Logdj2: Loggers mixed sync/async
100,000 H Log4dj2: Async Appender
® Logdj1: Async Appender

10,000 m Logback: Async Appender

1,000 -
100 JDK1.7.0_06 (64bit) on Solaris 10
4-core Xeon X5570 dual CPU @2 .93GHz
1 with hyperthreading switched on
(16 virtual cores)

1
1thread 2threads 4threads 8threads 16threads 32 threads 64 threads

=]

Latency (nanosec)

=1

Applications interested in low latency often care not only about average latency, but also about worst-
case latency. The graph below shows that asynchronous loggers aso do better when comparing

the maximum latency of 99.99% of observations with other logging methods. When increasing the
number of threads the vast majority of latency measurements for asynchronous loggers stay in the
10-20 microseconds range where Asynchronous A ppenders start experiencing many latency spikesin
the 100 millisecond range, a difference of four orders of magnitude.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Async Loggers

175

1,000,000,000
100,000,000

10,000,000

Latency (nanosec)

(=]

1

1,000,000 -
100,000 -+
10,000 -+
1,000 -

100 -

10 -

1thread 2threads 4threads B8threads 16threads 32 threads 64 threads

Async Logging Max Latency of 99.99% of Observations
(Logger.log duration in nanoseconds) - lower is better

B Logdj2: Loggers all async

B Logdj2: Loggers mixed sync/async

® Logdj2: Async Appender
B Logdj1: Async Appender

¥ Logback: Async Appender

IDK1.7.0_06 (64bit) on Solaris 10
4-core Xeon X5570 dual CPU @2.93GHz
with hyperthreading switched on

{16 virtual cores)

12.1.5.5 FileAppender vs. RandomAccessFileAppender
The appender comparison below was done with synchronous loggers.

On Windows 7 (64bit) with JDK1.7.0_11, 2-core Intel i5-3317u CPU @1.70Ghz with hyperthreading

switched on (4 virtual cores):

RandomAccessFileAp 250,438
FileAppender 186,695
RollingRandomAcces: 278,369
RollingFileAppender 182,518

Throughput per thread in messages/second
On Solaris 10 (64bit) with JDK1.7.0_06, 4-core dual Xeon X5570 CPU @2.93GHz with

169,939
118,587
213,176
114,690

hyperthreading switched off (8 virtual cores):

RandomAccessFileAp 240,760
FileAppender 172,517
RollingRandomAcces: 228,491
RollingFileAppender 186,422

Throughput per thread in messages/second

©2015, The Apache Software Foundation -«

128,713
106,587
135,355

97,737

ALL RIGHTS RESERVED.

109,074
57,012
125,300
55,147

66,555
55,885
69,277
55,766

58,845
28,846
63,103
28,153

30,544
25,675
32,484
25,097

12 Async Loggers 176

12.1.6 Under The Hood

Asynchronous L oggers are implemented using the LMAX Disruptor inter-thread messaging library.
From the LMAX web site:

... uUsing queues to pass data between stages of the system was introducing latency, so we focused
on optimising this area. The Disruptor isthe result of our research and testing. We found that cache
misses at the CPU-level, and locks requiring kernel arbitration are both extremely costly, so we
created a framework which has "mechanical sympathy" for the hardware it's running on, and that's
lock-free.

LMAX Disruptor internal performance comparisons with
java.util.concurrent. ArrayBl ocki ngQueue can befound here.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://lmax-exchange.github.com/disruptor/
https://github.com/LMAX-Exchange/disruptor/wiki/Performance-Results

13

13 JMX 177

13.1 IMX

Logd4j 2 has built-in support for IMX. The StatusL ogger, ContextSelector, and all LoggerContexts,
LoggerConfigs and Appenders are instrumented with MBeans and can be remotely monitored and
controlled.

Alsoincluded isasimple client GUI that can be used to monitor the StatusL ogger output, as well as
to remotely reconfigure Log4j with a different configuration file, or to edit the current configuration
directly.

13.2 Enabling JMX

JMX support is enabled by default. When Log4j initializes, the StatusL ogger, ContextSel ector,
and all LoggerContexts, LoggerConfigs and Appenders are instrumented with MBeans. To
disable IMX completely, and prevent these MBeans from being created, specify system property
| og4j 2. di sabl e. j nx=t r ue when you start the Java VM.

13.2.1 Local Monitoring and Management

To perform local monitoring you don't need to specify any system properties. The JConsole tool

that isincluded in the Java JDK can be used to monitor your application. Start JConsole by typing
$JAVA_HOVE/ bi n/ j consol e in acommand shell. For more details, see Oracle's documentation on
how to use JConsole.

13.2.2 Remote Monitoring and Management

To enable monitoring and management from remote systems, set the following system property when
starting the Java VM.

com sun. managenent . j nxr enot e. port =port Num

In the property above, por t Numis the port number through which you want to enable IMX RMI
connections.

For more details, see Oracle's documentation on Remote Monitoring and Management.

13.2.3 RMI impact on Garbage Collection

Be aware that RMI by default triggers afull GC every hour. Seethe Oracle documentation for the
sun.rm.dgc. server.gclnterval andsun. rm .dgc.client.gclnterval properties. The
default value of both properties is 3600000 milliseconds (one hour). Before Java 6, it was one minute.

The two sun.rmi arguments reflect whether your VM isrunning in server or client mode. If you want
to modify the GC interval time it may be best to specify both properties to ensure the argument is
picked up by the VM.

An aternative may beto disable explicit callsto Syst em gc() altogether with -
XX: +Di sabl eExpl i ci t GC, or (if you are using the CMS or G1 collector) add - XX:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdenl
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/sunrmiproperties.html

13 JMX

178

+Expl i ci t GCl nvokesConcur r ent to ensure the full GCs are done concurrently in parallel with
your application instead of forcing a stop-the-world collection.

13.3 Log4j Instrumented Components

The best way to find out which methods and attributes of the various Log4j components are accessible
viaJMX isto look at the Javadoc or by exploring directly in JConsole.

The screenshot below shows the Log4j MBeansin JConsole.

| Java Monitoring & Man

|£| Connection Window Help

[(s]

| Overview I Memu:uryl Threads I Classes I WM Summary| MBeans | Lug4j2|

| JMImplementation

/ COMEUn.management

| javalane

| javanio

J javautillogging

| argapache logging logd)?

- AsynclogeerContext

"-Httributes

--Operatiuns
[-Motfications

EI . Appenders

- B File

i RandomfccessFile
- @ STDOUT

EI . Asyncppenders
COREFE fgyne

@ AzwncLogeer Ring Buffer
@ ContextSelectar

= | Loggers

-

NERR i ibutes
El@ comfoo Bar
- fttributes
{ - RingBuffer
[0 StatusLozeer

13.4 Client GUI

Attribute values

MHame Walue

Additive true
bsync N

fippender Refs ‘E
sT00UT

Filter rull

Inc:ludeLocation falze

Level IMFO

Mame

Logd4j includes abasic client GUI that can be used to monitor the StatusL ogger output and to remotely
modify the Log4j configuration. The client GUI can be run as a stand-al one application or as a
JConsole plug-in.

13.4.1 Running the Client GUl as a JConsole Plug-in

To run the Log4j IMX Client GUI as a JConsole Plug-in, start JConsole with the following command:

©2015,

The Apache Software Foundation -«

ALL RIGHTS RESERVED.

