, The Apache Software Foundation ™
T http://www.apache.org/

LOGYJ

Apache Log4j 2
v.24.1
User's Guide

The Apache Software Foundation 2015-10-08

Table of Contents i

Table of Contents

Table of CoNtents i
INtrOdUCTION .. 1
ATCNItBCIUIE . 3
Log4j 1.X MIigration e 10
AP 16
CoNfigUIatioN .. 19
Web Applications and JSPS ... 50
PIUGINS 58
LOOKUPS o 62
AP P BN IS 70
LAY OULS . 128
OIS 154
ASYNC LOQQEIS .ot 167
TV X 181
LOogging Separation ...t 188
EXtending LOQ4d] ...ooor 190
Programmatic Log4j Configurationo, 198
Custom Log Levels ... 204

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

Table of Contents

©2015,

The Apache Software Foundation

ALL RIGHTS RESERVED.

1 Introduction 1

Introduction

1.1 Welcome to Log4j 2!

1.1.1 Introduction

Almost every large application includesits own logging or tracing API. In conformance with this
rule, the E.U. SEMPER project decided to write its own tracing API. Thiswasin early 1996. After
countless enhancements, several incarnations and much work that API has evolved to become log4j,
apopular logging package for Java. The package is distributed under the Apache Software License,
afully-fledged open source license certified by the open source initiative. The latest log4j version,
including full-source code, class files and documentation can be found at http://logging.apache.or g/
logdj/2.x/index.html.

Inserting log statements into code is alow-tech method for debugging it. It may also be the only way
because debuggers are not aways available or applicable. Thisisusualy the case for multithreaded
applications and distributed applications at large.

Experience indicates that |ogging was an important component of the development cycle. It offers
several advantages. It provides precise context about a run of the application. Once inserted into the
code, the generation of logging output requires no human intervention. Moreover, log output can
be saved in persistent medium to be studied at alater time. In addition to its use in the development
cycle, asufficiently rich logging package can also be viewed as an auditing tool.

AsBrian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of
Programming":

As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a
variable or two. One reason isthat it is easy to get lost in details of complicated data structures and
control flow; we find stepping through a program less productive than thinking harder and adding
output statements and self-checking code at critical places. Clicking over statements takes longer
than scanning the output of judiciously-placed displays. It takes less time to decide where to put print
statements than to single-step to the critical section of code, even assuming we know where that is.
More important, debugging statements stay with the program; debugging sessions are transient.

Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause
scrolling blindness. To aleviate these concerns, logdj is designed to be reliable, fast and extensible.
Since logging is rarely the main focus of an application, the log4j API strivesto be simple to
understand and to use.

1.1.2 Log4j 2

Log4j 1.x has been widely adopted and used in many applications. However, through the years
development on it has lowed down. It has become more difficult to maintain due to its need to
be compliant with very old versions of Java. Its alternative, SLF4J/Logback made many needed
improvements to the framework. So why bother with Log4j 2?7 Here are afew of the reasons.

1. Log4j 2 isdesigned to be usable as an audit logging framework. Both Log4j 1.x and Logback
will lose events while reconfiguring. Log4j 2 will not. in Logback exceptions in Appenders are
never visible to the application. In Log4j 2 Appenders can be configured to allow the exception
to percolate to the application

2. Logdj 2 contains next-generation lock-free Asynchronous Loggers based onthe LMAX
Disruptor library. In multi-threaded scenarios Asynchronous Loggers have 10 times higher
throughput and orders of magnitude lower latency than Log4j 1.x and Logback.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.semper.org
http://www.opensource.org
http://logging.apache.org/log4j/2.x/index.html
http://logging.apache.org/log4j/2.x/index.html
https://lmax-exchange.github.io/disruptor/
https://lmax-exchange.github.io/disruptor/

1 Introduction 2

3. Logdj 2 usesa Plugin system that makes it extremely easy to extend the framework by adding
new Appenders, Filters, Layouts, Lookups, and Pattern Converters without requiring any
changesto Logdj.

4. Dueto the Plugin system configuration is ssmpler. Entries in the configuration do not require a
class name to be specified.

5. Support for custom log levels. Custom log levels can be defined in code or in configuration.

6. Support for lambda expressions. Client code running on Java 8 can use lambda expressions to
lazily construct alog message only if the requested log level is enabled. Explicit level checks are
not needed, resulting in cleaner code.

7. Support for Message objects. Messages allow support for interesting and complex constructs
to be passed through the logging system and be efficiently manipulated. Users are freeto create
theirown Message typesand write custom Layouts, Filtersand Lookups to manipulate
them.

8. Log4j 1.x supports Filters on Appenders. Logback added TurboFiltersto alow filtering of
events before they are processed by a Logger. Logdj 2 supports Filters that can be configured to
process events before they are handled by a Logger, as they are processed by a Logger or on an
Appender.

9. Many Logback Appenders do not accept a Layout and will only send datain afixed format.
Most Log4j 2 Appenders accept a Layout, allowing the data to be transported in any format
desired.

10Layoutsin Log4j 1.x and Logback return a String. This resulted in the problems discussed at
Logback Encoders. Log4j 2 takes the simpler approach that Layouts always return a byte array.
This has the advantage that it means they can be used in virtually any Appender, not just the ones
that write to an OutputStream.

11The Syslog Appender supports both TCP and UDP as well as support for the BSD syslog and
the RFC 5424 formats.

12L og4j 2 takes advantage of Java 5 concurrency support and performslocking at the lowest level
possible. Log4j 1.x has known deadlock issues. Many of these are fixed in Logback but many
Logback classes still require synchronization at afairly high level.

13It is an Apache Software Foundation project following the community and support model used
by all ASF projects. If you want to contribute or gain the right to commit changes just follow the
path outlined at Contributing

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logback.qos.ch/manual/encoders.html
http://logback.qos.ch/manual/encoders.html
http://tools.ietf.org/html/rfc5424
http://jakarta.apache.org/site/contributing.html

2 Architecture 3

2 Architecture

2.1 Architecture

2.1.1 Main Components
Log4j uses the classes shown in the diagram below.

class Logdj Classes /

LoggerContext 1 1 Configuration 1 0. Filter
o
[
1
1
1 1
StrSubstitutor StrLookup
1 1 1
o.* i B o~
Logger LoggerConfig g Appender) Layout
name: Sting g - “T - name: Siring 0.* 0.=|- name: Sting|1 0.1
parent: LoggerCenfig

2 T

Filter Filter

Applications using the Log4j 2 API will request a Logger with a specific name from the LogManager.
The LogManager will locate the appropriate LoggerContext and then obtain the Logger from it. If the
Logger must be created it will be associated with the LoggerConfig that contains either a) the same
name as the Logger, b) the name of a parent package, or c) the root LoggerConfig. LoggerConfig
objects are created from Logger declarations in the configuration. The LoggerConfig is associated
with the Appenders that actually deliver the LogEvents.

2.1.1.1 Logger Hierarchy
The first and foremost advantage of any logging APl over plain Syst em out . pri ntl n residesin
its ability to disable certain log statements while allowing others to print unhindered. This capability

assumes that the logging space, that is, the space of all possible logging statements, is categorized
according to some devel oper-chosen criteria.

In Log4j 1.x the Logger Hierarchy was maintained through a relationship between Loggers. In Log4j
2 thisrelationship no longer exists. Instead, the hierarchy is maintained in the relationship between
LoggerConfig objects.

Loggers and LoggerConfigs are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule:

Named Hierar chy

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 4

A LoggerConfig is said to be an ancestor of another LoggerConfig if its name followed
by adot is aprefix of the descendant logger name. A LoggerConfig is said to be a parent
of achild LoggerConfig if there are no ancestors between itself and the descendant
LoggerConfig.

For example, the LoggerConfig named " com f oo" isa parent of the LoggerConfig named
"com f oo. Bar". Similarly, "j ava" isaparent of "j ava. uti | " and an ancestor of
"java.util.Vector". Thisnaming scheme should be familiar to most devel opers.

The root LoggerConfig resides at the top of the LoggerConfig hierarchy. It is exceptional in
that it always existsand it is part of every hierarchy. A Logger that is directly linked to the root
LoggerConfig can be obtained as follows:

Logger | ogger = LogManager. get Logger (LogManager. ROOT_LOGGER NAME) ;

Alternatively, and more simply:

Logger | ogger = LogManager . get Root Logger () ;

All other Loggers can be retrieved using the LogManager.getLogger static method by passing the
name of the desired Logger. Further information on the Logging API can be found in the Log4j 2
API.

2.1.1.2 LoggerContext

The LoggerContext acts as the anchor point for the Logging system. However, it is possible to have
multiple active LoggerContexts in an application depending on the circumstances. More details on the
LoggerContext arein the Log Separation section.

2.1.1.3 Configuration

Every LoggerContext has an active Configuration. The Configuration contains all the Appenders,
context-wide Filters, LoggerConfigs and contains the reference to the StrSubstitutor. During
reconfiguration two Configuration objects will exist. Once all Loggers have been redirected to the
new Configuration, the old Configuration will be stopped and discarded.

2.1.1.4 Logger

As stated previously, Loggers are created by calling LogManager.getLogger. The Logger itself
performs no direct actions. It smply has a name and is associated with a LoggerConfig. It extends
AbstractLogger and implements the required methods. As the configuration is modified Loggers may
become associated with a different LoggerConfig, thus causing their behavior to be modified.

2.Retrieving Loggers

Calling the LogManager . get Logger method with the same name will always return areference to
the exact same Logger object.

For example, in

Logger x
Logger y

LogManager . get Logger ("wonbat ") ;
LogManager . get Logger ("wonbat ") ;

x and y refer to exactly the same Logger object.

Configuration of the log4j environment istypically done at application initialization. The preferred
way is by reading a configuration file. Thisis discussed in Configuration.

Log4j makes it easy to name Loggers by software component. This can be accomplished by
instantiating a Logger in each class, with the logger name equal to the fully qualified name of the

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 5

class. Thisisauseful and straightforward method of defining loggers. Asthe log output bears the
name of the generating Logger, this naming strategy makes it easy to identify the origin of alog
message. However, thisis only one possible, albeit common, strategy for naming loggers. Log4j does
not restrict the possible set of loggers. The developer is free to name the loggers as desired.

Since naming Loggers after their owning classis such a common idiom, the convenience method
LogManager . get Logger () isprovided to automatically use the calling classs fully qualified class
name as the Logger name.

Nevertheless, naming loggers after the class where they are located seems to be the best strategy
known so far.

2.1.1.5 LoggerConfig

LoggerConfig objects are created when Loggers are declared in the logging configuration. The
LoggerConfig contains a set of Filters that must allow the LogEvent to pass before it will be passed to
any Appenders. It contains references to the set of Appenders that should be used to process the event.

2.Log Levels

LoggerConfigswill be assigned aLog Level. The set of built-in levelsincludes TRACE, DEBUG,
INFO, WARN, ERROR, and FATAL. Log4j 2 also supports custom log levels. Another mechanism
for getting more granularity isto use Markersinstead.

Log4j 1.x and Logback both have the concept of "Level Inheritance”. In Logdj 2, Loggers and
LoggerConfigs are two different objects so this concept is implemented differently. Each Logger
references the appropriate LoggerConfig which in turn can reference its parent, thus achieving the
same effect.

Below are five tables with various assigned level values and the resulting levels that will be associated
with each Logger. Note that in all these casesif the root LoggerConfig is not configured a default
Level will be assigned to it.

root root DEBUG DEBUG

X root DEBUG DEBUG

X.Y root DEBUG DEBUG

XY.Z root DEBUG DEBUG
Example 1

In example 1 above, only the root logger is configured and hasaLog Level. All the other Loggers
reference the root LoggerConfig and useits Level.

root root DEBUG DEBUG
X X ERROR ERROR
XY XY INFO INFO
XY.Z XY.Z WARN WARN

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch/manual/architecture.html#effectiveLevel

2 Architecture 6

Example 2
In example 2, al loggers have a configured LoggerConfig and obtain their Level from it.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

XY.Z X.Y.Z WARN WARN
Example 3

In example 3, theloggersr oot , X and X. Y. Z each have a configured L oggerConfig with the same
name. The Logger X. Y does not have a configured LoggerConfig with a matching name so uses the
configuration of LoggerConfig X since that is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

X.Y.Z X ERROR ERROR
Example 4

In example 4, the loggersr oot and X each have a Configured LoggerConfig with the same name.
Theloggers X. Y and X. Y. Z do not have configured LoggerConfigs and so get their Level from the
LoggerConfig assigned to them, X, sinceit is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y INFO INFO

X.YZ X ERROR ERROR
Example 5

In example 5, the loggersr oot . X, and X. Y each have a Configured L oggerConfig with the same
name. The logger X. YZ does not have configured LoggerConfig and so getsits Level from the
LoggerConfig assigned to it, X, sinceit isthe LoggerConfig whose name has the longest match to the
start of the Logger's name. It is not associated with LoggerConfig X. Y since tokens after periods must

match exactly.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 7

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y ERROR

X.Y.Z X.Y ERROR
Example 6

In example 6, LoggerConfig X.Y it has no configured level so it inheritsitslevel from LoggerConfig
X. Logger X.Y.Z uses LoggerConfig X.Y since it doesn't have a L oggerConfig with a name that
exactly matches. It too inheritsits logging level from LoggerConfig X.

Thetable below illustrates how Level filtering works. In the table, the vertical header shows the
Level of the LogEvent, while the horizontal header shows the Level associated with the appropriate
LoggerConfig. The intersection identifies whether the LogEvent would be allowed to pass for further
processing (Y es) or discarded (NO).

YES YES YES YES YES YES NO
YES NO NO NO NO NO NO
YES YES NO NO NO NO NO
YES YES YES NO NO NO NO
YES YES YES YES NO NO NO
YES YES YES YES YES NO NO
YES YES YES YES YES YES NO
NO NO NO NO NO NO NO
2.1.1.6 Filter

In addition to the automatic log Level filtering that takes place as described in the previous section,
Logd4j provides Filtersthat can be applied before control is passed to any LoggerConfig, after

control is passed to a LoggerConfig but before calling any Appenders, after control is passed to a
LoggerConfig but before calling a specific Appender, and on each Appender. In a manner very similar
to firewall filters, each Filter can return one of three results, Accept , Deny or Neut r al . A response
of Accept means that no other Filters should be called and the event should progress. A response of
Deny means the event should be immediately ignored and control should be returned to the caller. A
response of Neut r al indicates the event should be passed to other Filters. If there are no other Filters
the event will be processed.

Although an event may be accepted by a Filter the event still might not be logged. This can happen
when the event is accepted by the pre-LoggerConfig Filter but is then denied by a LoggerConfig filter
or isdenied by all Appenders.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 8

2.1.1.7 Appender

The ability to selectively enable or disable logging requests based on their logger is only part of the
picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output
destination is called an Appender. Currently, appenders exist for the console, files, remote socket
servers, Apache Flume, IMS, remote UNIX Syslog daemons, and various database APIs. See the
section on Appenders for more details on the various types available. More than one Appender can be
attached to a Logger.

