
..

Apache Log4j 2
v. 2.2
User's Guide

..

The Apache Software Foundation 2015-02-22

T a b l e o f C o n t e n t s i

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Table of Contents
...

1. Table of Contents . i

2. Introduction . 1

3. Architecture . 3

4. Log4j 1.x Migration . 10

5. API . 16

6. Configuration . 18

7. Web Applications and JSPs . 48

8. Plugins . 56

9. Lookups . 60

10. Appenders . 66

11. Layouts . 120

12. Filters . 140

13. Async Loggers . 153

14. JMX . 167

15. Logging Separation . 174

16. Extending Log4j . 176

17. Extending Log4j Configuration . 184

18. Custom Log Levels . 187

T a b l e o f C o n t e n t s ii

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1 I n t r o d u c t i o n 1

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1 Introduction
...

1.1 Welcome to Log4j 2!

1.1.1 Introduction

Almost every large application includes its own logging or tracing API. In conformance with this
rule, the E.U. SEMPER project decided to write its own tracing API. This was in early 1996. After
countless enhancements, several incarnations and much work that API has evolved to become log4j,
a popular logging package for Java. The package is distributed under the Apache Software License,
a fully-fledged open source license certified by the open source initiative. The latest log4j version,
including full-source code, class files and documentation can be found at http://logging.apache.org/
log4j/2.x/index.html.

Inserting log statements into code is a low-tech method for debugging it. It may also be the only way
because debuggers are not always available or applicable. This is usually the case for multithreaded
applications and distributed applications at large.

Experience indicates that logging was an important component of the development cycle. It offers
several advantages. It provides precise context about a run of the application. Once inserted into the
code, the generation of logging output requires no human intervention. Moreover, log output can
be saved in persistent medium to be studied at a later time. In addition to its use in the development
cycle, a sufficiently rich logging package can also be viewed as an auditing tool.

As Brian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of
Programming":

As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a
variable or two. One reason is that it is easy to get lost in details of complicated data structures and
control flow; we find stepping through a program less productive than thinking harder and adding
output statements and self-checking code at critical places. Clicking over statements takes longer
than scanning the output of judiciously-placed displays. It takes less time to decide where to put print
statements than to single-step to the critical section of code, even assuming we know where that is.
More important, debugging statements stay with the program; debugging sessions are transient.
Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause
scrolling blindness. To alleviate these concerns, log4j is designed to be reliable, fast and extensible.
Since logging is rarely the main focus of an application, the log4j API strives to be simple to
understand and to use.

1.1.2 Log4j 2

Log4j 1.x has been widely adopted and used in many applications. However, through the years
development on it has slowed down. It has become more difficult to maintain due to its need to
be compliant with very old versions of Java. Its alternative, SLF4J/Logback made many needed
improvements to the framework. So why bother with Log4j 2? Here are a few of the reasons.

1. Log4j 2 is designed to be usable as an audit logging framework. Both Log4j 1.x and Logback
will lose events while reconfiguring. Log4j 2 will not. in Logback exceptions in Appenders are
never visible to the application. In Log4j 2 Appenders can be configured to allow the exception
to percolate to the application

2. Log4j 2 contains next-generation lock-free Asynchronous Loggers based on the LMAX
Disruptor library. In multi-threaded scenarios Asynchronous Loggers have 10 times higher
throughput and orders of magnitude lower latency than Log4j 1.x and Logback.

http://www.semper.org
http://www.opensource.org
http://logging.apache.org/log4j/2.x/index.html
http://logging.apache.org/log4j/2.x/index.html
https://lmax-exchange.github.io/disruptor/
https://lmax-exchange.github.io/disruptor/

1 I n t r o d u c t i o n 2

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

3. Log4j 2 uses a Plugin system that makes it extremely easy to extend the framework by adding
new Appenders, Filters, Layouts, Lookups, and Pattern Converters without requiring any
changes to Log4j.

4. Due to the Plugin system configuration is simpler. Entries in the configuration do not require a
class name to be specified.

5. Support for Message objects. Messages allow support for interesting and complex constructs
to be passed through the logging system and be efficiently manipulated. Users are free to create
their own Message types and write custom Layouts, Filters and Lookups to manipulate
them.

6. Log4j 1.x supports Filters on Appenders. Logback added TurboFilters to allow filtering of
events before they are processed by a Logger. Log4j 2 supports Filters that can be configured to
process events before they are handled by a Logger, as they are processed by a Logger or on an
Appender.

7. Many Logback Appenders do not accept a Layout and will only send data in a fixed format.
Most Log4j 2 Appenders accept a Layout, allowing the data to be transported in any format
desired.

8. Layouts in Log4j 1.x and Logback return a String. This resulted in the problems discussed at
Logback Encoders. Log4j 2 takes the simpler approach that Layouts always return a byte array.
This has the advantage that it means they can be used in virtually any Appender, not just the ones
that write to an OutputStream.

9. The Syslog Appender supports both TCP and UDP as well as support for the BSD syslog and
the RFC 5424 formats.

10.Log4j 2 takes advantage of Java 5 concurrency support and performs locking at the lowest level
possible. Log4j 1.x has known deadlock issues. Many of these are fixed in Logback but many
Logback classes still require synchronization at a fairly high level.