13 JMX 179

$JAVA_HOVE/ bi n/j consol e -pl ugi npath /path/to/l og4j-api -
${Log4j Rel easeVersion}.jar:/path/to/l og4j-core-%${Log4dj Rel easeVersion}.jar:/
pat h/t o/l og4j -j nx- gui - ${ Log4j Rel easeVersi on}.j ar

or on Windows:
% AVA HOVE% bi n\j consol e -pl ugi npath \pat h\to\l og4j -api -

${Log4j Rel easeVersion}.jar;\path\to\l og4j-core-${Log4j Rel easeVersion}.jar;
\ pat h\t o\ | og4j -j mx- gui - ${ Log4j Rel easeVersi on}.j ar

If you execute the above command and connect to your application, you will see an extra"Log4j 2"
tab in the JConsole window. This tab contains the client GUI, with the StatusL ogger selected. The
screenshot below shows the StatusL ogger panel in JConsole.

| £/ Java Monitoring & Management Console - pid: 12756 sample.Application

[£| Connection Window Help - & ®

| Overview I Memnryl Threads I Clazzes I Wl Summaryl MEleansl Logdj2 | ==

LoggerContext: AzwnclogeerCantext |

Statuzlogeer | Configuration
UTH=UZ=U3 ZZ-43-07, 137 UCO0W LIECKME 0§88 1T CTHEE UTE-2Pane- T0EETE - T0Z4] -COT B - Wel - Package=-1T

2014-02-03 22:43:00,138 DEBUG Generated pluging in 0.135194951 seconds

2014-02-03 22:43:05,141 DEBUG Calling createlppender on class org.apache.logging. logd) .core.append
2014-02-03 22:43:05,141 WARN Unahle to instantiate org.fusesource.jansi.WindowshnsiOutputStream
2014-02-03 22:43:05,142 DEBUG Calling createlavout on class org.apache.logging. logdi.core. lavout .P:
2014-02-03 22:43:05,146 DEBUG Calling createlppender on class org.apache. logging. logd) .core.append
2014-02-03 22:43:05,147 DEBUG Starting FileManager AsvnologgerTest.log

2014-02-03 22:43:05,148 DEBUG Calling createlavout on class org.apache.logzing. logdi.core. lavout .P:
2014-02-03 22:43:05,150 DEBUG Calling createfppender on class org.apache.logging. logd) .core.append
2014-02-03 22:43:05,152 DEBUG Starting RandombccessFileManazer perftest.log

2014-02-03 22:43:06,153 DEBUG Calling createlppenderRef on class org.apache.logging. logdi.core.con
2014-02-03 22:43:05,155 DEBUG Calling createlppender on class org.apache. logging. logd) .core.append
2014-02-03 22:43:00,156 DEBUG Calling createlppenders on class org.apache.logging. logdj .core.confi
2014-02-03 22:43:05,157 DEBUG Calling createfppenderRef on class org.apache.logeing. logdj.core.con
2014-02-03 22:43:05,158 DEBUG Calling createlogger on class org.apache.logging. logdj.core.async.bs:
2014-02-03 22:43:05,159 DEBUG Calling createlppenderRef on class org.apache.logging. logdj .core.con
2014-02-03 22:43:05,160 DEBUG Calling createlppenderRef on class org.apache.logging. logdi.core.con
2014-02-03 22:43:05,161 DEBUG Calling createlogger on class org.apache.logging. logdi .core.config.l
2014-02-03 22:43:05,162 DEBUG Calling createlogegers on class org.apache.lozging. logdi .core.confiz.
2014-02-03 22:43:09,183 TRACE &syncloggerConfigHelper creating new disruptor. Ref count is 1.
2014-02-03 22:43:05,165 DEBUG property AsyncloggerConfig.WaitStrategy=null

2014-02-03 22:43:05,194 DEBUG Starting AsvncloggerConfig disruptor with ringbuffer size=262144, wa
2014-02-03 22:43:05,199 DEBUG Registering MBean org.apache.logging. logdj? tvpezfsvnclogzerCont ext
2014-02-03 22:43:00,201 DEBUG Using default SystemClock for timestamps

L i1} I

m

13 «

13.4.2 Remotely Editing the Log4j Configuration

The client GUI aso contains a simple editor that can be used to remotely change the Log4j
configuration.

The screenshot below shows the configuration edit panel in JConsole.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 JMX 180

r T — ™
|£| Java Monitoring & Management Console - pid: 12756 sample.npplicaﬁo-élélg

|£| Connection Window Help - & *x
| Overview | Memary | Threads | Glasses | WM Summary | MBeans | Log4j2 | ==

LoggerContext: HsyncLoggerOontextl

StatuzLogeer

Location: | file: /G Users/rpfworkspace logd j-perf/ Azwmclogeer Test xml || Reconfigure fram Location] [Reconfigure with XML Below]
contiguration status="trace F

{appenders>
<Cansole name="STOOUT™ target="SYSTEM_OUT™> —
<PatternLavout pattern="¥n%n"/>
</Congoles
<File name="File”™ fileName="fsynclozzerTest.log” immediateFlush="false” append="false™>
<PatternLavout>
<pattern>®d %o %ci{1.} [%t] %¢l{akev} ¥location %m ¥ex¥n</pattern:
¢/PatternlLayout >
</Files
<RandonéccessFile name="RandomfccessFile™ fileName="perftest.log” inmediateF lush="falze" append="7:
<PatternLayout >
<Pattern>¥d %0 ¥c{1.] %0 %location ¥line [¥t] %¥¢{akevy] ¥m Bex¥n</Pattern>
</Patternlayout »
</RandombccessFiles
<hsync name="4sync™ includeLocat ion="true” hlockinz="true™ buffer3ize="262144">
<thppenderRef ref="RandomiccessFile™/ >
<Shaynoe
</appendersy
<loggers>
<asyncLogger name="com.foo.Bar™ level="trace™ includelocation="true™>
<appender-ref ref="Fila™/>
</fasyncloggers
<root level="info™ includelocat ion="false™>
<appender-ref ref="dsync™/>
<appender-ref ref="STDOUT™ level="warn™/>
<frooty
</logeers>

Shennfionrat inns
4 | 1 | 3

Configuration

| -~

m

The configuration edit panel provides two ways to modify the Log4j configuration: specifying a
different configuration location URI, or modifying the configuration XML directly in the editor panel.

If you specify adifferent configuration location URI and click the "Reconfigure from Location”
button, the specified file or resource must exist and be readable by the application, or an error will
occur and the configuration will not change. If an error occurred while processing the contents of
the specified resource, Log4j will keep its original configuration, but the editor panel will show the
contents of the file you specified.

The text area showing the contents of the configuration fileis editable, and you can directly modify
the configuration in this editor panel. Clicking the "Reconfigure with XML below" button will send
the configuration text to the remote application where it will be used to reconfigure Log4j on the fly.
Thiswill not overwrite any configuration file. Reconfiguring with text from the editor happensin
memory only and the text is not permanently stored anywhere.

13.4.3 Running the Client GUI as a Stand-alone Application

To run the Log4j IMX Client GUI as a stand-alone application, run the following command:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 JMX 181

$JAVA HOVE/ bin/java -cp /path/tol/l og4j-api-3${Log4j Rel easeVersion}.jar:/
path/to/l og4j-core-${Log4j Rel easeVersion}.jar:/path/to/l og4j-jnx-gui-
${Log4j Rel easeVersion}.jar org.apache.logging.log4j.jnx.gui.dientGui
<options>

or on Windows:

% AVA_HOVE% bi n\java -cp \path\to\l og4j-api-${Log4j Rel easeVersion}.jar
\path\to\l og4j-core-${Log4j Rel easeVersion}.jar;\path\to\l og4j-jnmx-gui-
${Log4j Rel easeVersion}.jar org.apache. | ogging.log4j.jnx.gui.dientGui
<options>

Where opt i ons are one of the following:

* <host>: <port>

e service:jmx:rm:///jndi/rm://<host>:<port>/]nxrm

e service:jnx:rm://<host> <port>/jndi/rm://<host>:<port>/jnxrm
The port number must be the same as the portNum specified when you started the application you
want to monitor.
For example, if you started your application with these options:

com sun. managenent . j nxr enot e. por t =33445
com sun. managenent . j nxr enot e. aut hent i cat e=f al se
com sun. managenent . j nxr enot e. ssl =f al se

(Notethat thisdisables all security so thisisnot recommended for production environments.
Oracle'sdocumentation on Remote M onitoring and M anagement provides details on how to
configure JM X mor e secur ely with password authentication and SSL .)