An Appender can be added to a Logger by calling the addL oggerAppender method of the current
Configuration. If a LoggerConfig matching the name of the Logger does not exist, one will be created,
the Appender will be attached to it and then all Loggers will be notified to update their LoggerConfig
references.

Each enabled logging request for a given logger will be forwarded to all the appendersin
that Logger's L ogger Config aswell asthe Appenders of the L ogger Config's parents. In other
words, Appenders are inherited additively from the LoggerConfig hierarchy. For example, if a
console appender is added to the root logger, then all enabled logging requests will at least print
on the console. If in addition afile appender is added to a LoggerConfig, say C, then enabled
logging requests for C and C's children will print in afile and on the console. It is possible to
override this default behavior so that Appender accumulation is no longer additive by setting

addi tivity="fal se" ontheLogger declaration in the configuration file.

The rules governing appender additivity are summarized below.
Appender Additivity

The output of alog statement of Logger L will go to all the Appendersin the LoggerConfig
associated with L and the ancestors of that LoggerConfig. Thisisthe meaning of the term
"appender additivity".

However, if an ancestor of the LoggerConfig associated with Logger L, say P, hasthe
additivity flag set to f al se, then L's output will be directed to all the appendersin L's
LoggerConfig and it's ancestors up to and including P but not the Appendersin any of the
ancestors of P.

Loggers have their additivity flag set to t r ue by default.
The table below shows an example:

root Al not applicable Al The root logger
has no parent so
additivity does not

apply to it.

X A-x1, A-x2 true Al, A-x1, A-x2 Appenders of "x"
and root.

X.y none true Al, A-x1, A-x2 Appenders of "x"

and root. It would
not be typical to
configure a Logger
with no Appenders.

X.y.z A-xyzl true Al, A-x1, A-x2, A- Appenders in
xyzl "x.y.z", "x" and root.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 9

security A-sec false A-sec No appender
accumulation since
the additivity flag is
setto f al se.

security.access none true A-sec Only appenders of
"security" because
the additivity flag in
"security" is set to
fal se.

2.1.1.8 Layout

More often than not, users wish to customize not only the output destination but also the output
format. Thisis accomplished by associating a Layout with an Appender. The Layout is responsible
for formatting the LogEvent according to the user's wishes, whereas an appender takes care of sending
the formatted output to its destination. The PatternLayout, part of the standard log4j distribution, lets
the user specify the output format according to conversion patterns similar to the C language pri nt f
function.

For example, the PatternL ayout with the conversion pattern "%r [%ot] %-5p %c - Yom%n" will output
something akin to:

176 [nain] INFO org.foo.Bar - Located nearest gas station.

Thefirst field is the number of milliseconds elapsed since the start of the program. The second field
isthe thread making the log request. The third field isthe level of the log statement. The fourth field
isthe name of the logger associated with the log request. The text after the '-' is the message of the
statement.

Log4j comes with many different Layouts for various use cases such as JSON, XML, HTML, and
Syslog (including the new RFC 5424 version). Other appenders such as the database connectorsfill in
specified fields instead of a particular textual layout.

Just as importantly, logdj will render the content of the log message according to user specified
criteria. For example, if you frequently need to log Or anges, an object type used in your current
project, then you can create an OrangeM essage that accepts an Orange instance and pass that to Log4j
so that the Orange object can be formatted into an appropriate byte array when required.

2.1.1.9 StrSubstitutor and StrLookup

The StrSubstitutor classand StrLookup interface were borrowed from Apache Commons Lang
and then modified to support evaluating LogEvents. In addition the Interpolator class was borrowed
from Apache Commons Configuration to alow the StrSubstitutor to evaluate variables that from
multiple StrLookups. It too was maodified to support evaluating LogEvents. Together these provide
amechanism to allow the configuration to reference variables coming from System Properties, the
configuration file, the ThreadContext Map, StructuredData in the LogEvent. The variables can either
be resolved when the configuration is processed or as each event is processed, if the component is
capable of handling it. See Lookups for more information.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

https://commons.apache.org/proper/commons-lang/

3 Log4j 1.x Migration 10

Log4j 1.x Migration

3.1 Migrating from Log4j 1.x

3.1.1 Using the Log4j 1.x bridge

Perhaps the simplest way to convert to using Log4j 2 isto replace the log4j 1.x jar file with Log4
2'sl og4j - 1. 2- api . j ar . However, to use this successfully applications must meet the following
requirements:

1. They must not access methods and classes internal to the Log4j 1.x implementation such as
Appender s, Logger Reposi t ory or Cat egor y'scal | Appender s method.

2. They must not programmatically configure Logé4j.

3. They must not configure by calling the classes DOMConf i gur at or or
Pr opertyConfigurator.

3.1.2 Converting to the Log4j 2 API

For the most part, converting from the Log4j 1.x API to Log4j 2 should be fairly simple. Many of the
log statements will require no modification. However, where necessary the following changes must be
made.

1. Themain packagein version 1isor g. apache. | og4j , inversion 2itis
or g. apache. | oggi ng. | og4j

2. Cdlstoorg. apache. | og4j . Logger. get Logger () must be modified to
org. apache. | oggi ng. | og4j . LogManager . get Logger ().

3. Cdllstoor g. apache. | 0og4j . Logger . get Root Logger () or

or g. apache. | og4j . LogManager . get Root Logger () must be replaced with
or g. apache. | oggi ng. | og4j . LogManager . get Root Logger () .

4. Cdlstoorg. apache. | og4j . Logger . get Logger that accept aLogger Fact ory must
removetheor g. apache. | og4j . spi . Logger Fact or y and use one of Log4j 2's other
extension mechanisms.

5. Replace callsto or g. apache. | 0og4j . Logger . get Ef f ecti veLevel () with
or g. apache. | oggi ng. | og4j . Logger. get Level ().

6. Remove callsto or g. apache. | og4j . LogManager . shut down() , they are not needed in
version 2 because the Log4j Core now automatically adds a VM shutdown hook on start up to
perform any Core clean ups.

7. Cdlstoorg. apache. | og4j . Logger. set Level () or similar methods
are not supported in the API. Applications should remove these. Equivalent
functionality is provided in the Log4j 2 implementation classes, see
org. apache. | oggi ng. |1 og4j . core. confi g. Confi gurator. setLevel (), but may leave
the application susceptible to changesin Log4j 2 internals.

8. Where appropriate, applications should convert to use parameterized messages instead of String
concatenation.

9.0rg. apache. | og4j . MDCand or g. apache. | og4j . NDC have been replaced by the Thread
Context.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/MDC.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/NDC.html

3 Log4j 1.x Migration

3.1.3 Configuring Log4j 2

Although the Log4j 2 configuration syntax is different than that of Log4j 1.x, most, if not all, of
the same functionality is available. Below are the example configurations for Log4j 1.x and their
counterpartsin Log4j 2.

3.1.3.1 Sample 1 - Simple configuration using a Console Appender
Log4j 1.x XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j:configuration xmns:log4j="http://jakarta. apache.org/log4j/'>
<appender nane="STDOUT" cl ass="org. apache. | og4j. Consol eAppender" >
<l ayout cl ass="org. apache. | og4j.PatternLayout">
<param nane="Conversi onPattern" value="% %5p [%] %2} (%: %) - %n"/>
</l ayout >
</ appender >
<cat egory nane="org. apache. | og4j.xm ">
<priority value="info" />
</ cat egory>
<Root >
<priority value ="debug" />
<appender-ref ref="STDOUT" />
</ Root >
</ 1 og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Confi guration>
<Appender s>
<Consol e nane="STDOUT" target="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org.apache.l og4j.xm" level ="info"/>
<Root | evel ="debug">
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Confi gurati on>

3.1.3.2 Sample 2 - Simple configuration using a File Appender
Log4j 1.x XML configuration

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

11

3 Log4j 1.x Migration 12

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:log4j="http://jakarta.apache.org/log4j/">
<appender nane="Al" cl ass="org. apache. | o0g4j. Fi | eAppender" >
<par am nane="Fi | e" val ue="Al.log" />
<par am nane="Append" val ue="fal se" />
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% % 5p %{2} - %®n"/>
</l ayout >
</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<cat egory nane="org. apache. | og4j.xm ">
<priority val ue="debug" />
<appender-ref ref="A1" />
</ cat egory>
<r oot >
<priority value ="debug" />
<appender-ref ref="STDOUT" />
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration>
<Appender s>
<Fil e name="Al" fil eName="Al.l|o0g" append="fal se">
<PatternLayout pattern="% %5p %{2} - %P&m"/>
</File>
<Consol e nane="STDOUT" t arget="SYSTEM OQUT" >
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org. apache. |l og4j.xm" |evel ="debug">
<Appender Ref ref="A1"/>
</ Logger >
<Root | evel ="debug">
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Configuration>

3.1.3.3 Sample 3 - SocketAppender

Log4j 1.x XML configuration. This example from Log4j 1.x is misleading. The SocketAppender does
not actually use a Layout. Configuring one will have no effect.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">

<l og4j : configuration xmns:log4j="http://jakarta.apache.org/log4j/">
<appender nanme="Al" cl ass="org. apache. | 0g4j . net. Socket Appender" >

<par am nane="Renpt eHost" val ue="1|ocal host"/ >
<param nanme="Port" val ue="5000"/>

<par am nane="Locati onl nfo" val ue="true"/>

<l ayout cl ass="org. apache. | og4j. PatternLayout">

<par am nane="Conversi onPattern" value="% % 5p %{2} - %n"/>

</l ayout >
</ appender >

<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >

<l ayout cl ass="org. apache. | og4j. PatternLayout">

<par am nane="Conver si onPattern" val ue="% % 5p [%]

</l ayout >

</ appender >

<cat egory nane="org. apache. | og4j.xm ">
<priority val ue="debug"/>
<appender-ref ref="A1"/>

</ cat egory>

<r oot >
<priority val ue="debug"/>
<appender-ref ref="STDOUT"/>

</ Root >

</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration>
<Appender s>
<Socket nane="Al" host="I|ocal Host" port="5000">
<Seri al i zedLayout/ >
</ Socket >
<Consol e nane="STDOUT" t arget="SYSTEM OQUT" >
<PatternLayout pattern="9%l %5p [%] %2} (%: A)
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="org. apache.l og4j.xm" | evel ="debug">
<Appender Ref ref="Al1"/>
</ Logger >
<Root | evel ="debug" >
<Appender Ref ref="STDOUT"/ >
</ Root >
</ Logger s>
</ Configuration>

3.1.3.4 Sample 4 - AsyncAppender
Log4j 1.x XML configuration using the AsyncAppender.

%2} (%:%) - %dm"/>

- Yt/ >

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:|log4j="http://jakarta.apache. org/log4j/" configDebug="true">
<appender nanme="ASYNC' cl ass="org. apache. | og4j . AsyncAppender" >
<appender-ref ref="TEMP"/>
</ appender >
<appender nanme="TEMP" cl ass="org. apache. | o0g4j. Fi | eAppender" >
<param nanme="Fi | e" val ue="tenp"/>
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/ >
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="debug">
<Appender s>
<Fi |l e name="TEMP" fileNane="tenp">
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</File>
<Async name="ASYNC'>
<Appender Ref ref="TEMP"/>
</ Async>
</ Appender s>
<Logger s>
<Root | evel ="debug">
<Appender Ref ref="ASYNC'/ >
</ Root >
</ Logger s>
</ Confi guration>

3.1.3.5 Sample 5 - AsyncAppender with Console and File
Log4j 1.x XML configuration using the AsyncAppender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

14

3 Log4j 1.x Migration 15

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE | 0g4j : configuration PUBLIC "-//APACHE// DTD LOGAJ 1.2//EN' "l og4j.dtd">
<l og4j : configuration xmns:|log4j="http://jakarta.apache. org/log4j/" configDebug="true">
<appender nanme="ASYNC' cl ass="org. apache. | og4j . AsyncAppender" >
<appender-ref ref="TEMP"/>
<appender -ref ref="CONSOLE"/ >
</ appender >
<appender nane="CONSOLE" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %n"/>
</l ayout >
</ appender >
<appender nanme="TEMP" cl ass="org. apache. | 0g4j. Fi | eAppender" >
<param nanme="Fi | e" val ue="tenp"/>
<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conversi onPattern" value="% %5p [%] %2} (%:%) - %m"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/ >
</ Root >
</l og4j : configuration>

Log4j 2 XML configuration. Note that the Async Appender should be configured after the appenders
it references. Thiswill allow it to shutdown properly.

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug">
<Appender s>
<Consol e nane="CONSOLE" target="SYSTEM OQUT" >
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</ Consol e>
<Fil e name="TEMP" fileNane="tenp">
<PatternLayout pattern="% %5p [%] %2} (%: %) - %dn"/>
</File>
<Async name="ASYNC'>
<Appender Ref ref="TEMP"/>
<Appender Ref ref="CONSOLE"/ >
</ Async>
</ Appender s>
<Logger s>
<Root | evel ="debug">
<Appender Ref ref="ASYNC'/ >
</ Root >
</ Logger s>
</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 16

4.1 Log4j 2 AP

4.1.1 Overview

The Log4j 2 API provides the interface that applications should code to and provides the adapter
components required for implementers to create alogging implementation. Although Log4j 2 is
broken up between an API and an implementation, the primary purpose of doing so was not to allow
multiple implementations, although that is certainly possible, but to clearly define what classes and
methods are safe to use in "normal” application code.

4.1.1.1 Hello World!

No introduction would be compl ete without the customary Hello, World example. Hereisours. First,
a Logger with the name "HelloWorld" is obtained from the LogManager. Next, the logger is used

to write the "Hello, World!" message, however the message will be written only if the Logger is
configured to allow informational messages.

i mport org.apache. | oggi ng. | 0g4j.LogManager;
i mport org.apache. | oggi ng. | o0g4j. Logger;

public class HelloWwrld {
private static final Logger |ogger = LogManager.getLogger ("HelloWrld");
public static void main(String[] args) {
l ogger.info("Hello, World!");
}
}

The output from the call to logger.info() will vary significantly depending on the configuration used.
See the Configuration section for more details.

4.1.1.2 Substituting Parameters

Frequently the purpose of logging is to provide information about what is happening in the system,
which requires including information about the objects being manipulated. In Log4j 1.x this could be
accomplished by doing:

if (1ogger.isDebugEnabled()) {
| ogger. debug("Logging in user " + user.getNane() + " with birthday " + user.getBirthdayCal endar());

}

Doing this repeatedly has the effect of making the code feel like it is more about logging than the

actual task at hand. In addition, it resultsin the logging level being checked twice; once on the call to
isDebugEnabled and once on the debug method. A better alternative would be:

| ogger. debug("Logging in user {} with birthday {}", user.getNane(), user.getBirthdayCal endar());

With the code above the logging level will only be checked once and the String construction will only
occur when debug logging is enabled.