11.It is an Apache Software Foundation project following the community and support model used
by all ASF projects. If you want to contribute or gain the right to commit changes just follow the
path outlined at Contributing

http://logback.qos.ch/manual/encoders.html
http://logback.qos.ch/manual/encoders.html
http://tools.ietf.org/html/rfc5424
http://jakarta.apache.org/site/contributing.html

2 A r c h i t e c t u r e 3

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

2 Architecture
...

2.1 Architecture

2.1.1 Main Components

Log4j uses the classes shown in the diagram below.

Applications using the Log4j 2 API will request a Logger with a specific name from the LogManager.
The LogManager will locate the appropriate LoggerContext and then obtain the Logger from it. If the
Logger must be created it will be associated with the LoggerConfig that contains either a) the same
name as the Logger, b) the name of a parent package, or c) the root LoggerConfig. LoggerConfig
objects are created from Logger declarations in the configuration. The LoggerConfig is associated
with the Appenders that actually deliver the LogEvents.

2.1.1.1 Logger Hierarchy

The first and foremost advantage of any logging API over plain System.out.println resides in
its ability to disable certain log statements while allowing others to print unhindered. This capability
assumes that the logging space, that is, the space of all possible logging statements, is categorized
according to some developer-chosen criteria.

In Log4j 1.x the Logger Hierarchy was maintained through a relationship between Loggers. In Log4j
2 this relationship no longer exists. Instead, the hierarchy is maintained in the relationship between
LoggerConfig objects.

Loggers and LoggerConfigs are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule:

Named Hierarchy

2 A r c h i t e c t u r e 4

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

A LoggerConfig is said to be an ancestor of another LoggerConfig if its name followed
by a dot is a prefix of the descendant logger name. A LoggerConfig is said to be a parent
of a child LoggerConfig if there are no ancestors between itself and the descendant
LoggerConfig.

For example, the LoggerConfig named "com.foo" is a parent of the LoggerConfig named
"com.foo.Bar". Similarly, "java" is a parent of "java.util" and an ancestor of
"java.util.Vector". This naming scheme should be familiar to most developers.

The root LoggerConfig resides at the top of the LoggerConfig hierarchy. It is exceptional in
that it always exists and it is part of every hierarchy. A Logger that is directly linked to the root
LoggerConfig can be obtained as follows:

Logger logger = LogManager.getLogger(LogManager.ROOT_LOGGER_NAME);

Alternatively, and more simply:

Logger logger = LogManager.getRootLogger();

All other Loggers can be retrieved using the LogManager.getLogger static method by passing the
name of the desired Logger. Further information on the Logging API can be found in the Log4j 2
API.

2.1.1.2 LoggerContext

The LoggerContext acts as the anchor point for the Logging system. However, it is possible to have
multiple active LoggerContexts in an application depending on the circumstances. More details on the
LoggerContext are in the Log Separation section.

2.1.1.3 Configuration

Every LoggerContext has an active Configuration. The Configuration contains all the Appenders,
context-wide Filters, LoggerConfigs and contains the reference to the StrSubstitutor. During
reconfiguration two Configuration objects will exist. Once all Loggers have been redirected to the
new Configuration, the old Configuration will be stopped and discarded.

2.1.1.4 Logger

As stated previously, Loggers are created by calling LogManager.getLogger. The Logger itself
performs no direct actions. It simply has a name and is associated with a LoggerConfig. It extends
AbstractLogger and implements the required methods. As the configuration is modified Loggers may
become associated with a different LoggerConfig, thus causing their behavior to be modified.

2.Retrieving Loggers

Calling the LogManager.getLogger method with the same name will always return a reference to
the exact same Logger object.

For example, in

Logger x = LogManager.getLogger("wombat");

Logger y = LogManager.getLogger("wombat");

x and y refer to exactly the same Logger object.

Configuration of the log4j environment is typically done at application initialization. The preferred
way is by reading a configuration file. This is discussed in Configuration.

Log4j makes it easy to name Loggers by software component. This can be accomplished by
instantiating a Logger in each class, with the logger name equal to the fully qualified name of the

2 A r c h i t e c t u r e 5

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

class. This is a useful and straightforward method of defining loggers. As the log output bears the
name of the generating Logger, this naming strategy makes it easy to identify the origin of a log
message. However, this is only one possible, albeit common, strategy for naming loggers. Log4j does
not restrict the possible set of loggers. The developer is free to name the loggers as desired.

Since naming Loggers after their owning class is such a common idiom, the convenience method
LogManager.getLogger() is provided to automatically use the calling class's fully qualified class
name as the Logger name.

Nevertheless, naming loggers after the class where they are located seems to be the best strategy
known so far.

2.1.1.5 LoggerConfig

LoggerConfig objects are created when Loggers are declared in the logging configuration. The
LoggerConfig contains a set of Filters that must allow the LogEvent to pass before it will be passed to
any Appenders. It contains references to the set of Appenders that should be used to process the event.