Then you can run the client with this command:

$JAVA HOVE/ bin/java -cp /path/to/l og4j-api-${Log4j Rel easeVersion}.jar:/
pat h/to/ | og4j - core- ${ Log4j Rel easeVersi on}.jar:/path/to/l og4j-jnmx-gui -
${Log4j Rel easeVersi on}.jar org.apache.|ogging.|og4j.jnx.gui.dientCui

| ocal host : 33445

or on Windows:

%JAVA HOVE% bi n\java -cp \path\to\l og4j - api - ${Log4j Rel easeVersion}.j ar
\pat h\t o\ | og4j - core- ${ Log4j Rel easeVersi on}.jar;\path\to\l og4j-j nx-gui -
${Log4j Rel easeVersi on}.jar org.apache.|ogging.|og4j.jnx.gui.dientCui

| ocal host : 33445

The screenshot below shows the StatusL ogger panel of the client GUI when running as a stand-alone
application.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdenl

13 JMX 182

| £ Log4j IMX Client - service: jmx:rmi:///jndi/rmi://localhost: 33445/ jmxrmi

J LoggerContext: AsyncLoggerContest]

J StatusLogger | Configuration |

TUBTUE, 903 URBUL CalTing createfppenders on class org.apache. [0zzing. 0841, core.conf 1z, plUging. AppendersPluzin Tor element a |
(06:04,974 DEBUG Calling createfppenderRef on class org.apache. logging. logdi.core. conf iz.AppenderRef for element appender-rep
(06:04,976 DEBUG Calling createlozzer on class orz.apache. logzing. logdi. core. asvnc. AsynclozgerConf iz for element asvnclozze
:06:04,376 DEBUG Calling createfppenderRef on class org.apache. logging. logd).core. conf iz.AppenderRef for element appender-re
106:04,377 DEBUG Calling createfippenderRef on class org.apache. logging. logd).core.conf ig.fppenderRef for element appender-re
:0B:04,978 DEBUG Calling createlogger on class org.apache. logzing. logdi.core. conf ig.LogzerConf izdRootLogzer for element roat
(06:04,978 DEBUG Calling createlozzers on class org.apache. logzing. logdi.core.conf iz.plugins.LogzersPlugin for element lozze
(06:04,880 TRACE AsyncloggerConfigHelper creating mew disruptor. Ref count is 1.

(06:04,981 DEBUG property AsvnclogzerConf iz, WaitStratezy=rnul

(06:05,011 DEBUG Starting AsvnclogzerConfiz disruptor with ringbuffer size=262144, waitStrategy=SleepingWaitStratezy, except
(06:06,016 DEBUG Rezistering MBean orz.apache. logzing, logdi?:type=hsynclogzerContext

(06205019 DEBUG Using default SwstemClock for timestanes

:06:06,013 DEBUG AsyncLoggzer. ThreadNamest rategy=CACHED

t06:06,020 DEBUG property dswnclogzer.Wait3trategy=null

10B:06,020 DEBUG dizruptor event handler uses SleepingWait3trategy

(06:05,288 DEBUG Mo f=ynclogger.Except ionHandler specified

(0B:05,288 DEBUG Starting Asynclogzer disruptor with ringbuffer size 282144...

(06:05,289 DEBUG Rezistering MBean orz.apache. logzing. logdil:twpe=hsynclozzerfontext, component =AsynclogzerRingBuf fer
(06:05,250 DEBUG Fegistering MBean orz.apache. lozggzing. logdil:tvpe=feynclozzerfontext , component =3tatuslozzer

(06:05,281 DEBUG Registering MBean orz.apache. lozging. logdil:tvpe=fsynclozzerfontext , component =ContextSelector

(06:05,2582 DEBUG Registering MBean orz.apache. lozging. logdil:tvpe=fsynclozzerfontext , component =Loggers, name=

:06:06,233 DEBUG Reziztering MBean orz.apache. logging. logdi2:type=hAsynclogzgerContext , component=Loggers, name=com. foo. Bar
:06:06,234 DEBUG Regiztering MBean org.apache. logging. logdi2:type=hAsynclogzgerContext , component=Loggers, name=com. f oo. Bar, subt
106:06,234 DEBUG Regiztering MBean org.apache. logging. logdi?:type=hsyncloggerContext , component =dppenders, name=RandomfccessF i
(0R:06,2585 DEBUG Registering MBean org.apache. logging. logdi?:tyvpe=hsynclogzerContext , component =Asynohppendars, nanes faync
106:05,256 DEBUG Rezistering MBean orz.apache. logzing. logdi?:twpe=hsynclogzerfontext, component =dppenders, name=3STDOUT
106:065,257 DEBUG Registering MBean org.apache. logzing, logdi?:type=hsynclogzerContext , conponent =Appenders, nane=Fi le
106:05,257 DEBUG Feconf izuration completed

LSRN)l

The screenshot below shows the configuration editor panel of the client GUI when running as a stand-
alone application.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 JMX 183

|| Log4j IMX Client - service:jmx:rmiz///jndi/rmi://localhost:33445/jmxrm

LoggerContest: AsyncLoggerContext 1

StatusLogger | Configuration |

Location: file:C:Usersirpiworkspace/logdj-perffAsyncLoggerTestxml l Reconfigure from Location J l Reconfigure with XML Below J

Yaml wersion="1.07 encoding="UTF-3""
<conf izuration status="trace™>
{appenders>

<Conzole name="STOOUT" tarzet="SYSTEM_OUT*>
<PatternlLayout pattern="%min"/>

</Conzole>

<File name="File” fileMame="AsynclogzzerTest. log” immediateFlush="false” append="false">
<Patternlayout >

<patterrcdd #p 3cii.l [Bt] ¥iakey! ¥location Em Sexdnd/patterny

</PatternLavout >

<fFiles

<RandomiccessFile name="RandombccessFile” fileMame="perftest. loz” inmediateFlush="false” append="false">
“Patternlayout>

<Pattern>fd %p ¥c{1.} iC ¥location £line [8t] ¥x{akey} Em Hexdnd/Pattern>

</PatternLayout>

</RandomfcoessFile

Maync name="hsync” includelocat ion="true” blocking="true” bufferSize="262144">
<tppenderfef ref="RandonfccessFile"/>

< fhavncy

<jappenders>

<lozgersr
<agvncLozzer name="com. foo.Bar” level="trace” includelocation="true”>
<appender-ref ref="File"/>
<fasvnclogzers
<root level="info” includelocat ion="false”>
<appender-ref ref="Azync” />
<appender-ref ref="STDOUT" level="warn”/>
<froots
<flozzersy
<fconf igurat fon>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

14

14 Logging Separation 184

Logging Separation

14.1 Logging Separation

There are many well known use cases where applications may share an environment with other
applications and each has a need to have its own, separate logging environment. This purpose of this
section is to discuss some of these cases and ways to accomplish this.

14.1.1 Use Cases

This section describes some of the use cases where Log4j could be used and what its desired behavior
might be.