4.1.1.3 Formatting Parameters

Substituting parameters leaves formatting up to you if t oSt ri ng() isnot what you want. To
facilitate formatting, you can use the same format strings as Java's Formatter. For example:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html#syntax

4 API 17

public static Logger |ogger = LogManager. get FormatterLogger (" Foo");

| ogger. debug("Logging in user % wth birthday %", user.getNanme(), user.getBirthdayCal endar());

| ogger. debug("Logging in user %$s with birthday %@%tm 9%@2$te, %2$t Y', user.getNanme(), user.getBirthdayCal endar
| ogger . debug(" I nteger. MAX_VALUE = %d", |nteger. MAX VALUE);

| ogger . debug("Long. MAX_VALUE = %d", Long. MAX VALUE);

To use aformatter Logger, you must call one of the LogManager getFormatterL ogger method. The
output for this example shows that Calendar toString() is verbose compared to custom formatting:

2012-12-12 11:56: 19,633 [nain] DEBUG User John Smith with birthday java.util.G egorianCal endar[time=?, areFie
2012-12-12 11:56: 19,643 [nain] DEBUG User John Smith with birthday 05 23, 1995

2012-12-12 11:56: 19, 643 [mai n] DEBUG | nteger. MAX_VALUE = 2, 147, 483, 647

2012-12-12 11:56: 19, 643 [mai n] DEBUG Long. MAX VALUE = 9, 223, 372, 036, 854, 775, 807

4.1.1.4 Mixing Loggers with Formatter Loggers

Formatter loggers give fine-grained control over the output format, but have the drawback that the
correct type must be specified (for example, passing anything other than a decimal integer for a %d
format parameter gives an exception).

If your main usage isto use {} -style parameters, but occasionally you need fine-grained control over
the output format, you can usethe pri nt f method:

public static Logger |ogger = LogManager. getLogger("Foo0");

| ogger . debug(" Openi ng connection to {}...", soneDataSource);
| ogger.printf(Level.INFO "Logging in user %$s wth birthday %2$tm %2$te, ¥2$tY", user.getName(), user.getBir

4.1.1.5 Java 8 lambda support for lazy logging

Inrelease 2.4, the Logger interface adds support for lambda expressions. This allows client code to
lazily log messages without explicitly checking if the requested log level is enabled. For example,
previously you would write:

/1 pre-Java 8 style optimization: explicitly check the log Ievel
/1 to make sure the expensiveQperation() nmethod is only called if necessary
if (logger.isTraceEnabl ed()) {
| ogger.trace("Some |ong-running operation returned {}", expensiveQOperation());

}

With Java 8 you can achieve the same effect with alambda expression. Y ou ho longer need to
explicitly check the log level:

/1 Java-8 style optimzation: no need to explicitly check the log |evel:
/1 the | anbda expression is not evaluated if the TRACE | evel is not enabl ed
| ogger.trace("Sonme | ong-running operation returned {}", () -> expensiveQOperation());

4.1.1.6 Logger Names

Most logging implementations use a hierarchical scheme for matching logger names with logging
configuration. In this scheme the logger name hierarchy is represented by '.' charactersin the
logger name, in afashion very similar to the hierarchy used for Java package names. For example,
org.apache.logging.appender and org.apache.logging.filter both have org.apache.logging as their
parent. In most cases, applications name their loggers by passing the current class's name to

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 18

LogManager.getLogger. Because this usage is so common, Log4j 2 provides that as the default when
the logger name parameter is either omitted or is null. For example, in both examples below the
Logger will have a name of "org.apache.test. MyTest".

package org. apache. test;
public class MyTest {

private static final Logger |ogger = LogManager. get Logger (M/Test. cl ass. get Nane())
package org. apache. test;

public class MyTest {
private static final Logger |ogger = LogManager. getLogger ()

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 19

Configuration

5.1 Configuration

Inserting log requests into the application code requires afair amount of planning and effort.
Observation shows that approximately 4 percent of code is dedicated to logging. Consequently, even
moderately sized applications will have thousands of logging statements embedded within their code.
Given their number, it becomes imperative to manage these log statements without the need to modify
them manually.

Configuration of Log4j 2 can be accomplished in 1 of 4 ways:

1. Through a configuration file written in XML, JSON, or YAML.

2. Programmatically, by creating a ConfigurationFactory and Configuration implementation.

3. Programmatically, by calling the APIs exposed in the Configuration interface to add components
to the default configuration.

4. Programmatically, by calling methods on the internal Logger class.

This page focuses primarily on configuring Logd4j through a configuration file. Information on
programmatically configuring Log4j can befound at Extending Log4j 2.

Note that unlike Log4j 1.x, the public Log4j 2 API does not expose methods to add, modify or remove
appenders and filters or manipulate the configuration in any way.

5.1.1 Automatic Configuration

Logd4j has the ability to automatically configure itself during initialization. When Log4j starts it will
locate al the ConfigurationFactory plugins and arrange then in weighted order from highest to lowest.
Asdelivered, Logdj contains three ConfigurationFactory implementations: one for JSON, one for
YAML, and one for XML.

1. Log4j will inspect the" | og4j . confi gur ati onFi | e" system property and, if set, will attempt
to load the configuration using the Conf i gur at i onFact or y that matches the file extension.

2. If no system property is set the Y AML ConfigurationFactory will look for | og4j 2-t est . yani
orl og4j 2-test. ynl inthe classpath.

3. If no such fileisfound the JSON ConfigurationFactory will look for | og4j 2-t est. j son or
| og4j 2-t est. j sn in the classpath.

4. If no such fileisfound the XML ConfigurationFactory will look for | og4j 2-t est. xm inthe
classpath.

5. If atest file cannot be located the Y AML ConfigurationFactory will look for | og4j 2. yanm or
| og4j 2. yml on the classpath.

6. If aYAML file cannot be located the JSON ConfigurationFactory will look for | og4j 2. j son or
| og4j 2. j sn on the classpath.

7. 1f aJSON file cannot be located the XML ConfigurationFactory will try to locate | og4j 2. xm
on the classpath.

8. If no configuration file could be located the Def aul t Conf i gur at i on will be used. This will
cause logging output to go to the console.

An example application named My App that uses log4j can be used to illustrate how thisis done.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

i mport com f o0o. Bar;

/1 Inport |og4j classes.
i mport org. apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . LogManager ;

public class M/App {

/1 Define a static logger variable so that it references the
/1 Logger instance naned "M/App".
private static final Logger |ogger = LogManager. get Logger (M/App. cl ass);

public static void main(final String... args) {
/1 Set up a sinple configuration that |ogs on the console.

| ogger.trace("Entering application.");
Bar bar = new Bar();
if (!bar.dolt()) {

| ogger.error("Didn't do it.");

}
| ogger.trace("Exiting application.");

20

My App begins by importing log4j related classes. It then defines a static logger variable with the name

My App which happens to be the fully qualified name of the class.
My App uses the Bar class defined in the package com f oo.

package com foo;
i mport org.apache. | oggi ng. | o0g4j. Logger;
i mport org.apache. | oggi ng. | 0g4j.LogManager;

public class Bar {
static final Logger |ogger = LogManager. getLogger (Bar.cl ass. get Name());

public bool ean dolt() {
| ogger.entry();
logger.error("Did it again!");
return | ogger.exit(false);

Log4j will provide a default configuration if it cannot locate a configuration file. The default
configuration, provided in the DefaultConfiguration class, will set up:

» A ConsoleAppender attached to the root logger.

» A PatternLayout set to the pattern "%d{ HH:mm:ss.SSS} [%t] %-5level %logger{ 36} - %msg
%n" attached to the ConsoleA ppender

Note that by default Log4j assigns the root logger to Level . ERROR.
The output of MyApp would be similar to:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 21

17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13:01.540 [main] ERROR MyApp - Didn't do it.

Aswas described previously, Log4j will first attempt to configure itself from configuration files. A
configuration equivalent to the default would look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="WARN'>
<Appender s>
<Consol e nane="Consol e" target="SYSTEM OQUT" >
<Patt ernLayout pattern="%l{HH nm ss.SSS} [%] %5l evel % ogger{36} - %sg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Root |evel="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Confi guration>

Oncethefile aboveis placed into the classpath aslog4j2.xml you will get resultsidentical to those
listed above. Changing the root level to trace will result in results similar to:

17:13: 01. 540 [mai n] TRACE MyApp - Entering application.
17:13: 01. 540 [mai n] TRACE comfoo.Bar - entry
17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13: 01. 540 [main] TRACE comfoo.Bar - exit with (false)
17:13:01.540 [main] ERROR MyApp - Didn't do it.

17:13: 01. 540 [mai n] TRACE MyApp - Exiting application.

Note that status logging is disabled when the default configuration is used.

Perhapsit is desired to eliminate all the TRACE output from everything except com f oo. Bar .
Simply changing the log level would not accomplish the task. Instead, the solution is to add a new
logger definition to the configuration:

<Logger nane="com foo. Bar" |evel =" TRACE"/ >
<Root | evel =" ERROR"'>

<Appender Ref ref="STDOUT" >
</ Root >

With this configuration all log events from com f oo. Bar will be recorded while only error events
will be recorded from all other components.

5.1.2 Additivity

In the previous example al the events from com f oo. Bar were still written to the Console. Thisis
because the logger for com f 0o. Bar did not have any appenders configured while its parent did. In
fact, the following configuration

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version='
<Configuration
<Appender s>

'1.0" encodi ng="UTF- 8" ?>
st at us="WARN' >

<Consol e nanme="Consol e" target="SYSTEM OQUT" >

<PatternLayout pattern="%l{HH nm ss.SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>

</ Appender s>

<Logger s>

<Logger nane="com foo. Bar"

</ Logger >
<Root

<Appender Ref

ref =" Consol e"/ >

| evel ="error">
<Appender Ref
</ Root >
</ Logger s>
</ Configuration>

would result in

17:
17:
17:
17:
17:
17:

Notice that the trace messages from com f oo. Bar appear twice. Thisis because the appender
associated with logger com f oo. Bar isfirst used, which writes the first instance to the Console.
Next, the parent of com f 0o. Bar , which in this case isthe root logger, is referenced. The event is

13:
13:
13:
13:
13:
13:

01.
01.
01.
01.
01.
01.

540
540
540
540
540
540

[mai
[mai
[mai
[mai
[mai
[mai

ref =" Consol e"/ >

TRACE com f oo.
TRACE com f oo.
ERROR com f oo.
TRACE com f oo.
TRACE com f oo.

ERROR MyApp -

| evel ="trace">

Bar - entry
Bar - entry
Bar - Did it again!
Bar - exit (false)
Bar - exit (false)
Didn't do it.

22

then passed to its appender, which is also writes to the Console, resulting in the second instance. This

is known as additivity. While additivity can be quite a convenient feature (asin the first previous
example where no appender reference needed to be configured), in many cases this behavior is

considered undesirable and so it is possible to disable it by setting the additivity attribute on the logger
to false:

©2015,

The Apache Software Foundation -«

ALL RIGHTS RESERVED.

5 Configuration 23

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="WARN'>
<Appender s>
<Consol e nanme="Consol e" target="SYSTEM OQUT" >
<PatternLayout pattern="%l{HH nm ss.SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger nane="com foo.Bar" |evel ="trace" additivity="fal se">
<Appender Ref ref="Consol e"/>
</ Logger >
<Root | evel ="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Configuration>

Once an event reaches alogger with its additivity set to false the event will not be passed to any of its
parent loggers, regardless of their additivity setting.

5.1.3 Automatic Reconfiguration

When configured from a File, Log4j has the ability to automatically detect changesto the
configuration file and reconfigure itself. If thenoni t or | nt er val attribute is specified on the
configuration element and is set to a non-zero value then the file will be checked the next time a

log event is evaluated and/or logged and the monitorinterval has elapsed since the last check. The
example below shows how to configure the attribute so that the configuration file will be checked for
changes only after at least 30 seconds have elapsed. The minimum interval is 5 seconds.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration nonitorlnterval ="30">

</ Confi gurati on>

5.1.4 Chainsaw can automatically process your log files (Advertising appender configurations)

Logd4j provides the ability to 'advertise’ appender configuration details for all file-based appenders
aswell as socket-based appenders. For example, for file-based appenders, the file location and the
pattern layout in the file are included in the advertisement. Chainsaw and other external systems can
discover these advertisements and use that information to intelligently process the log file.

The mechanism by which an advertisement is exposed, as well as the advertisement format, is specific
to each Advertiser implementation. An external system which would like to work with a specific
Advertiser implementation must understand how to locate the advertised configuration as well asthe
format of the advertisement. For example, a'database’ Advertiser may store configuration detailsin
adatabase table. An external system can read that database table in order to discover the file location
and the file format.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 24

Log4j provides one Advertiser implementation, a'multicastdns' Advertiser, which advertises appender
configuration details via |P multicast using the http://jmdns.sourceforge.net library.

Chainsaw automatically discovers logdj's multicastdns-generated advertisements and displays
those discovered advertisementsin Chainsaw's Zeroconf tab (if the jmdnslibrary isin Chainsaw's
classpath). To begin parsing and tailing alog file provided in an advertisement, just double-click
the advertised entry in Chainsaw's Zeroconf tab. Currently, Chainsaw only supports FileAppender
advertisements.

To advertise an appender configuration:

* Addthe JmDnslibrary from http://jmdns.sourceforge.net to the application classpath
 Set the 'advertiser' attribute of the configuration element to 'multicastdns
» Set the 'advertise' attribute on the appender element to 'true’

« If advertising a FileAppender-based configuration, set the 'advertiseURI'" attribute on the
appender element to an appropriate URI

FileA ppender-based configurations require an additional ‘advertiseURI' attribute to be specified on
the appender. The 'advertiseURI' attribute provides Chainsaw with information on how the file can be
accessed. For example, the file may be remotely accessible to Chainsaw via ssh/sftp by specifying a
Commons VFS (http://commons.apache.org/proper/commons-vis/) sftp:// URI, an http:// URI may
be used if the file is accessible through aweb server, or afile:// URI can be specified if accessing the
file from alocally-running instance of Chainsaw.

Here is an example advertisement-enabled appender configuration which can be used by alocally-
running Chainsaw to automatically tail the log file (notice the file:// advertiseURI):

Please note, you must add the ImDnslibrary from http://jmdns.sour cefor ge.net to your
application classpath in order to advertise with the 'multicastdns advertiser.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration advertiser="mnulticastdns">
</ Configuration>

<Appender s>

<File name="Filel" fileNane="output.log" bufferedl O="fal se" advertiseURI ="file://path/to/output.log"

</File>
</ Appender s>

5.1.5 Configuration Syntax

As the previous examples have shown as well as those to follow, Log4j alows you to easily redefine
logging behavior without needing to modify your application. It is possible to disable logging for
certain parts of the application, log only when specific criteria are met such as the action being
performed for a specific user, route output to Flume or alog reporting system, etc. Being able to do
this requires understanding the syntax of the configuration files.