14.1.1.1 Standalone Application

Standal one applications are usualy relatively simple. They typically have one bundled executable that
reguires only a single logging configuration.

14.1.1.2 Web Applications

A typical web application will be packaged as aWAR file and will include al of its dependenciesin
WEB-INF/lib and will have its configuration file located in the class path or in alocation configured
in the web.xml. Be sure to follow the instructions to initialize Log4j 2 in aweb application.

14.1.1.3 Java EE Applications

A Java EE application will consist of one or more WAR files and possible some EJBs, typically all
packaged in an EAR file. Usually, it is desirable to have asingle configuration that appliesto al the
components in the EAR. The logging classes will generally be placed in alocation shared across all
the components and the configuration needs to also be shareable. Be sure to follow the instructions to
initialize Log4j 2 in aweb application.

14.1.1.4 "Shared" Web Applications and REST Service Containers

In this scenario there are multiple WAR files deployed into a single container. Each of the
applications should use the same logging configuration and share the same logging implementation
across each of the web applications. When writing to files and streams each of the applications should
share them to avoid the issues that can occur when multiple components try to write to the same
file(s) through different File objects, channels, etc.

14.1.1.5 OSGi Applications

An OSGi container physically separates each JAR into its own ClassLoader, thus enforcing
modularity of JARs aswell as providing standardized ways for JARs to share code based on version
numbers. Suffice to say, the OSGi framework is beyond the scope of this manual. There are some
differences when using Logdj in an OSGi container. By default, each JAR bundle is scanned for its
own Log4j configuration file. Similar to the web application paradigm, every bundle has its own
LoggerContext. As this may be undesirable when a global Log4j configuration is wanted, then the
ContextSelector should be overridden with Basi cCont ext Sel ect or or Jndi Cont ext Sel ect or.

14.1.2 Approaches

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

14 Logging Separation 185

14.1.2.1 The Simple Approach

The simplest approach for separating logging within applications is to package each application

with its own copy of Log4j and to use the BasicContextSelector. While this works for standalone
applications and may work for web applications and possibly Java EE applications, it does not work
at al in thelast case. However, when this approach does work it should be used asit is ultimately the
simplest and most straightforward way of implementing logging.

14.1.2.2 Using Context Selectors
There are afew patterns for achieving the desired state of 1ogging separation using ContextSelectors:

1. Place the logging jarsin the container's classpath and set the system property
"L og4jContextSelector" to "org.apache.logging.log4j.core.selector.BasicContextSe ector”. This
will create a single LoggerContext using a single configuration that will be shared across all
applications.

2. Place the logging jarsin the container's classpath and use the default
ClassL oaderContextSelector. Follow the instructions to initialize Log4j 2 in aweb application.
Each application can be configured to share the same configuration used at the container or can
beindividually configured. If statuslogging is set to debug in the configuration there will be
output from when logging isinitialized in the container and then again in each web application.

3. Follow the instructionsto initialize Log4j 2 in aweb application and set the
system property or servlet context parameter Log4j Cont ext Sel ect or to
org.apache.logging.logdj.core.sel ector.Jndi ContextSel ector. Thiswill cause the
container to use JNDI to locate each web application's Logger Cont ext . Be sureto
set thei sLog4j Cont ext Sel ect or Named context parameter to true and also set the
| og4j Cont ext Name and | og4j Confi gur ati on context parameters.

The exact method for setting system properties depends on the container. For Tomcat, edit
$CATALI NA HOVE/ conf/ cat al i na. properti es. Consult the documentation for other web
containers.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15

15 Extending Log4j 186

Extending Log4j

15.1 Extending Log4j

Log4j 2 provides numerous ways that it can be manipulated and extended. This section includes an
overview of the various ways that are directly supported by the Log4j 2 implementation.

15.1.1 LoggerContextFactory

The Logger Cont ext Fact or y bindsthe Log4j API to itsimplementation. The Log4j

LogManager locatesalogger Cont ext Fact ory by locating all instances of META- | NF/ | og4j -
provi der. properties,astandardj ava. util . Properti es file and then inspecting each

to verify that it specifies avalue for the Log4jAPIVersion property that conforms to the version
required by the LogManager . If more than one valid implementation is located the value for
FactoryPriority will be used to identify the factory with the highest priority. Finally, the value of the
L oggerContextFactory property will be used to locate the Logger Cont ext Fact ory. In Log4j 2 this
isprovided by Log4j Cont ext Fact ory.

Applications may change the LoggerContextFactory that will be used by

1. Implementing anew Logger Cont ext Fact ory and creating al og4j -
provi der. properti es toreference it making sure that it has the highest priority.

2. Create anew | og4j - provi der . xml and configure it with the desired
Logger Cont ext Fact or y making sure that it has the highest priority.

3. Setting the system property log4j2.1oggerContextFactory to the name of the
Logger Cont ext Fact ory classto use.

4. Setting the property "log4j2.loggerContextFactory” in a properties file named
"log4j2.LogManager.properties’ to the name of the LoggerContextFactory classto use. The
properties file must be on the classpath.

15.1.2 ContextSelector

ContextSelectors are called by the Log4j LoggerContext factory. They perform the actual

work of locating or creating a LoggerContext, which is the anchor for Loggers and their
configuration. ContextSelectors are free to implement any mechanism they desire to manage

L oggerContexts. The default Logdj ContextFactory checks for the presence of a System Property
named "L og4j ContextSelector”. If found, the property is expected to contain the name of the Class
that implements the ContextSel ector to be used.

Log4j provides five ContextSel ectors:
BasicContextSelector

Uses either aLoggerContext that has been stored in a ThreadLocal or a common
L oggerContext.

ClassL oader ContextSelector

Associates LoggerContexts with the ClassL oader that created the caller of the getlL ogger
call. Thisisthe default ContextSelector.

JndiContextSelector
L ocates the LoggerContext by querying JNDI.
AsyncL ogger ContextSelector

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j 187

Creates a LoggerContext that ensures that al loggers are AsyncLoggers.
BundleContextSelector

Associates LoggerContexts with the ClassL oader of the bundle that created the caller of the
getLogger call. Thisisenabled by default in OSGi environments.

15.1.3 ConfigurationFactory

Modifying the way in which logging can be configured is usually one of the areas with the most
interest. The primary method for doing that is by implementing or extending a ConfigurationFactory.
Log4j provides two ways of adding new ConfigurationFactories. Thefirst is by defining the system
property named "log4j.configurationFactory" to the name of the class that should be searched first for
aconfiguration. The second method is by defining the ConfigurationFactory as a Plugin.

All the ConfigurationFactories are then processed in order. Each factory is called on its
getSupportedTypes method to determine the file extensions it supports. If a configuration fileis
located with one of the specified file extensions then control is passed to that ConfigurationFactory to
load the configuration and create the Configuration object.

Most Configuration extend the BaseConfiguration class. This class expects that the subclass will
process the configuration file and create a hierarchy of Node objects. Each Node isfairly simple

in that it consists of the name of the node, the name/value pairs associated with the node, The
PluginType of the node and a List of al of its child Nodes. BaseConfiguration will then be passed the
Node tree and instantiate the configuration objects from that.

@l ugi n(name = "XM.Confi gurati onFactory", category = "ConfigurationFactory")
@ der (5)

public class XM.ConfigurationFactory extends ConfigurationFactory {

/**

* Valid file extensions for XML files.

*/

public static final String[] SUFFIXES = new String[] {".xm", "*"};

/**
* Return the Configuration.
* @aram source The | nput Source.
* @eturn The Configuration.
*/
public Configuration getConfiguration(lnputSource source) {
return new XM.Confi guration(source, configFile);

}

/**

* Returns the file suffixes for XML files.