The configuration element in the XML file accepts several attributes:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

advert

http://jmdns.sourceforge.net
http://jmdns.sourceforge.net
http://commons.apache.org/proper/commons-vfs/
http://jmdns.sourceforge.net

5 Configuration 25

advertiser (Optional) The Advertiser plugin name which will
be used to advertise individual FileAppender or
SocketAppender configurations. The only Advertiser
plugin provided is 'multicastdns".

dest Either "err", which will send output to stderr, or a file
path or URL.

monitorinterval The minimum amount of time, in seconds, that must
elapse before the file configuration is checked for
changes.

name The name of the configuration.

packages A comma separated list of package names to

search for plugins. Plugins are only loaded once per
classloader so changing this value may not have any
effect upon reconfiguration.

schema Identifies the location for the classloader to located the
XML Schema to use to validate the configuration. Only
valid when strict is set to true. If not set no schema
validation will take place.

shutdownHook Specifies whether or not Log4j should automatically
shutdown when the JVM shuts down. The shutdown
hook is enabled by default but may be disabled by
setting this attribute to "disable”

status The level of internal Log4j events that should be
logged to the console. Valid values for this attribute

are "trace", "debug"”, "info", "warn", "error" and "fatal".

Log4j will log details about initialization, rollover and
other internal actions to the status logger. Setting
status="trace" is one of the first tools available
to you if you need to troubleshoot log4j.

strict Enables the use of the strict XML format. Not
supported in JISON configurations.

verbose Enables diagnostic information while loading plugins.

Logd4j can be configured using two XML flavors; concise and strict. The concise format makes
configuration very easy as the element names match the components they represent however it cannot
be validated with an XML schema. For example, the ConsoleA ppender is configured by declaring an
XML element named Console under its parent appenders element. However, element and attribute
names are are not case sensitive. In addition, attributes can either be specified as an XML attribute or
asan XML element that has no attributes and has atext value. So

<Pat t er nLayout pattern="%®n"/>

and

<Pat t er nLayout >
<Pat t er n>%n</ Pat t er n>
</ Patt ernLayout >

are equivalent.

The file below represents the structure of an XML configuration, but note that the elementsin italics
below represent the concise element names that would appear in their place.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="nanel">val ue</ property>
<Property nanme="nanme2" val ue="val ue2"/>
</ Properties>
<

filter ... />
<Appender s>
<
appender ... >
<
filter ... />
</
appender >
</ Appender s>
<Logger s>

<Logger nane="nanel">
<

filter ... />
</ Logger >
<Root | evel ="l evel ">
<Appender Ref ref="nanme"/>
</ Root >

</ Logger s>
</ Configuration>

See the many examples on this page for sample appender, filter and logger declarations.

5.Strict XML

In addition to the concise XML format above, Log4j allows configurations to be specified in a
more "normal” XML manner that can be validated using an XML Schema. This is accomplished by
replacing the friendly element names above with their object type as shown below. For example,
instead of the ConsoleAppender being configuerd using an element named Console it isinstead
configured as an appender element with atype attribute containing "Console".

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

26

5 Configuration

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="nanel">val ue</ property>
<Property nanme="nanme2" val ue="val ue2"/>
</ Properties>

<Filter type="type" ... />
<Appender s>
<Appender type="type" nanme="nane">
<Filter type="type" ... />
</ Appender >
</ Appender s>
<Logger s>
<Logger nane="nanel">
<Filter type="type" ... />
</ Logger >
<Root |evel ="l evel ">
<Appender Ref ref="nanme"/>
</ Root >

</ Logger s>
</ Configuration>

Below is a sample configuration using the strict format.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 28

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug" strict="true" nane="XM.Confi gTest"
packages="org. apache. | oggi ng. | og4j .test">
<Properties>
<Property nanme="fil ename">target/test.| og</Property>
</ Properties>
<Filter type="ThresholdFilter" |evel ="trace"/>

<Appender s>
<Appender type="Consol " nanme="STDOUT" >
<Layout type="PatternLayout" pattern="%n MDC¥X%"/ >
<Filters>
<Filter type="MarkerFilter" marker="FLON onMatch="DENY" onM smat ch="NEUTRAL"/ >
<Filter type="MarkerFilter" marker="EXCEPTI ON' onMat ch="DENY" onM smat ch="ACCEPT"/ >
</Filters>

</ Appender >

<Appender type="Consol " nanme="FLOW >
<Layout type="PatternLayout" pattern="%{1}.9M %n Y%ex%"/><!-- class and |ine nunber -->
<Filters>

<Filter type="MarkerFilter" marker="FLON onMatch="ACCEPT" onM smat ch="NEUTRAL"/ >
<Filter type="MarkerFilter" marker="EXCEPTI ON' onMat ch="ACCEPT" onM smat ch="DENY"/>
</Filters>
</ Appender >
<Appender type="File" name="File" fileNane="${fil enane}">
<Layout type="PatternLayout">
<Pattern>%d % %{1.} [%] %Pm</Pattern>
</ Layout >
</ Appender >
<Appender type="List" name="List">
</ Appender >
</ Appender s>

<Logger s>
<Logger nane="org. apache. | oggi ng. | og4j.test1" |evel ="debug" additivity="fal se">
<Filter type="ThreadContextMapFilter">
<KeyVal uePair key="test" val ue="123"/>
</Filter>
<Appender Ref ref="STDOUT"/ >
</ Logger >

<Logger nane="org. apache. | oggi ng. | o0g4j.test2" |evel ="debug" additivity="fal se">
<Appender Ref ref="File"/>
</ Logger >

<Root |evel ="trace">
<Appender Ref ref="List"/>
</ Root >

</ Logger s>

</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 29

5.1.5.2 Configuration with JSON

In addition to XML, Log4j can be configured using JSON. The JSON format is very similar to the
concise XML format. Each key represents the name of a plugin and the key/value pairs associated
with it are its attributes. Where akey contains more than asimple value it itself will be a subordinate
plugin. In the example below, ThresholdFilter, Console, and PatternLayout are all plugins while the
Console plugin will be assigned avalue of STDOUT for its name attribute and the Threshol dFilter
will be assigned alevel of debug.

{ "configuration": { "status": "error", "name": "RoutingTest",
"packages": "org.apache.logging.|og4j.test",
"properties": {
"property": { "name": "fil enane",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
H
"ThresholdFilter": { "level": "debug" },

"appenders": {
"Consol e": { "name": "STDOUT",
"PatternLayout": { "pattern": "%®m" }

H
"List": { "name": "List",
"ThresholdFilter": { "level": "debug" }
H
"Routing": { "nane": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"RollingFile": {
"nane": "Rolling-${sd:type}", "fileNane": "${fil enane}",
"filePattern": "target/rollingl/testl-${sd:type}.% .l o0g.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] Y%it@"},
" Si zeBasedTri ggeringPolicy": { "size": "500" }
}
H
{ "AppenderRef": "STDOUT", "key": "Audit"},
{ "AppenderRef": "List", "key": "Service"}
]
}
}
H
"l oggers": {
"l ogger": { "nane": "EventLogger", "level": "info", "additivity": "false",
"AppenderRef": { "ref": "Routing" }},
"root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}
}

Note that in the RoutingAppender the Route element has been declared as an array. Thisisvalid
because each array element will be a Route component. Thiswon't work for elements such as
appenders and filters, where each element has a different name in the concise format. Appenders and
filters can be defined as array elements if each appender or filter declares an attribute named "type"

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 30

that contains the type of the appender. The following exampleillustrates this as well as how to declare
multiple loggers as an array.

{ "configuration": { "status": "debug", "name": "RoutingTest",
"packages": "org.apache.| ogging.l og4j.test",
"properties": {

“"property": { "name": "fil ename",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
H
"ThresholdFilter": { "level": "debug" },
"appenders": {
"appender": [
{ "type": "Console", "nanme": "STDOUT", "PatternLayout": { "pattern": "%mm" }},
{ "type": "List", "name": "List", "ThresholdFilter": { "level": "debug" }},
{ "type": "Routing", "name": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"RollingFile": {
"nane": "Rolling-${sd:type}", "fileNane": "${filenane}",
"filePattern": "target/rollingl/testl-${sd:type}.%.log.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] %?m"},
" Si zeBasedTri ggeringPolicy": { "size": "500" }
}
H
{ "AppenderRef": "STDOUT", "key": "Audit"},
{ "AppenderRef": "List", "key": "Service"}
]
}
}
]
H
"l oggers": {
"l ogger": [
{ "name": "EventLogger", "level": "info", "additivity": "false",
"AppenderRef": { "ref": "Routing" }},
{ "name": "comfoo.bar", "level": "error", "additivity": "false",
"AppenderRef": { "ref": "Console" }}
1.
"root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}
}
}

The JSON support uses the Jackson Data Processor to parse the JSON files. These dependencies must
be added to a project that wants to use JSON for configuration:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 31

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-core</artifactld>
<versi on>${j ackson2Ver si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-databi nd</artifactld>
<versi on>${j ackson2Ver si on} </ ver si on>

</ dependency>

<dependency>
<groupl d>com f ast er xml . j ackson. cor e</ gr oupl d>
<artifactld>j ackson-annotations</artifactld>
<ver si on>${j ackson2Ver si on} </ ver si on>

</ dependency>

5.1.5.3 Configuring loggers

An understanding of how loggerswork in Logdj is critical before trying to configure them. Please
reference the Logdj architecture if more information is required. Trying to configure Log4j without
understanding those concepts will lead to frustration.

A LoggerConfig is configured using the| ogger element. Thel ogger eement must have a name
attribute specified, will usually have aleve attribute specified and may also have an additivity
attribute specified. The level may be configured with one of TRACE, DEBUG, INFO, WARN,
ERROR, ALL or OFF. If no level is specified it will default to ERROR. The additivity attribute may
be assigned avalue of true or false. If the attribute is omitted the default value of false will be used.

A LoggerConfig (including the root LoggerConfig) can be configured with properties that will be
added to the properties copied from the ThreadContextMap. These properties can be referenced from
Appenders, Filters, Layouts, etc just asif they were part of the ThreadContext Map. The properties
can contain variables that will be resolved either when the configuration is parsed or dynamically
when each event islogged. See Property Substitution for more information on using variables.

The LoggerConfig may also be configured with one or more AppenderRef elements. Each appender
referenced will become associated with the specified LoggerConfig. If multiple appenders are
configured on the LoggerConfig each of them be called when processing logging events.

Every configuration must have aroot logger. If oneis not configured the default root LoggerConfig,
which has alevel of ERROR and has a Console appender attached, will be used. The main differences
between the root logger and other loggers are

1. Theroot logger does not have a name attribute.

2. The root logger does not support the additivity attribute since it has no parent.

5.1.5.4 Configuring Appenders

An appender is configured either using the specific appender plugin's name or with an appender
element and the type attibute containing the appender plugin's name. In addition each appender must
have a name attribute specified with a value that is unique within the set of appenders. The name will
be used by loggers to reference the appender as described in the previous section.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 32

Most appenders also support alayout to be configured (which again may be specified either using the
specific Layout plugin's name as the element or with "layout” as the element name along with atype
attribute that contains the layout plugin's name. The various appenders will contain other attributes or
elements that are required for them to function properly.

5.1.5.5 Configuring Filters
Logd4j allows afilter to be specified in any of 4 places:

1. At the same level asthe appenders, loggers and properties elements. These filters can accept or
reject events before they have been passed to a LoggerConfig.

2. In alogger element. These filters can accept or reject events for specific loggers.

3. In an appender element. These filters can prevent or cause events to be processed by the
appender.

4. In an appender reference element. These filters are used to determine if a Logger should route the
event to an appender.

Although only asinglefi | t er element can be configured, that element may bethefil t er s element
which represents the CompositeFilter. Thefi | t er s element allows any number of fi | t er elements
to be configured within it. The following example shows how multiple filters can be configured on the
ConsoleAppender.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 33

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration status="debug" name="XM.ConfigTest" packages="org. apache. | ogging.|log4j.test">
<Properties>
<Property nanme="fil ename">target/test.| og</Property>
</ Properties>
<Threshol dFilter |evel ="trace"/>

<Appender s>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="%n MDCY¥X%"/ >
</ Consol e>
<Consol e nanme="FLOW >

<l-- this pattern outputs class nane and |ine nunber -->
<PatternLayout pattern="%1}.%M %n Y%ex%"/ >
<filters>

<Mar ker Fi | ter marker="FLON onMat ch="ACCEPT" onM smat ch="NEUTRAL"/ >
<Mar ker Fi | t er mar ker =" EXCEPTI ON' onMat ch="ACCEPT" onM smat ch="DENY"/ >
</[filters>
</ Consol e>
<File nane="File" fileName="${fil enane}">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
</File>
<Li st name="List">
</ List>
</ Appender s>

<Logger s>
<Logger nane="org. apache. | oggi ng. | og4j.test1" |evel ="debug" additivity="fal se">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
<Appender Ref ref="STDOUT"/ >
</ Logger >

<Logger nane="org. apache. | oggi ng. | o0g4j.test2" |evel ="debug" additivity="fal se">
<Property nanme="user">${sys: user. nane} </ Property>
<Appender Ref ref="File">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
</ Appender Ref >
<Appender Ref ref="STDOUT" |evel ="error"/>
</ Logger >

<Root |evel ="trace">
<Appender Ref ref="List"/>
</ Root >

</ Logger s>

</ Configuration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 34

5.1.5.6 Configuration with Properties

As of version 2.4, Log4j now supports configuration via properties files. Note that the property syntax
isNOT the same as the syntax used in Log4j 1. Like the XML and JSON configurations, properties
configurations define the configuration in terms of plugins and attributes to the plugins.

The properties configuration requires that you list the identifiers of the appenders, filters and loggers,
in a comma separated list in properties with those names. Each of those components will then be
expected to be defined in sets of properties that begin with component.identifier. The identifier

does not have to match the name of the component being defined but must uniquely identify all the
attributes and subcomponents that are part of the component. Each individual component MUST have
a"type" attribute specified that identifies the component's Plugin type.

Unlike the base components, when creating subcomponents you cannot specify an element containing
alist of identifiers. Instead, you must define the wrapper element with its type asis shown in the
policies definition in the rolling file appender below. Y ou then define each of the subcomponents
below that wrapper element, as the TimeBasedTriggeringPolicy and SizeBasedTriggeringPolicy are
defined below.

Properties configuration files support the advertiser, monitorinterval, name, packages,
shutdownHook, status, and verbose attrbutes. See Configuration Syntax for the definitions of these
attributes.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

status = error
nane = PropertiesConfig

property.filename = target/rolling/rollingtest.l|og

filters = threshold

filter.threshold.type = Threshol dFil ter
filter.threshold.level = debug

appenders = console, rolling, |ist

appender. consol e. type = Consol e
appender. consol e. nane = STDOUT
appender. consol e. | ayout. type = PatternLayout
appender. consol e. | ayout . pattern = %m

appender.rol ling.type Rol I'i ngFi | e

appender.rolling.name = RollingFile

appender.rolling.fileNane = ${fil enane}
appender.rolling.filePattern = target/rolling2/test1-%l{Mdd-yy-HH mmss}-% .| o0g.gz
appender.rolling.layout.type = PatternLayout
appender.rolling.layout.pattern = % % %{1.} [%] % &
appender.rolling.policies.type = Policies
appender.rolling.policies.tinme.type = Ti meBasedTri ggeri ngPol i cy
appender.rolling.policies.time.interval = 2
appender.rolling.policies.time.modulate = true
appender.rolling. policies.size.type = Si zeBasedTri ggeri ngPolicy
appender.rolling.policies.size.size=100MB

appender.list.type = List

appender.|ist.name = List

appender.list.filters = threshold
appender.list.filter.threshold.type = ThresholdFilter
appender.list.filter.threshold.level = error

| oggers = rolling

| ogger.rolling.name = org. apache. | oggi ng. | 0og4j . core. appender.rolling
| ogger.rolling.level = debug

logger.rolling.additivity = fal se

| ogger.rolling. appenderRefs = rolling

| ogger.rolling. appenderRef.rolling.ref = RollingFile

root Logger.level = info

r oot Logger . appender Ref s = st dout
r oot Logger . appender Ref . st dout . ref = STDOUT

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 36

5.1.6 Property Substitution

Log4j 2 supports the ability to specify tokensin the configuration as references to properties defined
elsewhere. Some of these properties will be resolved when the configuration file is interpreted while
others may be passed to components where they will be evaluated at runtime. To accomplish this,
Log4j usesvariations of Apache Commons Lang's StrSubstitutor and StrLookup classes. In a
manner similar to Ant or Maven, this allows variables declared as ${ nane} to be resolved using
properties declared in the configuration itself. For example, the following example shows the filename
for the rolling file appender being declared as a property.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Configuration status="debug" nanme="RoutingTest" packages="org. apache. | ogging.|log4j.test">
<Properties>
<Property nanme="fil ename">target/rollingl/rollingtest-$${sd:type}.|og</Property>
</ Properties>
<Threshol dFil ter |evel ="debug"/>

<Appender s>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Li st name="List">
<Threshol dFil ter |evel ="debug"/>
</ List>
<Rout i ng nane="Routing">
<Rout es pattern="%$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l og.gz">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] % Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol l'i ngFi | e>
</ Rout e>
<Rout e ref="STDOUT" key="Audit"/>
<Route ref="List" key="Service"/>
</ Rout es>
</ Rout i ng>
</ Appender s>

<Logger s>
<Logger nane="Event Logger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routing"/>
</ Logger >

<Root |evel="error">
<Appender Ref ref="STDOUT"/ >
</ Root >

</ Logger s>

</ Confi guration>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

https://commons.apache.org/proper/commons-lang/

5 Configuration 37

While thisis useful, there are many more places properties can originate from. To accommodate this,
Log4j also supports the syntax ${ pr ef i x: name} where the prefix identifiestells Log4j that variable
name should be evaluated in a specific context. The contexts that are built in to Logj4 are:

bundle Resource bundle. The format is
${ bundl e: Bundl eNane: Bundl eKey} .
The bundle name follows package
naming conventions, for example:
${ bundl e: com domai n. Messages: MyKey}.

ctx Thread Context Map (MDC)

date Inserts the current date and/or time using the specified
format

env System environment variables

jvmrunargs A JVM input argument accessed through

JMX, but not a main argument; see
RuntimeMXBean.getinputArguments(). Not available
on Android.

log4j Log4j configuration properties. The expressions
${1 0g4j : confi gLocati on} and
${1 0g4j : confi gPar ent Locat i on}
respectively provide the absolute path to the log4j
configuration file and its parent folder.

main A value set with
MapLookup.setMainArguments(String[])

map A value from a MapMessage

sd A value from a StructuredDataMessage. The key "id"
will return the name of the StructuredDatald without
the enterprise number. The key "type" will return the
message type. Other keys will retrieve individual
elements from the Map.

sys System properties

A default property map can be declared in the configuration file. If the value cannot be located in
the specified lookup the value in the default property map will be used. The default map is pre-
populated with avalue for "hostName" that is the current system's host name or 1P address and the
"contextName" with is the value of the current logging context.

Aninteresting feature of StrLookup processing isthat when avariable reference is declared with
multiple leading '$' characters each time the variable is resolved the leading '$' is simply removed. In
the previous example the "Routes’ element is capable of resolving the variable at runtime. To allow
thisthe prefix value is specified as a variable with two leading '$' characters. When the configuration
fileisfirst processed the first variable is ssimply removed. Thus, when the Routes element is evaluated
at runtime it is the variable declaration "${ sd:type} " which causes the event to be inspected for a
StructuredDataM essage and if oneis present the value of its type attribute to be used as the routing
key. Not all elements support resolving variables at runtime. Components that do will specifically call
that out in their documentation.

If no value isfound for the key in the Lookup associated with the prefix then the value associated
with the key in the properties declaration in the configuration file will be used. If no valueis found the

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--
http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

5 Configuration 38

variable declaration will be returned as the value. Default values may be declared in the configuration
by doing:

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration>
<Properties>
<Property nanme="type">Audit </ property>
</ Properties>

</ Configuration>

As a footnote, it is worth pointing out that the variables in the RollingFile appender declaration will
also not be evaluated when the configuration is processed. Thisis simply because the resolution

of the whole RollingFile element is deferred until a match occurs. See RoutingAppender for more
information.

5.1.7 XInclude

XML configuration files can include other fileswith XInclude. Here is an example log4j2.xml file
that includes two other files:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration xmns: xi ="http://ww.w3. org/ 2001/ Xl ncl ude"
stat us="warn" name=" Xl ncl udeDenp" >
<properties>
<property nanme="fil enane" >xi ncl ude- deno. | og</ property>
</ properties>
<Threshol dFilter |evel ="debug"/>
<xi :include href="10g4j-xincl ude-appenders. xm" />
<xi :include href="10g4j-xinclude-1oggers.xm" />
</ confi guration>

log4j-xinclude-appenders.xml:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<appender s>
<Consol e name="STDOUT" >
<PatternLayout pattern="%dn" />
</ Consol e>
<File nane="File" fileName="${filenane}" bufferedl O="true" imediateFl ush="true">
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
</File>
</ appender s>

logd4j-xinclude-loggers.xml:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.xml.com/lpt/a/1009

5 Configuration 39

<?xm version="1.0" encodi ng="UTF-8"?>
<l ogger s>
<l ogger nane="org. apache. | oggi ng. | o0g4j.test1" |evel ="debug" additivity="fal se">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123" />
</ Thr eadCont ext MapFi | t er >
<Appender Ref ref="STDOUT" />
</ | ogger >

<l ogger nane="org. apache. | oggi ng. | og4j.test2" |evel ="debug" additivity="fal se">
<Appender Ref ref="File" />
</ | ogger >

<root |evel="error">
<Appender Ref ref="STDOUT" />
</ r oot >
</ | ogger s>

5.1.8 Status Messages

Troubleshooting tip for the impatient:

« Before a configuration is found, status logger level can be controlled with system property
or g. apache. | oggi ng. | og4j . si npl el og. St at usLogger . | evel .

« After a configuration is found, status logger level can be controlled in the configuration file with the "status"
attribute, for example: <Conf i gurati on status="trace">.

Just asit is desirable to be able to diagnose problems in applications, it is frequently necessary to

be able to diagnose problems in the logging configuration or in the configured components. Since
logging has not been configured, "normal" logging cannot be used during initialization. In addition,
normal logging within appenders could create infinite recursion which Log4j will detect and cause the
recursive events to be ignored. To accomodate this need, the Log4j 2 API includesa StatusL ogger.
Components declare an instance of the StatusL ogger similar to:

protected final static Logger |ogger = StatusLogger.getlLogger();

Since StatusLogger implements the Log4j 2 API's Logger interface, al the normal Logger methods
may be used.

When configuring Log4j it is sometimes necessary to view the generated status events. This can

be accomplished by adding the status attribute to the configuration element or a default value can

be provided by setting the "L ogdjDefaultStatusL evel” system property. Valid values of the status
attribute are "trace”, "debug", "info", "warn", "error" and "fatal”. The following configuration has the
status attribute set to debug.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>;
<Configuration status="debug" nanme="RoutingTest">
<Properties>
<Property nanme="fil ename">target/rollingl/rollingtest-$${sd:type}.|og</Property>
</ Properties>
<Threshol dFi l ter |evel ="debug"/>

<Appender s>
<Consol e name="STDOUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Li st nane="List">
<Threshol dFi Il ter |evel ="debug"/>
</ List>
<Routi ng nanme="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l o0g.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFil e>
</ Rout e>
<Rout e ref="STDOUT" key="Audit"/>
<Route ref="List" key="Service"/>
</ Rout es>
</ Rout i ng>
</ Appender s>

<Logger s>
<Logger nane="EventLogger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routing"/>
</ Logger >

<Root |evel="error">
<Appender Ref ref="STDOUT"/ >
</ Root >

</ Logger s>

</ Configuration>

During startup this configuration produces:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

40

5 Configuration 41

2011-11-23 17:08: 00, 769 DEBUG Generated plugins in 0.003374000 seconds

2011-11-23 17:08: 00, 789 DEBUG Cal I i ng createProperty on class org. apache. | oggi ng. | o0g4j . core.
config.Property for element property with paranms(name="fil ename",
val ue="target/rollingl/rollingtest-${sd:type}.log")

2011-11-23 17:08: 00, 792 DEBUG Cal | i ng confi gureSubstitutor on class org.apache. | oggi ng. | o0g4j.
core.config.plugins.PropertiesPlugin for el ement properties with
parans(properties={fil ename=target/rollingl/rollingtest-${sd:type}.log})

2011-11-23 17:08: 00, 794 DEBUG Generated plugins in 0.001362000 seconds

2011-11-23 17:08: 00, 797 DEBUG Cal ling createFilter on class org.apache. | oggi ng. | o0g4j. core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMat ch="nul | ", onM smatch="nul | ")

2011-11-23 17:08: 00,800 DEBUG Cal | i ng createlLayout on class org. apache. | oggi ng. | og4j. core.
| ayout. PatternLayout for el ement PatternLayout with parans(pattern="%dn",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00, 802 DEBUG Generated plugins in 0.001349000 seconds

2011-11-23 17:08: 00, 804 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | 0og4j . core.
appender. Consol eAppender for el ement Consol e with parans(PatternLayout (%s), null,
target="nul | ", name="STDOUT", ignoreExceptions="null")

2011-11-23 17:08: 00,804 DEBUG Cal ling createFilter on class org.apache. | oggi ng.| og4j. core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMat ch="nul | ", onM smatch="nul | ")

2011-11-23 17:08: 00,806 DEBUG Cal | i ng creat eAppender on class org. apache. | oggi ng. | og4j.test.
appender . Li st Appender for elenment List with paranms(name="List", entryPerNewLi ne="null",

raw="nul |, null, Threshol dFilter (DEBUG))
2011-11-23 17:08: 00, 813 DEBUG Cal I i ng createRoute on class org. apache. | oggi ng. | 0og4j . cor e. appender.
routing. Route for element Route with parans(AppenderRef="null", key="null", Node=Route)

2011-11-23 17:08: 00, 823 DEBUG Cal | i ng createRoute on class org. apache. | oggi ng. | og4j . cor e. appender.
routing. Route for element Route with parans(Appender Ref =" STDOUT", key="Audit", Node=Route)
2011-11-23 17:08: 00, 824 DEBUG Cal | i ng createRoute on class org. apache. | oggi ng. | 0og4j . cor e. appender.
routing. Route for element Route with parans(AppenderRef ="List", key="Service", Node=Route)
2011-11-23 17:08: 00, 825 DEBUG Cal | i ng creat eRoutes on class org. apache. | oggi ng. | og4j . cor e. appender.
routing. Routes for elenment Routes with parans(pattern="${sd:type}",
rout es={ Rout e(type=dynani ¢ default), Route(type=static Reference=STDOUT key='Audit'),
Rout e(type=static Reference=List key=' Service')})
2011-11-23 17:08: 00, 827 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | og4j . cor e. appender.
routing. Routi ngAppender for el enment Routing wth parans(name="Routing",
i gnor eExceptions="nul | ", Routes({Route(type=dynanic default), Route(type=static
Ref er ence=STDOUT key='Audit'),
Rout e(type=static Reference=List key='Service')}), Configuration(RoutingTest), null, null)
2011-11-23 17:08: 00, 827 DEBUG Cal | i ng creat eAppenders on cl ass org. apache. | oggi ng. | og4j . core. confi g.
pl ugi ns. Appender sPl ugi n for el ement appenders with parans(appenders={ STDOUT, List, Routing})
2011-11-23 17:08: 00, 828 DEBUG Cal | i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
confi g. pl ugi ns. Appender Ref Pl ugi n for el ement Appender Ref w th parans(ref="Routing")
2011-11-23 17:08: 00, 829 DEBUG Cal | i ng createlLogger on class org. apache. | oggi ng. | o0g4j.core. config.
Logger Config for elenent |ogger with parans(additivity="false", |evel="info", nane="EventLogger",
Appender Ref ={ Rout i ng}, null)
2011-11-23 17:08: 00, 830 DEBUG Cal | i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
confi g. pl ugi ns. Appender Ref Pl ugi n for el ement Appender Ref w th parans(ref="STDOUT")

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 42

2011-11-23 17:08: 00,831 DEBUG Cal I i ng createlLogger on class org.apache. | oggi ng. | o0g4j.core.config.
Logger Conf i g$Root Logger for el ement root with paranms(additivity="null", |evel="error",
Appender Ref ={ STDOUT}, nul|)

2011-11-23 17:08: 00, 833 DEBUG Cal | i ng createlLoggers on class org. apache. | oggi ng. | og4j . core.
config. plugins. LoggersPlugin for el enment |oggers wth parans(| oggers={EventlLogger, root})

2011-11-23 17:08: 00, 834 DEBUG Reconfi gurati on conpl eted

2011-11-23 17:08: 00, 846 DEBUG Cal | i ng createlLayout on class org. apache. | oggi ng. | o0g4j. core.
| ayout. PatternLayout for elenment PatternLayout with parans(pattern="% % %{1.} [%] %?n",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00,849 DEBUG Cal I i ng createPolicy on class org. apache. | oggi ng. | o0g4j. core.
appender.rolling. Si zeBasedTri ggeringPolicy for el ement SizeBasedTriggeringPolicy with
par ans(si ze="500")

2011-11-23 17:08: 00, 851 DEBUG Cal | i ng creat eAppender on cl ass org. apache. | oggi ng. | 0og4j . core.
appender. Rol | i ngFi | eAppender for element RollingFile with
parans(fil eName="target/rollingl/rollingtest-Unknown. | og",
filePattern="target/rollingl/test1l-Unknown.% .| og.gz", append="null", nanme="Rolling-Unknown",
bufferedl O="nul I ", imedi ateFl ush="nul | ",

Si zeBasedTri ggeri ngPol i cy(Si zeBasedTri ggeri ngPol i cy(si ze=500)), null,
Patt ernLayout (%d % %{1.} [%] % ®®), null, ignoreExceptions="null")

2011-11-23 17:08: 00, 858 DEBUG Generated plugins in 0.002014000 seconds

2011-11-23 17:08: 00, 889 DEBUG Reconfiguration started for context sun.m sc.
Launcher $Appd assLoader @7b90b39

2011-11-23 17:08: 00, 890 DEBUG Generated plugins in 0.001355000 seconds

2011-11-23 17:08: 00, 959 DEBUG Generated plugins in 0.001239000 seconds

2011-11-23 17:08: 00, 961 DEBUG Generated plugins in 0.001197000 seconds

2011-11-23 17:08: 00,965 WARN No Loggers were configured, using default

2011-11-23 17:08: 00,976 DEBUG Reconfi gurati on conpl eted

If the status attribute is set to error than only error messages will be written to the console. This makes
troubleshooting configuration errors possible. As an example, if the configuration above is changed to
have the status set to error and the logger declaration is:

<l ogger nane="Event Logger" |evel ="info" additivity="fal se">
<Appender Ref ref="Routng"/>
</ | ogger >

the following error message will be produced.