* @eturn An array of File extensions.

*/

public String[] getSupportedTypes() {
return SUFFI XES;

}

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j 188

15.1.4 LoggerConfig

LoggerConfig objects are where Loggers created by applicationstie into the configuration. The
Log4j implementation requiresthat all LoggerConfigs be based on the LoggerConfig class, so
applications wishing to make changes must do so by extending the LoggerConfig class. To declare
the new LoggerConfig, declare it as a Plugin of type "Core" and providing the name that applications
should specify as the element name in the configuration. The LoggerConfig should also define a
PluginFactory that will create an instance of the LoggerConfig.

The following example shows how the root LoggerConfig simply extends a generic LoggerConfig.

@l ugi n(nane = "root", category = "Core", printCbject = true)
public static class RootlLogger extends LoggerConfig {

@ ugi nFactory
public static LoggerConfig createlLogger (@l uginAttribute(value = "additivity", defaultBool eanValue = true
@l ugi nAttribute(value = "level", defaultStringValue = "ERROR') L
@ ugi nEl enent (" Appender Ref ") AppenderRef[] refs,
@l ugi nEl enent ("Filters") Filter filter) {
Li st <Appender Ref > appender Refs = Arrays. asLi st(refs);
return new Logger Confi g(LogManager. ROOT_LOGGER NAME, appenderRefs, filter, level, additivity);

15.1.5 LogEventFactory

A LogEventFactory is used to generate L ogEvents. Applications may replace the standard
LogEventFactory by setting the value of the system property Log4jL ogEventFactory to the name of
the custom L ogEventFactory class.

15.1.6 Lookups

Lookups are the means in which parameter substitution is performed. During Configuration
initialization an "Interpolator" is created that locates all the Lookups and registers them for use when
avariable needs to be resolved. The interpolator matches the "prefix" portion of the variable nameto a
registered L ookup and passes control to it to resolve the variable.

A Lookup must be declared using a Plugin annotation with atype of "Lookup”. The name specified
on the Plugin annotation will be used to match the prefix. Unlike other Plugins, Lookups do not use
a PluginFactory. Instead, they are required to provide a constructor that accepts no arguments. The
example below shows a Lookup that will return the value of a System Property.

The provided L ookups are documented here: Lookups

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j 189

@l ugi n(nane = "sys", category = "Lookup")
public class SystenPropertiesLookup inplenents StrLookup {

/**
* Lookup the value for the key.
* @aramkey the key to be | ooked up, may be null
* @eturn The value for the key.
*/
public String | ookup(String key) {
return System get Property(key);
}

/**
* Lookup the value for the key using the data in the LogEvent.
* @aram event The current LogEvent.
* @aramkey the key to be | ooked up, may be null
* @eturn The val ue associated with the key.
*/
public String | ookup(LogEvent event, String key) {
return System get Property(key);
}

15.1.7 Filters

As might be expected, Filters are the used to reject or accept log events as they pass through the
logging system. A Filter is declared using a Plugin annotation of type "Core" and an elementType of
"filter". The name attribute on the Plugin annotation is used to specify the name of the element users
should use to enable the Filter. Specifying the printObject attribute with avalue of "true" indicates
that a call to toString will format the arguments to the filter as the configuration is being processed.
The Filter must also specify a PluginFactory method that will be called to create the Filter.

The example below shows a Filter used to reject LogEvents based upon their logging level. Notice the
typical pattern where all the filter methods resolve to a single filter method.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j

@l ugi n(nane = "Threshol dFilter", category = "Core", elenentType = "filter",

public final class Threshol dFilter extends AbstractFilter {

private final Level |evel;

private Threshol dFilter(Level |evel, Result onMatch, Result onM smatch) {

super (onMat ch, onM smat ch);
this.level = |evel;

public Result filter(Logger |ogger, Level |evel, Marker marker, String nsg,

return filter(level);

public Result filter(Logger |ogger, Level |evel, Marker marker, Object nsg,

return filter(level);

public Result filter(Logger |ogger, Level |evel, Marker marker, Message nsg,

return filter(level);

@verride
public Result filter(LogEvent event) {
return filter(event.getlLevel ());

private Result filter(Level level) {

return | evel.isAtLeast AsSpecificAs(this.level) ? onMatch : onM smatch;

@verride
public String toString() {
return level.toString();

| **

* Create a Threshol dFilter.

* @aram | oggerLevel The | og Level.

* @aram match The action to take on a match.

* @aram m smatch The action to take on a m smatch.

* @eturn The created Threshol dFilter.

*/

@ ugi nFactory

public static ThresholdFilter createFilter (@l uginAttribute(val ue
@l ugi nAttri but e(val ue
@l ugi nAttri but e(val ue

return new Threshol dFilter(level, onMatch, onM smatch);

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

190

printObject = true)

Obj ect[] parans) {

Throwabl e t) {

Throwabl e t) {

"level ", defaultStringVal ue = "ERROR'
"onMat ch", defaul tStringVal ue = "NEUT

"onM smat ch",

defaul tStringValue = "LC

15 Extending Log4j 191

15.1.8 Appenders

Appenders are passed an event, (usually) invoke a Layout to format the event, and then "publish"
the event in whatever manner is desired. Appenders are declared as Plugins with a type of "Core"
and an elementType of "appender". The name attribute on the Plugin annotation specifies the name
of the element users must provide in their configuration to use the Appender. Appenders should
specify printObject as "true” if the toString method renders the values of the attributes passed to the
Appender.

Appenders must also declare a PluginFactory method that will create the appender. The example
below shows an Appender named " Stub” that can be used as an initial template.

Most Appenders use Managers. A manager actually "owns' the resources, such as an OutputStream
or socket. When a reconfiguration occurs a new Appender will be created. However, if nothing
significant in the previous Manager has changed, the new Appender will simply reference it instead
of creating a new one. Thisinsures that events are not lost while areconfiguration is taking place
without requiring that logging pause while the reconfiguration takes place.

@l ugi n(nane = "Stub", category = "Core", el enentType = "appender", printCbject = true)
public final class StubAppender extends Qutput StreamAppender {

private StubAppender(String nane, Layout |layout, Filter filter, StubManager manager,
bool ean i gnor eExceptions) {

}

@ ugi nFactory
public static StubAppender createAppender (@l ugi nAttribute("name") String nane,

@l ugi nAttri bute("ignoreExceptions") bool ean ignoreExcepti ons,

@l ugi nEl emrent (" Layout") Layout | ayout,
@l ugi nEl enent ("Filters") Filter filter) {

if (name == null) {
LOGGER error("No nane provided for StubAppender");
return null;

}

St ubManager nmanager = St ubManager. get St ubManager (nane) ;

if (manager == null) {
return null;

}

if (layout == null) {

| ayout = PatternLayout.createDefaultLayout();

}

return new StubAppender (nane, |ayout, filter, manager, ignoreExceptions);

15.1.9 Layouts

Layouts perform the formatting of eventsinto the printable text that is written by Appendersto some
destination. All Layouts must implement the Layout interface. Layouts that format the event into a
String should extend AbstractStringL ayout, which will take care of converting the String into the
required byte array.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j 192

Every Layout must declare itself as a plugin using the Plugin annotation. The type must be "Core",
and the elementType must be "Layout". printObject should be set to trueif the plugin's toString
method will provide arepresentation of the object and its parameters. The name of the plugin must
match the value users should use to specify it as an element in their Appender configuration. The
plugin also must provide a static method annotated as a PluginFactory and with each of the methods
parameters annotated with PluginAttr or PluginElement as appropriate.

@ ugi n(nane = "Sanpl eLayout", category = "Core", el enentType = "layout", printObject = true)
public class Sanpl eLayout extends Abstract StringlLayout {

protected Sanpl eLayout (bool ean | ocationl nfo, bool ean properties, bool ean conpl ete,
Charset charset) {

}

@ ugi nFactory
public static Sanpl eLayout createlLayout (@l uginAttribute("locationlnfo") bool ean |ocationlnfo,
@l ugi nAttri bute("properties") bool ean properties,
@l ugi nAttri bute("conpl ete") bool ean conpl et e,
@l ugi nAttri bute(value = "charset", defaultStringVvalue = "UTF-8")
return new Sanpl eLayout (| ocati onlnfo, properties, conplete, charset);

15.1.10 PatternConverters

PatternConverters are used by the PatternLayout to format the log event into a printable String. Each
Converter isresponsible for asingle kind of manipulation, however Converters are free to format the
event in complex ways. For example, there are several converters that manipulate Throwables and
format them in various ways.

A PatternConverter must first declare itself as a Plugin using the standard Plugin annotation but must
specify value of "Converter" on the type attribute. Furthermore, the Converter must also specify the
ConverterK eys attribute to define the tokens that can be specified in the pattern (preceded by a'%'
character) to identify the Converter.

Unlike most other Plugins, Converters do not use a PluginFactory. Instead, each Converter is required
to provide a static newlnstance method that accepts an array of Strings as the only parameter. The
String array are the values that are specified within the curly braces that can follow the converter key.

The following shows the skeleton of a Converter plugin.

@l ugi n(nane = "query", category = "Converter")
@onverterKeys({"q", "query"})
public final class QueryConverter extends LogEventPatternConverter {

public QueryConverter(String[] options) {
}

public static QueryConverter new nstance(final String[] options) {
return new QueryConverter (options);

}

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

15 Extending Log4j 193

15.1.11 Custom Plugins
See the Plugins section of the manual.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

16

16 Extending Log4j Configuration 194

Extending Log4j Configuration

16.1 Custom Configurations
Log4j 2 provides afew ways for applications to create their own custom configurations:

» Specify acustom ConfigurationFactory
» Usethe Configurator
» Modify the current Configuration after initialization

16.1.1 The ConfigurationBuilder API

Starting with release 2.4, Log4j provides a ConfigurationBuilder and a set of component builders that
allow a Configuration to be created fairly easily. Actua configuration objects like LoggerConfig or
Appender can be unwieldy; they require alot of knowledge on Log4j internals which makes them
difficult to work with if all you want is create a Configuration.

The new ConfigurationBuilder API (in the

org. apache. | oggi ng. | og4j . core. confi g. bui | der. api package) allows usersto create
Configurationsin code by constructing component definitions. Thereis no need to work directly
with actual configuration objects. Component definitions are added to the ConfigurationBuilder, and
once all the definitions have been collected all the actual configuration objects (like Loggers and
Appenders) are constructed.

ConfigurationBuilder has convenience methods for the base components that can be configured such
as Loggers, Appenders, Filter, Properties, etc. However, Log4j 2's plugin mechanism means that users
can create any number of custom components. As a trade-off, the ConfigurationBuilder API provides
only alimited number of "strongly typed" convenience methods like newlogger (), newLayout ()
etc. The generic bui | der . newConponent () method can be used if no convenience method exists
for the component you want to configure.

For example, the builder does not know what components can be configured on specific components
such as the RollingFileAppender vs. the RoutingAppender. To specify atriggering policy on a
RollingFileAppender you would use builder.newComponent().

16.1.2 Understanding ConfigurationFactory

Log4j 2 will search for available ConfigurationFactories and then select the one to use. The selected
ConfigurationFactory creates the Configuration that Log4j will use. Here is how Logdj finds the
available ConfigurationFactories:

1. A system property named "log4j.configurationFactory" can be set with the name of the
ConfigurationFactory to be used.

2. ConfigurationFactory. set Confi gurati onFact ory(Confi gurati onFactory) canbe
called with the instance of the ConfigurationFactory to be used. This must be called before any
other callsto Log4.

3. A ConfigurationFactory implementation can be added to the classpath and configured as a plugin
in the "ConfigurationFactory" category. The Order annotation can be used to specify the relative
priority when multiple applicable ConfigurationFactories are found.

ConfigurationFactories have the concept of "supported types', which basically maps to the file
extension of the configuration file that the ConfigurationFactory can handle. If a configuration

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

16 Extending Log4j Configuration 195

file location is specified, ConfigurationFactories whose supported type does not include "*" or the
matching file extension will not be used.

16.1.3 Using ConfigurationBuilder with a Custom ConfigurationFactory

One way to programmatically configure Log4j 2 is to create a custom ConfigurationFactory

that usesthe ConfigurationBuilder to create a Configuration. The below example overrides the
get Confi gur ati on() method to return a Configuration created by the ConfigurationBuilder.
Thiswill cause the Configuration to automatically be hooked into Log4j when the LoggerContext
is created. In the example below, because it specifies a supported type of "*" it will override any
configuration files provided.

@l ugi n(nanme = "CustonConfigurationFactory", category = Confi gurationFactory. CATEGORY)
@ der (50)

public class CustonConfigurationFactory extends ConfigurationFactory {

static Configuration createConfiguration(final String name, ConfigurationBuil der<BuiltConfiguration> buil

bui | der. set Confi gur ati onNanme(nane) ;

bui | der. set St at usLevel (Level . ERROR) ;

bui | der. add(buil der. newFilter("ThresholdFilter", Filter.Result.ACCEPT, Filter.Result.NEUTRAL).
addAttribute("level", Level.DEBUG);

Appender Conponent Bui | der appender Bui | der = bui | der. newAppender (" St dout ", "CONSOLE") .
addAttribute("target”, Consol eAppender. Target. SYSTEM QUT) ;

appender Bui | der. add(bui | der. newLayout (" PatternLayout").
addAttribute("pattern', "%l [%] %5l evel : %rsg%% hr owabl e"));

appender Bui | der. add(bui |l der. newFi |l ter("MarkerFilter", Filter.Result.DENY,
Filter.Result. NEUTRAL) . addAttri bute("marker", "FLOW));

bui | der. add(appender Bui | der);

bui | der. add(bui | der. newLogger (" org. apache. | oggi ng. 1 0g4j ", Level.DEBUG).
add(bui | der. newAppender Ref (" Stdout")).
addAttribute("additivity", false));

bui | der. add(bui | der. newRoot Logger (Level . ERROR) . add(bui | der. newAppender Ref (" Stdout")));

return builder.build();

@verride
public Configuration getConfiguration(ConfigurationSource source) {
return get Configuration(source.toString(), null);

@verride

public Configuration getConfiguration(final String nane, final URI configlLocation) {
Confi gurati onBui | der <Bui | t Confi gurati on> buil der = newConfi gurationBuil der();
return createConfiguration(nane, builder);

@verride
protected String[] getSupportedTypes() {
return new String[] {"*"};

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

16 Extending Log4j Configuration 196

16.1.4 Using ConfigurationBuilder with the Configurator

An aternative to a custom ConfigurationFactory is to configure with the Conf i gur at or .
Once a Configuration object has been constructed, it can be passed to one of the
Configurator.initialize methodsto set up theLog4j configuration.

Using the Configurator in this manner alows the application control over when Log4j isinitialized.
However, should any logging be attempted before Configurator.initialize() is called then the default
configuration will be used for those log events.