2011-11-24 23:21: 25,517 ERROR Unabl e to | ocate appender Routng for |ogger EventlLogger

Applications may wish to direct the status output to some other destination. This can be accomplished
by setting the dest attribute to either "err” to send the output to stderr or to afile location or URL. This
can also be done by insuring the configured status is set to OFF and then configuring the application
programmeatically such as:

St at usConsol eLi stener |istener = new StatusConsol eLi stener(Level . ERROR);
St at usLogger . get Logger (). regi sterLi stener(listener);

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 43

5.1.9 Testing in Maven

Maven can run unit and functional tests during the build cycle. By default, any filesplaced insr ¢/

t est/ resour ces are automatically copied to target/test-classes and are included in the classpath
during execution of any tests. As such, placing alog4j2-test.xml into this directory will cause it to be
used instead of alog4j2.xml or log4j2.json that might be present. Thus a different log configuration
can be used during testing than what is used in production.

A second approach, which is extensively used by Log4j 2, is to set the log4j.configurationFile
property in the method annotated with @BeforeClass in the junit test class. Thiswill allow an
arbitrarily named file to be used during the test.

A third approach, also used extensively by Logdj 2, isto usethel ni ti al Logger Cont ext JUnit
test rule which provides additional convenience methods for testing. This requires adding thel og4j -
coretest-jar dependency to your test scope dependencies. For example:

public class AwesoneTest {

@rul e
public Initial LoggerContext init = new Initial LoggerContext("MTestConfig.xm");

@est
public void test SoneAwesoneFeature() {
final LoggerContext ctx = init.getContext();
final Logger |ogger = init.getLogger("org.apache. |l ogging.|og4j.ny.awesone.test.|ogger");
final Configuration cfg = init.getConfiguration();
final ListAppender app = init.getListAppender("List");
| ogger. warn(" Test nessage");
final List<LogEvent> events = app.get Events();
/1l etc.

5.1.10 System Properties

Below follows a number of system properties that can be used to control Log4j 2 behaviour. Any
spaces present in the property name are for visual flow and should be removed.

log4j.configurationFile Path to an XML or JSON Log4j 2
configuration file.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 44

Log4jContextSelector ClassLoaderContextSelector Creates the Logger Cont ext s.
An application can have one
or more active LoggerContexts
depending on the circumstances.
See Log Separation for more
details. Available context selector
implementation classes:
or g. apache. | oggi ng. | og4j . core. async
- makes all loggers asynchronous.
or g. apache. | oggi ng. | og4j . core. sel ectc
- creates a single shared
LoggerContext.
or g. apache. | oggi ng. | og4j . core. sel ectc
- separate LoggerContexts for each
web application.
or g. apache. | oggi ng. | og4j . core. sel ectc
- use JNDI to locate each web
application's LoggerContext.
or g. apache. | oggi ng. | og4j . core. osgi .E
- separate LoggerContexts for each
OSGi bundle.

Log4jLogEventFactory org.apache.logging.log4j.core.impl .D Factory class used by
LoggerConfig to create LogEvent
instances. (Ignored when the
AsyncLogger Cont ext Sel ect or
is used.)

log4j2.loggerContextFactory org.apache.logging.log4j.simple .Sim| Factory class used by
LogManager to bootstrap
the logging implementation.
The core jar provides
org. apache. | oggi ng. 1 og4j . core.inpl. Lc

log4j.configurationFactory Fully specified class
name of a class extending
org. apache. | oggi ng. | og4j . core. confi g.
If specified, an instance of this
class is added to the list of
configuration factories.

log4j.shutdownHookEnabled true Overrides the global flag for
whether or not a shutdown
hook should be used to stop a
Logger Cont ext . By default,
this is enabled and can be disabled
on a per-configuration basis.
When running with the | 0g4j -
web module, this is automatically
disabled.

log4j.shutdownCallbackRegistry org.apache.logging.log4j.core.util .De Fully specified class name
of a class implementing
ShutdownCallbackRegistry.
If specified, an instance of
this class is used instead of
Def aul t Shut downCal | backRegi stry
The specified class must have a
default constructor.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 45

log4j.Clock SystemClock Implementation of the
org. apache. | oggi ng. | og4j.core. util.d
interface that is used for
timestamping the log events.
By default,
SystemcurrentTineMIlis
is called on every log event.
You can also specify a fully
qualified class name of a custom
class that implements the Cl ock
interface.

org.apache.logging.log4j.level ERROR Log level of the default
configuration. The default
configuration is used if the
ConfigurationFactory could not
successfully create a configuration
(e.g. no log4j2.xml file was found).

disableThreadContext false Ift r ue, the ThreadContext stack
and map are disabled. (May be
ignored if a custom ThreadContext
map is specified.)

disableThreadContextStack false Ift r ue, the ThreadContext stack
is disabled.
disableThreadContextMap false Ift r ue, the ThreadContext map

is disabled. (May be ignored if a
custom ThreadContext map is
specified.)

log4j2.threadContextMap Fully specified class nhame of a
custom Thr eadCont ext Map
implementation class.

isThreadContextMaplnheritable false Iftrue usea
I nheri tabl eThr eadLocal
to implement the ThreadContext
map. Otherwise, use a plain
Thr eadLocal . (May be ignored
if a custom ThreadContext map is
specified.)

log4j2.disable.jmx false Ift r ue, Log4j configuration
objects like LoggerContexts,
Appenders, Loggers, etc. will not
be instrumented with MBeans and
cannot be remotely monitored and
managed.

log4j2.jmx.notify.async false for web apps, true otherwise Ift r ue, log4j's JMX notifications
are sent from a separate
background thread, otherwise they
are sent from the caller thread. If
the j avax. servl et . Servl et
class is on the classpath, the
default behaviour is to use
the caller thread to send JMX
notifications.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 46

log4j.skipJansi false Ift r ue, the ConsoleAppender
will not try to use the Jansi output
stream on Windows.

log4j.ignoreTCL false Ift r ue, classes are only loaded
with the default class loader.
Otherwise, an attempt is made
to load classes with the current
thread's context class loader before
falling back to the default class
loader.

org.apache.logging.log4j.uuidSequen 0 System property that may be used
to seed the UUID generation with
an integer value.

org.apache.logging.log4j.simplelog .s false If t r ue, the full ThreadContext
map is included in each
SimpleLogger log message.

org.apache.logging.log4j.simplelog .s false Ift r ue, the logger name is
included in each SimpleLogger log
message.

org.apache.logging.log4j.simplelog .s true Ift r ue, only the last component

of a logger name is included in
SimpleLogger log messages.

(E.g., if the logger name is
"mycompany.myproject.mycomponent",
only "mycomponent" is logged.

org.apache.logging.log4j.simplelog .s false Ift r ue, SimpleLogger log
messages contain timestamp
information.

org.apache.logging.log4j.simplelog .d "yyyy/MM/dd HH:mm:ss:SSS zzz" Date-time format to use. Ignored if
or g. apache. | oggi ng. | og4j . si npl el og. st
isfal se.

org.apache.logging.logj.simplelog .lo¢ system.err "system.err" (case-insensitive) logs
to System.err, "system.out" (case-
insensitive) logs to System.out,
any other value is interpreted as
a file name to save SimpleLogger
messages to.

org.apache.logging.log4j.simplelog .l ERROR Default level for new SimpleLogger
instances.
org.apache.logging.log4j.simplelog.<| SimpleLogger default log level Log level for a the SimpleLogger

instance with the specified name.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 47

org.apache.logging.log4j.simplelog .S ERROR This property is used to control the
initial StatusLogger level, and can
be overridden in code by calling
St at usLogger . get Logger () . set Level (sor
Note that the StatusLogger level is
only used to determine the status
log output level until a listener is
registered. In practice, a listener is
registered when a configuration is
found, and from that point onwards,
status messages are only sent to
the listeners (depending on their
statusLevel).

Log4jDefaultStatusLevel ERROR The StatusL ogger logs events
that occur in the logging
system to the console.

During configuration,
AbstractConfiguration registers
a StatusConsol el istener with
the StatusL ogger that may
redirect status log events from
the default console output to a
file. The listener also supports
fine-grained filtering. This
system property specifies

the default status log level

for the listener to use if the
configuration does not specify a
status level.

Note: this property is used by
the log4j-core implementation

only after aconfiguration file
has been found.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 48

log4j2.StatusLogger.level WARN Theinitial "listenersLevel"
of the StatusL ogger. If
Statusl ogger listeners are
added, the "listenerLevel" is
changed to that of the most
verbose listener. If any listeners
areregistered, the listenerLevel
is used to quickly determine if
an interested listener exists.

By default, Statusl ogger
listeners are added when a
configuration is found and by
the IMX StatusL oggerAdmin
MBean. For example, if

a configuration contains
<Confi guration
status="trace" >, alistener
with statusLevel TRACE is
registered and the StatusL ogger
listenerLevel is set to TRACE,
resulting in verbose status
messages displayed on the
console.

If no listeners are registered,

the listenersLevel is not

used, and the StatusL ogger

output level is determined by

St at usLogger . get Logger () . get Level ()
(see property

org. apache. | oggi ng. 1 og4j . sinpl el og . ¢

log4j2.status.entries 200 Number of StatusLogger
events that are kept in a buffer
and can be retrieved with
St at usLogger . get St at usDat a() .

AsyncLogger.ExceptionHandler See Async Logger System
Properties for details.

AsyncLogger.RingBufferSize 256 * 1024 See Async Logger System
Properties for details.

AsyncLogger.WaitStrategy Sleep See Async Logger System
Properties for details.

AsyncLogger.ThreadNameStrategy CACHED See Async Logger System
Properties for details.

AsyncLoggerConfig.ExceptionHandle See Mixed Async/Synchronous
Logger System Properties for
details.

AsyncLoggerConfig.RingBufferSize 256 * 1024 See Mixed Async/Synchronous
Logger System Properties for
details.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 49

AsyncLoggerConfig.WaitStrategy Sleep See Mixed Async/Synchronous
Logger System Properties for
details.

log4j.jul.LoggerAdapter org.apache.logging.log4j.jul .ApiLogg Default LoggerAdapter to use in the

JUL adapter. By default, if log4j-

core is available, then the class

org. apache. | oggi ng. |1 og4j .jul . CorelLog
will be used. Otherwise, the

Api Loggger Adapt er will be

used. Custom implementations

must provide a public default

constructor.

Log4j 2 System Properties

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 50

Web Applications and JSPs

6.1 Using Log4j 2 in Web Applications

Y ou must take particular care when using Log4j or any other logging framework within a Java EE
web application. It'simportant for logging resources to be properly cleaned up (database connections
closed, files closed, etc.) when the container shuts down or the web application is undeployed.
Because of the nature of class loaders within web applications, Log4j resources cannot be cleaned up
through normal means. Log4j must be "started" when the web application deploys and "shut down"
when the web application undeploys. How this works varies depending on whether your application is
a Servlet 3.0 or newer or Servlet 2.5 web application.

In either case, you'll need to add thel og4j - web module to your deployment as detailed in the
Maven, lvy, and Gradle Artifacts manual page.

To avoid problems the Log4j shutdown hook will automatically be disabled when the log4j-web jar is
included.

6.1.1 Configuration

Logd4j allows the configuration file to be specified in web.xml using thel og4j Conf i gur ati on
context parameter. Log4j will search for configuration files by:

1. If alocation is provided it will be searched for as a servlet context resource. For example, if
| og4j Confi gurati on contains"logging.xml" then Log4j will look for afile with that namein
the root directory of the web application.

2. If no location is defined Log4j will search for afile that starts with "log4j2" in the WEB-INF
directory. If more than onefileisfound, and if afile that starts with "log4j2-name” is present,
where name is the name of the web application, then it will be used. Otherwise the first file will
be used.

3. The"normal" search sequence using the classpath and file URLs will be used to locate the
configuration file.

6.1.2 Servlet 3.0 and Newer Web Applications

A Servlet 3.0 or newer web application isany <web- app> whose ver si on attribute has avalue

of "3.0" or higher. Of course, the application must also be running in a compatible web container.
Some examples are: Tomcat 7.0 and higher, GlassFish 3.0 and higher, JBoss 7.0 and higher, Oracle
WebL ogic 12c and higher, and IBM WebSphere 8.0 and higher.

6.1.2.1 The Short Story

Log4j 2 "just works" in Servlet 3.0 and newer web applications. It is capable of automatically
starting when the application deploys and shutting down when the application undeploys.
Thanksto the ServletContainerlnitializer APl added to Servlet 3.0, therelevant Fi | t er and
Ser vl et Cont ext Li st ener classes can be registered dynamically on web application startup.

Important Note! For performance reasons, containers often ignore certain JARs known not to
contain TLDs or Ser vl et Cont ai ner I niti al i zer sand do not scan them for web-fragments and
initializers. Importantly, Tomcat 7 <7.0.43 ignores al JAR files named log4j*.jar, which prevents this
feature from working. This has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change cat al i na. properti es and remove "log4j*.jar" from thej ar sToSki p

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContainerInitializer.html

6 Web Applications and JSPs 51

property. Y ou may need to do something similar on other containersif they skip scanning Log4j JAR
files.