Confi gurati onBui | der <Bui | t Confi gurati on> buil der = ConfigurationBuil der Factory. newConfi gurati onBuil der();

bui | der. set St at usLevel (Level . ERROR) ;

bui | der. set Confi gurati onName(" Bui | der Test");

bui | der. add(buil der. newFilter("ThresholdFilter", Filter.Result.ACCEPT, Filter.Result.NEUTRAL)
.addAttribute("level", Level.DEBUG));

Appender Conponent Bui | der appender Bui | der = bui | der. newAppender (" St dout ", "CONSOLE").addAttribute("target",

Consol eAppender . Tar get. SYSTEM QUT) ;
appender Bui | der. add(bui | der. newLayout (" PatternLayout").
addAttribute("pattern', "%l [%] %5l evel : %rsg%% hr owabl e"));
appender Bui | der. add(bui |l der. newFilter("MarkerFilter", Filter.Result.DENY, Filter.Result.NEUTRAL).
addAttri bute("marker", "FLOW));
bui | der. add(appender Bui | der);
bui | der. add(bui | der. newLogger (" org. apache. | oggi ng. 1 0g4j", Level.DEBUG).
add(bui | der. newAppender Ref ("Stdout")).addAttri bute("additivity", false));
bui | der. add(bui | der. newRoot Logger (Level . ERROR) . add(bui | der. newAppender Ref (" Stdout")));
ctx = Configurator.initialize(builder.build());

16.1.5 Combining Configuration File with Programmatic Configuration

Sometimes you want to configure with a configuration file but do some additional programmatic
configuration. A possible use case might be that you want to alow for aflexible configuration using
XML but at the same time make sure there are afew configuration elements that are always present
that can't be removed.

The easiest way to achieve thisisto extend one of the standard Configuration classes

(XML Configuration, JSONConfiguration) and then create a new ConfigurationFactory for the
extended class. After the standard configuration compl etes the custom configuration can be added to
it.

The example below shows how to extend XML Configuration to manually add an Appender and a
LoggerConfig to the configuration.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

16 Extending Log4j Configuration 197

@l ugi n(nane = "MyXM.Confi gur ati onFactory", category = "Confi gurationFactory")

@ der (10)
public class MyXM.Confi gurationFactory extends ConfigurationFactory {

/**

* Valid file extensions for XML files.

*/

public static final String[] SUFFIXES = new String[] {".xm", "*"};

/**
* Return the Configuration.
* @aram source The | nput Source.
* @eturn The Configuration.
*/
public Configuration getConfiguration(lnputSource source) {
return new MyXM_Confi guration(source, configFile);

/**

* Returns the file suffixes for XM files.

* @eturn An array of File extensions.

*/

public String[] getSupportedTypes() {
return SUFFI XES;

public class MyXM.Confi guration extends XM.Configuration {
public MyXM.Configuration(final ConfigurationFactory. ConfigurationSource configSource) {
super (confi gSource);

@verride
protected void doConfigure() {
super . doConfi gure();
final LoggerContext ctx = (LoggerContext) LogManager.get Context (fal se);
final Layout |ayout = PatternLayout.createlLayout(PatternLayout.SI MPLE_CONVERSI ON_PATTERN, config, nul

null,null, null);

final Appender appender = Fil eAppender.createAppender(“"target/test.log", "false", "false", "File", "t
"fal se", "false", "4000", layout, null, "false", null, config);

appender.start();

addAppender (appender) ;

Logger Confi g | ogger Confi g = Logger Confi g.createLogger("fal se", "info", "org.apache. | ogging.|og4j",
"true", refs, null, config, null);

| ogger Confi g. addAppender (appender, null, null);
addLogger (" org. apache. | oggi ng. | og4j ", | oggerConfig);

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

16 Extending Log4j Configuration 198

16.1.6 Programmatically Adding to the Current Configuration

Applications sometimes have the need to customize logging separate from the actual configuration.
Log4j allows this athough it suffers from afew limitations:

1. If the configuration file is changed the configuration will be reloaded and the manual changes
will belost.

2. Madification to the running configuration requires that all the methods being called
(addAppender and addL ogger) be synchronized.

As such, the recommended approach for customizing a configuration is to extend one of the standard
Configuration classes, override the setup method to first do super.setup() and then add the custom
Appenders, Filters and LoggerConfigs to the configuration before it is registered for use.

The following example adds an Appender and a new LoggerConfig using that Appender to the current
configuration.

final LoggerContext ctx = (LoggerContext) LogManager.get Context(false);
final Configuration config = ctx.getConfiguration();
Layout layout = PatternLayout.createlLayout (PatternLayout. Sl MPLE_CONVERSI ON_PATTERN, config, null,

null,null, null);
Appender appender = Fil eAppender. creat eAppender ("target/test.log", "false", "false", "File", "true",
"fal se", "false", "4000", layout, null, "false", null, config);

appender.start();

confi g. addAppender (appender) ;

Appender Ref ref = Appender Ref. creat eAppenderRef ("File", null, null);

Appender Ref[] refs = new AppenderRef[] {ref};

Logger Confi g | ogger Confi g = Logger Confi g. createLogger("false", "info", "org.apache.l ogging.|og4j",
"true", refs, null, config, null);

| ogger Confi g. addAppender (appender, null, null);

confi g. addLogger (" org. apache. | oggi ng. 1 0g4j", | oggerConfig);

ct x. updat eLoggers();

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

17

17 Custom Log Levels 199

Custom Log Levels

17.1 Custom Log Levels

17.1.1 Defining Custom Log Levels in Code

Log4J 2 supports custom log levels. Custom log levels can be defined in code or in configuration. To
define acustom log level in code, usethe Level . f or Name() method. This method creates a new
level for the specified name. After alog level is defined you can log messages at this level by calling
the Logger.log() method and passing the custom log level:

/1 This creates the "VERBOSE" level if it does not exist yet.
final Level VERBCSE = Level.forNane("VERBCSE', 550);

final Logger |ogger = LogManager. getLogger();
| ogger. |l og(VERBOSE, "a verbose nessage"); // use the custom VERBCSE | evel

/] Create and use a new custom | evel "Dl AG'.
| ogger. |l og(Level . forNanme("Dl AG', 350), "a diagnostic message");

/] Use (don't create) the "D AG' customl evel.
/!l Only do this *after* the customlevel is created!
| ogger. |l og(Level .getlLevel ("DI AG'), "another diagnostic nessage");

/1 Using an undefined level results in an error: Level.getLevel () returns null,
/1 and | ogger.log(null, "nessage") throws an exception.
| ogger. |l og(Level . getLevel ("FORGOT_TO DEFI NE"), "sone nessage"); // throws exception!

When defining acustom log level, thei nt Level parameter (550 and 350 in the example above)

determines where the custom level existsin relation to the standard levels built-in to Log4J 2. For
reference, the table below showsthei nt Level of the built-inlog levels.

OFF 0
FATAL 100
ERROR 200
WARN 300
INFO 400
DEBUG 500
TRACE 600
ALL I nt eger. MAX_VALUE

Standard log levels built-in to Log4J

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

17 Custom Log Levels 200

17.1.2 Defining Custom Log Levels in Configuration

Custom log levels can also be defined in configuration. Thisis convenient for using a custom level
in alogger filter or an appender filter. Similar to defining log levelsin code, a custom level must be
defined first, before it can be used. If alogger or appender is configured with an undefined level, that
logger or appender will be invalid and will not process any log events.

The CustomL evel configuration element creates a custom level. Internally it calls the same
Level . f or Name() method discussed above.

name String The name of the custom level. Note
that level names are case sensitive.
The convention is to use all upper-
case names.

intLevel integer Determines where the custom level
exists in relation to the standard
levels built-in to Log4J 2 (see the
table above).