6.1.2.2 The Long Story

The Logdj 2 Web JAR fileis aweb-fragment configured to order before any other web

fragments in your application. It containsa Ser vl et Cont ai nerlnitial i zer (

Logd4j ServletContainerInitializer) that the container automatically discovers and initializes. This adds
the LogdjServietContextListener and LogdjServletFilter to the Ser vl et Cont ext . These classes
properly initialize and deinitialize the Log4j configuration.

For some users, automatically starting Log4j is problematic or undesirable. Y ou can easily disable
thisfeature using thei sLog4j Aut ol ni ti al i zati onDi sabl ed context parameter. Simply add it
to your deployment descriptor with the value "true" to disable auto-initialization. Y ou must define the
context parameter inweb. xni . If you set in programmatically, it will be too late for Log4j to detect
the setting.

<cont ext - par an>
<par am nane>i sLog4j Autol niti al i zati onDi sabl ed</ par am nane>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Once you disable auto-initialization, you must initialize Log4j as you would a Servlet 2.5 web
application. Y ou must do so in away that thisinitialization happens before any other application code
(such as Spring Framework startup code) executes.

Y ou can customize the behavior of the listener and filter using the | og4j Cont ext Nane,

| og4j Confi gurati on, and/ori sLog4j Cont ext Sel ect or Naned context parameters. Read
more about thisin the Context Parameters section below. Y ou must not manually configure the
Log4j Ser vl et Cont ext Li st ener or Log4j Ser vl et Fi | t er inyour deployment descriptor (
web. xn) or in another initializer or listener in a Servlet 3.0 or newer application unless you disable
auto-initialization withi sLog4j Aut ol ni ti al i zati onDi sabl ed. Doing so will result in startup
errors and unspecified erroneous behavior.

6.1.3 Servlet 2.5 Web Applications

A Servlet 2.5 web application is any <web- app> whose ver si on attribute has avalue of "2.5." The
ver si on attribute is the only thing that matters; even if the web application is running in a Servlet
3.0 or newer container, it isa Servlet 2.5 web application if thever si on attributeis"2.5." Note that
Log4j 2 does not support Servlet 2.4 and older web applications.

If you are using Log4j in a Servlet 2.5 web application, or if you have disabled auto-initialization
withthei sLog4j Aut ol ni ti al i zati onDi sabl ed context parameter, you must configure

the LogdjServietContextListener and Log4jServletFilter in the deployment descriptor or
programmatically. The filter should match all requests of any type. The listener should be the very
first listener defined in your application, and the filter should be the very first filter defined and
mapped in your application. Thisis easily accomplished using the following web. xn1 code:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 52

<li stener>
<l i stener-cl ass>org. apache. | oggi ng. | og4j . web. Log4j Ser vl et Cont ext Li stener</1|i stener-cl ass>
</listener>

<filter>
<filter-name>l og4j ServletFilter</filter-name>
<filter-class>org. apache. | oggi ng. | 0g4j.web. Log4j ServletFilter</filter-class>
</filter>
<filter-mappi ng>
<filter-name>l og4j ServletFilter</filter-name>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >FORWARD</ di spat cher >
<di spat cher > NCLUDE</ di spat cher >
<di spat cher >ERROR</ di spat cher >
<di spat cher >ASYNC</ di spat cher><!-- Servlet 3.0 w disabled auto-initialization only; not supported in
</filter-mappi ng>
Y ou can customize the behavior of the listener and filter using the | og4j Cont ext Nane,
| og4j Confi gurati on, and/ori sLog4j Cont ext Sel ect or Naned context parameters. Read more
about thisin the Context Parameters section below.

6.1.4 Context Parameters

By default, Log4j 2 usesthe Ser vl et Cont ext 's context name asthe Logger Cont ext name

and uses the standard pattern for locating the Log4j configuration file. There are three context
parameters that you can use to control this behavior. Thefirst, i sLog4j Cont ext Sel ect or Naned,
specifies whether the context should be selected using the JndiContextSelector. If

i sLog4j Cont ext Sel ect or Named is not specified or is anything other thant r ue, it isassumed to
bef al se.

If i sLog4j Cont ext Sel ect or Narred ist r ue, | og4j Cont ext Nane must be specified or

di spl ay- name must be specified inweb. xn ; otherwise, the application will fail to start with an
exception. | og4j Confi gur ati on should also be specified in this case, and must be avalid URI for
the configuration file; however, this parameter is not required.

If i sLog4j Cont ext Sel ect or Narred isnott r ue, | og4j Confi gur ati on may optionally be
specified and must be avalid URI or path to a configuration file or start with "classpath:” to denote
aconfiguration file that can be found on the classpath. Without this parameter, Log4j will use the
standard mechanisms for locating the configuration file.

When specifying these context parameters, you must specify them in the deployment descriptor (
web. xm) even in a Servlet 3.0 or never application. If you add them to the Ser vl et Cont ext within
alistener, Log4j will initialize before the context parameters are available and they will have no
effect. Here are some sample uses of these context parameters.

6.1.4.1 Set the Logging Context Name to "myApplication”

<cont ext - par an>
<par am nane>| og4j Cont ext Nane</ par am nane>
<par am val ue>nyAppl i cati on</ param val ue>
</ cont ext - par an>

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html#getServletContextName()

6 Web Applications and JSPs 53

6.1.4.2 Set the Configuration Path/File/URI to "/etc/myApp/myLogging.xml"

<cont ext - par an>

<par am nane>| og4j Confi gur ati on</ par am name>

<paramval ue>file:///etc/ myApp/ myLoggi ng. xm </ param val ue>
</ cont ext - par an>

6.1.4.3 Use the Jndi Cont ext Sel ect or

<cont ext - par an>
<par am nanme>i sLog4j Cont ext Sel ect or Naned</ par am nane>
<par am val ue>t rue</ par am val ue>
</ cont ext - par an>
<cont ext - par an>
<par am nane>| og4j Cont ext Nane</ par am nanme>
<par am val ue>appW t hdndi Sel ect or </ par am val ue>
</ cont ext - par an>
<cont ext - par an>
<par am nane>| og4j Confi gur ati on</ par am name>
<paramval ue>file:///D:/conf/ myLoggi ng. xm </ param val ue>
</ cont ext - par an>

Note that in this case you must also set the "L og4j ContextSelector” system property to
"org.apache.logging.log4j.core.selector.Jndi ContextSel ector”.

6.1.5 Using Web Application Information During the Configuration

Y ou may want to use information about the web application during configuration. For example,
you could embed the web application’'s context path in the name of a Rolling File Appender. See
WebL ookup in Lookups for more information.

6.1.6 JavaServer Pages Logging

Y ou may use Log4j 2 within JSPs just as you would within any other Java code. Simple obtain
aLogger and cal its methods to log events. However, this requires you to use Java code within
your JSPs, and some development teams rightly are not comfortable with doing this. If you have a
dedicated user interface development team that is not familiar with using Java, you may even have
Java code disabled in your JSPs.

For thisreason, Log4j 2 provides a JSP Tag Library that enables you to log events without using any
Java code. To read more about using thistag library, read the Log4j Tag Library documentation.

Important Note! As noted above, containers often ignore certain JARs known not to contain TLDs
and do not scan them for TLD files. Importantly, Tomcat 7 <7.0.43 ignores all JAR files named
log4j* .jar, which prevents the JSP tag library from being automatically discovered. This does not
affect Tomcat 6.x and has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change cat al i na. properti es and remove "log4j* .jar" fromthej ar sToSki p
property. Y ou may need to do something similar on other containersif they skip scanning Log4j JAR
files.

6.1.7 Asynchronous Requests and Threads

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 54

The handling of asynchronous requests istricky, and regardless of Servlet container version or
configuration Log4j cannot handle everything automatically. When standard requests, forwards,
includes, and error resources are processed, the Log4j Ser vl et Fi | t er bindsthe Logger Cont ext
to the thread handling the request. After request processing completes, the filter unbinds the
Logger Cont ext from the thread.

Similarly, when an internal request is dispatched using aj avax. ser vl et . AsyncCont ext , the
Log4j Servl et Fi | t er alsobindsthe Logger Cont ext to the thread handling the request and
unbinds it when request processing completes. However, this only happens for requests dispatched
through the AsyncCont ext . There are other asynchronous activities that can take place other than
internal dispatched requests.

For example, after starting an AsyncCont ext you could start up a separate thread to process the
reguest in the background, possibly writing the response with the Ser vl et Qut put St r eam Filters
cannot intercept the execution of thisthread. Filters also cannot intercept threads that you start in the
background during non-asynchronous requests. Thisis true whether you use a brand new thread or a
thread borrowed from athread pool. So what can you do for these special threads?

Y ou may not need to do anything. If you didn't usethei sLog4j Cont ext Sel ect or Narmed
context parameter, there is no need to bind the Logger Cont ext to the thread. Log4j can safely
locate the Logger Cont ext on itsown. In these cases, the filter provides only very modest
performance gains, and only when creating new Logger s. However, if you did specify the

i sLog4j Cont ext Sel ect or Named context parameter with the value "true”, you will need to
manually bind the Logger Cont ext to asynchronous threads. Otherwise, Log4j will not be ableto
locateit.

Thankfully, Log4j provides a simple mechanism for binding the Logger Cont ext to asynchronous
threads in these specia circumstances. The ssimplest way to do thisisto wrap the Runnabl e instance
that is passed to the AsyncCont ext . st art () method.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 55

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;
i mport org.apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {

@verride
protected void doGet (final HttpServletRequest req, final HttpServletResponse resp) throws ServletExceptio
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . st art (WebLogger Cont ext Uti | s. wr apExecuti onCont ext (thi s. get Servl et Context (), new Runnabl e(
@verride
public void run() {
final Logger |ogger = LogManager. get Logger (Test AsyncServl et.cl ass);
| ogger.info("Hello, servliet!");
}
1)

@verride
protected void doPost (final HttpServletRequest req, final HttpServletResponse resp) throws ServletExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext.start (new Runnabl e() {
@verride
public void run() {
final Log4j WebSupport webSupport =
WebLogger Cont ext Uti | s. get WebLi f eCycl e(Test AsyncServl et . t hi s. get Servl et Context());
webSupport . set Logger Cont ext () ;
/1 do stuff
webSupport. cl ear Logger Cont ext () ;

1)

This can be slightly more convenient when using Java 1.8 and lambda functions as demonstrated
below.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 56

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;
i mport org.apache. | oggi ng. | og4j . Logger;
i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {
@verride
protected void doGet (HttpServl et Request req, HttpServletResponse resp) throws ServletException, |OExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . start (WebLogger Cont ext Uti | s. wr apExecuti onCont ext (this. getServletContext(), () -> {
final Logger |ogger = LogManager. get Logger (Test AsyncServl et.cl ass);
| ogger.info("Hello, serviet!");

D)

Alternatively, you can obtain the Log4jWebLifeCycleinstance from the Ser vl et Cont ext
attributes, call itsset Logger Cont ext method as the very first line of code in your asynchronous
thread, and call itscl ear Logger Cont ext method as the very last line of code in your asynchronous
thread. The following code demonstrates this. It uses the container thread pool to execute
asynchronous request processing, passing an anonymous inner Runnabl e to the st ar t method.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Web Applications and JSPs 57

import java.io.| OException;

i mport javax. servl et. AsyncCont ext;

i mport javax. servlet. Servl et Excepti on;

import javax.servlet.http. HtpServlet;

import javax.servlet.http. HtpServl et Request;
import javax.servlet.http. HtpServl et Response;

i mport org. apache. | oggi ng. | og4j . LogManager ;

i mport org.apache. | oggi ng. | og4j . Logger;

i nport org. apache. | oggi ng. | og4j . web. Log4j WebLi f eCycl e;

i nport org. apache. | oggi ng. | og4j . web. WebLogger Cont ext Uti | s;

public class TestAsyncServl et extends HttpServlet {
@verride
protected void doGet (HttpServl et Request req, HttpServletResponse resp) throws ServletException, |OExcepti
final AsyncContext asyncContext = req.startAsync();
asyncCont ext . start (new Runnabl e() {
@verride
public void run() {
final Log4j WebLifeCycle webLifeCycle =
WebLogger Cont ext Uti | s. get WebLi f eCycl e(Test AsyncSer vl et . t hi s. get Servl et Context());
webLi f eCycl e. set Logger Cont ext () ;
try {
final Logger |ogger = LogManager. getLogger (Test AsyncServl et.cl ass);
| ogger.info("Hello, servliet!");
} finally {
webLi f eCycl e. cl ear Logger Cont ext () ;

1)

Note that you must call cl ear Logger Cont ext once your thread is finished processing. Failing

to do so will result in memory leaks. If using athread pool, it can even disrupt the logging of other
web applicationsin your container. For that reason, the example here shows clearing the context in a
final Iy block, which will always execute.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 58

Plugins

7.1 Plugins

7.1.1 Introduction

Log4j 1.x alowed for extension by requiring class attributes on most of the configuration
declarations. In the case of some elements, notably the PatternLayout, the only way to add new
pattern converters was to extend the PatternLayout class and add them via code. One of goals of
Log4j 2 isto make extending it extremely easy through the use of plugins.

InLog4j 2 apluginisdeclared by adding a @Plugin annotation to the class declaration. During
initialization the Configuration will invoke the PluginManager to load the built-in Log4j plugins as
well as any custom plugins. The Pl ugi nManager locates plugins by looking in five places:

1. Serialized plugin listing files on the classpath. These files are generated automatically during the
build (more details below).

2. (OSGi only) Serialized plugin listing files in each active OSGi bundle. A Bundl eLi st ener is
added on activation to continue checking new bundles after | og4j - cor e has started.

3. A comma-separated list of packages specified by thel og4j . pl ugi n. packages system
property.

4. Packages passed to the static Pl ugi nManager . addPackages method (before Log4j
configuration occurs).

5. The packages declared in your og4j2 configuration file.

If multiple Plugins specify the same (case-insensitive) name, then the load order above determines
which one will be used. For example, to override the Fi | e plugin which is provided by the built-
inFi | eAppender class, you would need to place your pluginin aJAR filein the CLASSPATH
ahead of | og4j - core. j ar. Thisis not recommended; plugin name collisions will cause awarning
to be emitted. Note that in an OSGi environment, the order that bundles are scanned for plugins
generally follows the same order that bundles were installed into the framework. See getBundles()
and SynchronousBundleListener. In short, name collisions are even more unpredictable in an OSGi
environment.

Serialized plugin listing files are generated by an annotation processor contained in the log4j-

core artifact which will automatically scan your code for Log4j 2 plugins and output a metadata
filein your processed classes. There is nothing extra that needs to be done to enable this; the

Java compiler will automatically pick up the annotation processor on the class path unless you
explicitly disableit. In that case, it would be important to add another compiler pass to your build
process that only handles annotation processing using the Log4j 2 annotation processor class,

org. apache. | oggi ng. | og4j . core. config. pl ugi ns. processor. Pl ugi nProcessor.To
do this using Apache Maven, add the following execution to your maven-compiler-plugin (version 2.2
or higher) build plugin:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.osgi.org/javadoc/r5/core/org/osgi/framework/BundleContext.html#getBundles()
http://www.osgi.org/javadoc/r5/core/org/osgi/framework/SynchronousBundleListener.html

7 Plugins 59

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ groupl d>
<artifact!ld>maven-conpil er-plugin</artifactld>
<versi on>3. 1</ ver si on>
<executions>
<executi on>
<i d>l og4j - pl ugi n- processor</id>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
<phase>process- cl asses</ phase>
<configuration>
<pr oc>onl y</ proc>
<annot at i onPr ocessor s>
<annot at i onPr ocessor >or g. apache. | oggi ng. | og4j . core. confi g. pl ugi ns. processor. Pl ugi nProcessor </ annot a
</ annot at i onProcessor s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

Asthe configuration is processed the appropriate plugins will be automatically configured and
initialized. Log4j 2 utilizes afew different categories of plugins which are described in the following
sections.

7.1.2 Core

Core plugins are those that are directly represented by an element in a configuration file, such as an
Appender, Logger or Filter. Custom plugins that conform to the rules laid out in the next paragraph
may simply be referenced in the configuration, provided they are appropriate configured to be loaded
by the PluginManager.

Every Core plugin must declare a static method that is marked with a PluginFactory annotation. To
allow the Configuration to pass the correct parameters to the method, every parameter to the method
must be annotated as one of the following attribute types. Each attribute or element annotation must
include the name that must be present in the configuration in order to match the configuration item to
its respective parameter.

7.1.2.1 Attribute Types
PluginAttribute

The parameter must be convertible from a String using a TypeConverter. Most built-in
types are aready supported, but custom TypeConvert er plugins may also be provided for
more type support.

PluginElement

The parameter may represent a complex object that itself has parameters that can be
configured.

PluginConfiguration
The current Conf i gur at i on object will be passed to the plugin as a parameter.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 60

PluginNode
The current Node being parsed will be passed to the plugin as a parameter.
Required

While not strictly an attribute, this annotation can be added to any plugin factory parameter
to make it automatically validated as non- nul | and non-empty.

7.1.3 Converters

Convertersare used by PatternLayout to render the elementsidentified by the conversion pattern.
Every converter must specify itstype as " Converter" on the Plugin attribute, have a static newlnstance
method that accepts an array of Strings asits only parameter and returns an instance of the Converter,
and must have a ConverterK eys annotation present that contains the array of converter patterns that
will cause the Converter to be selected. Converters that are meant to handle L ogEvents must extend
the LogEventPatternConverter class and must implement aformat method that accepts a LogEvent
and a StringBuilder as arguments. The Converter should append the result of its operation to the
StringBuilder.

A second type of Converter isthe FileConverter - which must have "FileConverter" specified in the
type attribute of the Plugin annotation. While similar to a L ogEventPatternConverter, instead of a
single format method these Converters will have two variations; one that takes an Object and one
that takes an array of Objectsinstead of the LogEvent. Both append to the provided StringBuilder
in the same fashion as a L ogEventPatternConverter. These Converters are typically used by the
RollingFileAppender to construct the name of the file to log to.

If multiple Converters specify the same Conver t er Keys, then the load order above determines
which one will be used. For example, to override the %at e converter which is provided by the
built-in Dat ePat t er nConvert er class, you would need to place your pluginin aJAR filein
the CLASSPATH ahead of | og4j - cor e. j ar. Thisis hot recommended; pattern ConverterKeys
collisions will cause awarning to be emitted. Try to use unique ConverterKeys for your custom
pattern converters.

7.1.4 KeyProviders

Some components within Log4j may provide the ability to perform data encryption. These
components require a secret key to perform the encryption. Applications may provide the key by
creating a class that implements the SecretKeyProvider interface.

7.1.5 Lookups

Lookups are perhaps the smplest plugins of all. They must declare their type as "Lookup" on the
plugin annotation and must implement the StrLookup interface. They will have two methods; a
lookup method that accepts a String key and returns a String value and a second |ookup method
that accepts both a LogEvent and a String key and returns a String. Lookups may be referenced by
specifying ${ name:key} where name is the name specified in the Plugin annotation and key is the
name of the item to locate.

7.1.6 TypeConverters

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Plugins 61

TypeConverters are a sort of meta-plugin used for converting strings into other typesin a plugin
factory method parameter. Other plugins can already be injected viathe @l ugi nEl enent
annotation; now, any type supported by the type conversion system can be used in a

@l ugi nAt t ri but e parameter. Conversion of enum types are supported on demand and do
not require custom TypeConver t er classes. A large number of built-in Java classes are already
supported; see TypeConverters for amore exhaustive listing.

Unlike other plugins, the plugin name of aTypeConvert er is purely cosmetic. Appropriate type
converters are looked up viathe Type interface rather than via Cl ass<?> objects only. Do note that
TypeConvert er plugins must have adefault constructor.

7.2 Developer Notes

If aplugin classimplements Collection or Map, then no factory method is used. Instead, the class
isinstantiated using the default constructor, and al child configuration nodes are added to the
Col | ecti on or Map.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

8 Lookups 62

Lookups

8.1 Lookups

Lookups provide away to add values to the Log4j configuration at arbitrary places. They are a
particular type of Plugin that implementsthe StrLookup interface. Information on how to use
Lookups in configuration files can be found in the Property Substitution section of the Configuration

page.

8.1.1 Context Map Lookup

The ContextM apL ookup allows applications to store datain the Log4j ThreadContext Map and then
retrieve the values in the Log4j configuration. In the example below, the application would store the
current user'slogin id in the ThreadContext Map with the key "loginld". During initial configuration
processing the first '$ will be removed. The PatternLayout supports interpolation with Lookups and
will then resolve the variable for each event. Note that the pattern "%X{loginld}" would achieve the
same result.

<Fil e name="Application" fileNane="application.|og">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] $${ctx:|oginld} %Pn</pattern>
</ Patt er nLayout >
</File>

8.1.2 Date Lookup

The Datel ookup is somewhat unusual from the other lookups as it doesn't use the key to locate an
item. Instead, the key can be used to specify a date format string that isvalid for SimpleDateFormat.
The current date, or the date associated with the current log event will be formatted as specified.

<Rol I i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${filenanme}" filePattern="target/rollingl/test1-$${date: M\t
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>

8.1.3 Environment Lookup

The EnvironmentL ookup allows systems to configure environment variables, either in global files
such as/etc/profile or in the startup scripts for applications, and then retrieve those variables from
within the logging configuration. The example below includes the name of the currently logged in
user in the application log.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

8 Lookups

<Fi | e name="Application" fileName="application.|og">
<Patt er nLayout >
<pattern>% % %{1.} [%] $${env:USER} %dm</pattern>
</ Patt er nLayout >
</File>

8.1.4 Java Lookup

The Javal ookup alows Java environment information to be retrieved in convenient preformatted
strings using thej ava: prefix.

version The short Javaversion, like:
Java version 1.7.0 67
runtime The Javaruntime version, like:

Java(TM SE Runti ne Environnent
(build 1.7.0_67-b01) from O acle
Cor por ati on

vm The JavaVM version, like:

Java Hot Spot (TM 64-Bit Server VM
(build 24.65-b04, m xed node)

0s The OS version, like:

W ndows 7 6.1 Service Pack 1,
architecture: and64-64

locale Hardware information, like:

default |ocale: en_US, platform
encodi ng: Cpl1252

hw Hardware information, like:

processors: 4, architecture:
and64- 64, instruction sets: and64

For example:

<Fil e name="Application" fileNane="application.|og">
<PatternLayout header="${java:runtine} - ${java:vn} - ${java:os}">
<Pattern>%d %m</ Pattern>
</ Patt er nLayout >
</File>

8.1.5 Jndi Lookup

The JndiLookup alows variables to be retrieved via INDI. By default the key will be prefixed with
java.comp/env/, however if the key containsa":" no prefix will be added.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups 64

<Fi | e name="Application" fileName="application.|og">
<Patt er nLayout >
<pattern>%l % %{1.} [%] $${j ndi:Iloggi ng/context-nanme} %m</pattern>
</ Patt er nLayout >
</File>

Java's INDI moduleisnot available on Android.

8.1.6 JVM Input Arguments Lookup (IJMX)

Maps VM input arguments -- but not main arguments -- using JM X to acquire the VM arguments.
Usethe prefix j vnr unar gs to access VM arguments.

Seethe Javadocsfor java.lang.management.RuntimeM X Bean.getl nputArguments() .

Java's JM X moduleisnot available on Android.

8.1.7 Log4j Configuration Location Lookup

Log4j configuration properties. The expressions ${ | og4j : confi gLocat i on} and
${1 og4j : confi gPar ent Locat i on} respectively provide the absolute path to the log4j
configuration file and its parent folder.

The example below uses this lookup to place log filesin adirectory relative to the log4j configuration
file.

<Fil e nane="Application" fileName="${l og4j:configParentLocation}/| ogs/application.|og">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernLayout >
</File>

8.1.8 Main Arguments Lookup (Application)
This lookup requires that you manually provide the main arguments of the application to Log4j:

i nport org. apache. | oggi ng. | 0og4j . core. | ookup. Mai nMapLookup;

public static void main(String args[]) {
Mai nMapLookup. set Mai nAr gunent s(ar gs) ;

}

If the main arguments have been set, this lookup allows applications to retrieve these main argument
values from within the logging configuration. The key that follows the mai n: prefix can either be a

0-based index into the argument list, or a string, where ${ mai n: mySt ri ng} issubstituted with the

value that followsmy St ri ng in the main argument list.

For example, suppose the static void main String[] arguments are:

--file foo.txt --verbose -x bar

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/8/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

8 Lookups 65

Then the following substitutions are possible:

${main:0} --file
${main:1} f oo. t xt
${main:2} --verbose
${main:3} - X

${main:4} bar
${main:--file} f oo. t xt
${main:-x} bar
${main:bar} nul |
Example usage:

<Fil e name="Application" fileNane="application.|og">
<PatternLayout header="File: ${main:--file}">
<Pattern>%d %m</ Pattern>
</ Patt er nLayout >
</File>

8.1.9 Map Lookup
The MapLookup serves several purposes.

1. Provide the base for Properties declared in the configuration file.
2. Retrieve values from MapMessages in LogEvents.
3. Retrieve values set with MapL ookup.setMainArguments(String[])

The first item ssimply means that the MapL ookup is used to substitute properties that are defined in the
configuration file. These variables are specified without a prefix - e.g. ${ nane} . The second usage
allows avalue from the current MapMessage, if oneis part of the current log event, to be substituted.
In the example bel ow the RoutingAppender will use a different RollingFileA ppender for each unique
value of the key named "type" in the MapMessage. Note that when used this way avalue for "type"
should be declared in the properties declaration to provide a default value in case the messageis not a
MapM essage or the MapM essage does not contain the key. See the Property Substitution section of
the Configuration page for information on how to set the default values.

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups

<Routi ng nanme="Routing">
<Rout es pattern="$${map: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${fil ename}"
filePattern="target/rollingl/test1-${map:type}.% .l og.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFil e>
</ Rout e>
</ Rout es>
</ Rout i ng>

8.1.10 Marker Lookup

The marker lookup alows you to use markers in interesting configurations like a routing appender.
Consider the following YAML configuration and code that logs to different files based on markers:

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

66

8 Lookups 67

Configuration:
status: debug

Appender s:
Consol e:
RandomAccessFi | e:
- nane: SQL_APPENDER
fileNane: |ogs/sql.log
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"
- name: PAYLOAD_APPENDER
fileNane: |ogs/payl oad. | og
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"
- name: PERFORVANCE_APPENDER
fileNane: |ogs/perfornmance. | og
Pat t er nLayout :
Pattern: "%d{|1S08601_BASIC} % 5| evel % ogger{1l} %X %sg¥%"

Rout i ng:
nane: ROUTI NG_APPENDER
Rout es:
pattern: "$${marker:}"
Rout e:

- key: PERFORMANCE

ref: PERFORVMANCE_APPENDER
- key: PAYLOAD

ref: PAYLOAD_ APPENDER
- key: SQ

ref: SQL_APPENDER

Loggers:
Root :
level : trace
Appender Ref :

- ref: ROUTI NG_APPENDER

public static final Marker SQ. = MarkerFactory. get Marker ("SQ.");
public static final Marker PAYLOAD = Marker Factory. get Mar ker (" PAYLOAD") ;
public static final Marker PERFORMANCE = Marker Fact ory. get Mar ker (" PERFORMANCE") ;

final Logger |ogger = LoggerFactory. getLogger (Logger. ROOT_LOGGER NAME) ;

| ogger.info(SQ, "Message in Sgl.log");
| ogger. i nf o(PAYLOAD, "Message i n Payl oad.|o0g");
| ogger . i nf o(PERFORMANCE, "Message i n Performance.log");

Note the key part of the configurationispattern: "$${marker:}". Thiswill produce threelog

files, each with alog event for a specific marker. Log4j will route the log event with the SQL marker
tosql . I og, the log event with the PAYLOAD marker to payl oad. | og, and so on.

Y ou can use the notation " ${ mar ker : nanme}" and " $${ mar ker : nanme}" to check for the existence
of amarker where nane isthe marker name. If the marker exists, the expression returns the name,
otherwisenul | .

©2015, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Lookups 68

8.1.11 Structured Data Lookup

The StructuredDatal_ookup is very similar to the MapLookup in that it will retrieve values from
StructuredDataM essages. | n addition to the Map values it will also return the name portion of
theid (not including the enterprise number) and the type field. The main difference between
the example below and the example for MapMessage is that the "type" is an attribute of the
StructuredDataM essage while "type" would have to be an item in the Map in aMapMessage.

<Rout i ng nane="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${sd: type}" fileName="${fil enane}"
filePattern="target/rollingl/testl-${sd:type}.% .l og.gz">
<Pat t er nLayout >
<pattern>%d % %{1.} [%] % Pn</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>
</ Rout e>
</ Rout es>
</ Rout i ng>

8.1.12 System Properties Lookup

Asit is quite common to define values inside and outside the application by using System Properties,
itisonly natural that they should be accessible via aLookup. As system properties are often defined
outside the application it would be quite common to see something like:

<Appender s>
<Fi | e name="ApplicationLog" fil eName="${sys: | ogPath}/app.log"/>
</ Appender s>

8.1.13 Web Lookup

The WebL ookup allows applications to retrieve variables that are associated with the ServlietContext.
In addition to being able to retrieve various fields in the ServletContext, WebL ookup supports looking
up values stored as attributes or configured as initialization parameters. The following table lists
va