CustomLevel Parameters

The following example shows a configuration that defines some custom log levels and uses a custom
log level to filter log events sent to the console.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="WARN'>
<!-- Define customlevels before using themfor filtering below -->
<Cust onlLevel s>
<Custonlievel nane="Dl AG' intlLevel ="350" />
<Custonlievel nanme="NOTI CE" intlLevel ="450" />
<CustonlLevel nanme="VERBCSE" i ntLevel ="550" />
</ Cust onLevel s>

<Appender s>
<Consol e nane="Consol e" target="SYSTEM QUT" >
<PatternLayout pattern="9%l % 7| evel 9% ogger{36} - %rsg%"/>
</ Consol e>
<File name="MFile" fileName="1ogs/app.|og">
<PatternLayout pattern="9% % 7l evel 9% ogger{36} - %rsg%"/>

</File>
</ Appender s>
<Logger s>
<Root |evel ="trace">
<l-- Only events at DI AG |l evel or nore specific are sent to the console. -->

<Appender Ref ref="Consol e" |evel ="diag" />
<Appender Ref ref="M/File" |evel ="trace" />
</ Root >
</ Logger s>
</ Confi guration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

17 Custom Log Levels 201

17.1.3 Convenience Methods for the Built-in Log Levels

The built-in log levels have a set of convenience methods on the Logger interface that makes them
easier to use. For example, the Logger interface has 24 debug() methods that support the DEBUG
level:

/1 conveni ence nethods for the built-in DEBUG | evel
debug(Mar ker, Message)

debug(Mar ker, Message, Throwabl e)
debug(Mar ker, Object)

debug(Mar ker, Object, Throwabl e)

debug(Mar ker, String)

debug(Marker, String, Object...)
debug(Marker, String, Throwabl e)

debug(Message)

debug(Message, Throwabl e)

debug(oj ect)

debug(oj ect, Throwabl e)

debug(String)

debug(String, object...)

debug(String, Throwabl e)

/1 lanbda support nethods added in 2.4
debug(Mar ker, MessageSupplier)

debug(Marker, MessageSupplier, Throwabl e)
debug(Marker, String, Supplier<?>...)
debug(Marker, Supplier<?>)

debug(Marker, Supplier<?> Throwabl e)
debug(MessageSuppl i er)

debug(MessageSuppl i er, Throwabl e)
debug(String, Supplier<?>...)

debug(Suppl i er <?>)

debug(Suppl i er<?>, Throwabl e)

Similar methods exist for the other built-in levels. Custom levels, in contrast, need to passin the log
level as an extra parameter.

/1 need to pass the customlevel as a paraneter
| ogger. | og(VERBOSE, "a verbose nessage");
| ogger. |l og(Level . forName(" Dl AG', 350), "another message");

It would be nice to have the same ease of use with custom levels, so that after declaring the custom
VERBOSE/DIAG levels, we could use code like this:

/1 nice to have: descriptive nethods and no need to pass the |level as a paraneter
| ogger . verbose("a verbose nmessage");

| ogger . di ag("anot her nessage");

| ogger.diag("java 8 | anbda expression: {}", () -> someMethod());

The standard Logger interface cannot provide convenience methods for custom levels, but the next
few sections introduce a code generation tool to create loggers that aim to make custom levels as easy
to use as built-in levels.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

17 Custom Log Levels 202

17.1.4 Adding or Replacing Log Levels

We assume that most users want to add custom level methods to the Logger interface, in addition to
the existing trace(), debug(), info(), ... methods for the built-in log levels.

There is another use case, Domain Specific Language loggers, where we want to replace the existing
trace(), debug(), info(), ... methods with all-custom methods.

For example, for medical deviceswe could haveonly cri ti cal (), war ni ng(), and advi sory()
methods. Another example could be a game that has only def conl(), def con2(), and def con3()
levels.

If it were possible to hide existing log levels, users could customize the Logger interface to match
their requirements. Some people may not want to have aFATAL or aTRACE level, for example.
They would like to be able to create a custom Logger that only has debug(), info(), warn() and error()
methods.

17.1.5 Generating Source Code for a Custom Logger Wrapper

Common Log4J usage isto get an instance of the Logger interface from the LogManager and call
the methods on this interface. However, the custom log Levels are not known in advance, so Log4J
cannot provide an interface with convenience methods for these custom log Levels.

To solve this, Log4J ships with atool that generates source code for a Logger wrapper. The generated
wrapper class has convenience methods for each custom log level, making custom levels just as easy
to use as the built-in levels.

There are two flavors of wrappers. onesthat extend the Logger API (adding methods to the built-in
levels) and onesthat customize the Logger API (replacing the built-in methods).

When generating the source code for awrapper class, you need to specify:

+ thefully qualified name of the classto generate
« thelist of custom levelsto support and their i nt Level relative strength

» whether to extend Logger (and keep the existing built-in methods) or have only methods for the
custom log levels

Y ou would then include the generated source code in the project where you want to use custom log
levels.

17.1.6 Example Usage of a Generated Logger Wrapper

Here is an example of how one would use a generated logger wrapper with custom levels DIAG,
NOTICE and VERBOSE:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

17 Custom Log Levels 203

/1 ExtLogger is a generated | ogger w apper
i mport com nyconpany. nyproj ect . Ext Logger ;

public class MyService {
/1 instead of Logger |ogger = LogManager. get Logger (M/Service. cl ass):
private static final ExtLogger |ogger = ExtlLogger.create(MService.class);

public void denpExt endedLogger () {
/1
| ogger.trace("the built-in TRACE | evel");
| ogger. verbose("a custom | evel : a VERBOSE nessage");
| ogger . debug("the built-in DEBUG | evel ");
| ogger.notice("a customlevel: a NOTI CE nessage");
| ogger.info("the built-in INFO | evel");
| ogger.diag("a customlevel: a Dl AG nessage");
| ogger.warn("the built-in WARN | evel ");
| ogger.error("the built-in ERROR | evel ");
| ogger.fatal ("the built-in FATAL |evel");
| ogger.notice("java 8 | anbda expression only executed if NOTICE is enabled: {}", () -> someMethod());
/1

17.1.7 Generating Extended Loggers
Use the following command to generate alogger wrapper that adds methods to the built-in ones:

java -cp | og4j-core-${Log4j Rel easeVersion}.jar org.apache.| oggi ng.| og4j.core.tool s. Gener at e$Ext endedLogger \
com myconp. Ext Logger DI AG=350 NOTI CE=450 VERBOSE=550 > coni nyconp/ Ext Logger. j ava

Thiswill generate source code for alogger wrapper that has the convenience methods for the built-in
levels as well as the specified custom levels. The tool prints the generated source code to the console.
By appending " > filename" the output can be redirected to afile.

17.1.8 Generating Custom Loggers

Use the following command to generate alogger wrapper that hides the built-in levels and has only
custom levels:

java -cp | og4j-core-${Log4j Rel easeVersion}.jar org.apache. | oggi ng.|o0g4j.core.tools. Generat e$Cust onLogger \
com nmyconp. MyLogger DEFCON1=350 DEFCON2=450 DEFCON3=550 > com nyconp/ MyLogger.j ava

Thiswill generate source code for alogger wrapper that only has convenience methods for the
specified custom levels, not for the built-in levels. The tool prints the generated source code to the
console. By appending " > filename" the output can be redirected to afile.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

	Table of Contents
	Introduction
	Architecture
	Log4j 1.x Migration
	API
	Configuration
	Web Applications and JSPs
	Plugins
	Lookups
	Appenders
	Layouts
	Filters
	Async Loggers
	JMX
	Logging Separation
	Extending Log4j
	Extending Log4j Configuration
	Custom Log Levels