2.Log Levels

LoggerConfigs will be assigned a Log Level. The set of built-in levels includes TRACE, DEBUG,
INFO, WARN, ERROR, and FATAL. Log4j 2 also supports custom log levels. Another mechanism
for getting more granularity is to use Markers instead.

Log4j 1.x and Logback both have the concept of "Level Inheritance". In Log4j 2, Loggers and
LoggerConfigs are two different objects so this concept is implemented differently. Each Logger
references the appropriate LoggerConfig which in turn can reference its parent, thus achieving the
same effect.

Below are five tables with various assigned level values and the resulting levels that will be associated
with each Logger. Note that in all these cases if the root LoggerConfig is not configured a default
Level will be assigned to it.

Logger Name
Assigned
LoggerConfig LoggerConfig Level Logger Level

root root DEBUG DEBUG

X root DEBUG DEBUG

X.Y root DEBUG DEBUG

X.Y.Z root DEBUG DEBUG

Example 1

In example 1 above, only the root logger is configured and has a Log Level. All the other Loggers
reference the root LoggerConfig and use its Level.

Logger Name
Assigned
LoggerConfig LoggerConfig Level Level

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y INFO INFO

X.Y.Z X.Y.Z WARN WARN

http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch/manual/architecture.html#effectiveLevel

2 A r c h i t e c t u r e 6

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Example 2

In example 2, all loggers have a configured LoggerConfig and obtain their Level from it.

Logger Name
Assigned
LoggerConfig LoggerConfig Level Level

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

X.Y.Z X.Y.Z WARN WARN

Example 3

In example 3, the loggers root, X and X.Y.Z each have a configured LoggerConfig with the same
name. The Logger X.Y does not have a configured LoggerConfig with a matching name so uses the
configuration of LoggerConfig X since that is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

Logger Name
Assigned
LoggerConfig LoggerConfig Level level

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X ERROR ERROR

X.Y.Z X ERROR ERROR

Example 4

In example 4, the loggers root and X each have a Configured LoggerConfig with the same name.
The loggers X.Y and X.Y.Z do not have configured LoggerConfigs and so get their Level from the
LoggerConfig assigned to them, X, since it is the LoggerConfig whose name has the longest match to
the start of the Logger's name.

Logger Name
Assigned
LoggerConfig LoggerConfig Level level

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y INFO INFO

X.YZ X ERROR ERROR

Example 5

In example 5, the loggers root. X, and X.Y each have a Configured LoggerConfig with the same
name. The logger X.YZ does not have configured LoggerConfig and so gets its Level from the
LoggerConfig assigned to it, X, since it is the LoggerConfig whose name has the longest match to the
start of the Logger's name. It is not associated with LoggerConfig X.Y since tokens after periods must
match exactly.

2 A r c h i t e c t u r e 7

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Logger Name
Assigned
LoggerConfig LoggerConfig Level Level

root root DEBUG DEBUG

X X ERROR ERROR

X.Y X.Y ERROR

X.Y.Z X.Y ERROR

Example 6

In example 6, LoggerConfig X.Y it has no configured level so it inherits its level from LoggerConfig
X. Logger X.Y.Z uses LoggerConfig X.Y since it doesn't have a LoggerConfig with a name that
exactly matches. It too inherits its logging level from LoggerConfig X.

The table below illustrates how Level filtering works. In the table, the vertical header shows the
Level of the LogEvent, while the horizontal header shows the Level associated with the appropriate
LoggerConfig. The intersection identifies whether the LogEvent would be allowed to pass for further
processing (Yes) or discarded (No).

Event
Level

LoggerConfig
Level

 TRACE DEBUG INFO WARN ERROR FATAL OFF

ALL YES YES YES YES YES YES NO

TRACE YES NO NO NO NO NO NO

DEBUG YES YES NO NO NO NO NO

INFO YES YES YES NO NO NO NO

WARN YES YES YES YES NO NO NO

ERROR YES YES YES YES YES NO NO

FATAL YES YES YES YES YES YES NO

OFF NO NO NO NO NO NO NO

2.1.1.6 Filter

In addition to the automatic log Level filtering that takes place as described in the previous section,
Log4j provides Filters that can be applied before control is passed to any LoggerConfig, after
control is passed to a LoggerConfig but before calling any Appenders, after control is passed to a
LoggerConfig but before calling a specific Appender, and on each Appender. In a manner very similar
to firewall filters, each Filter can return one of three results, Accept, Deny or Neutral. A response
of Accept means that no other Filters should be called and the event should progress. A response of
Deny means the event should be immediately ignored and control should be returned to the caller. A
response of Neutral indicates the event should be passed to other Filters. If there are no other Filters
the event will be processed.

Although an event may be accepted by a Filter the event still might not be logged. This can happen
when the event is accepted by the pre-LoggerConfig Filter but is then denied by a LoggerConfig filter
or is denied by all Appenders.

2 A r c h i t e c t u r e 8

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

2.1.1.7 Appender

The ability to selectively enable or disable logging requests based on their logger is only part of the
picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output
destination is called an Appender. Currently, appenders exist for the console, files, remote socket
servers, Apache Flume, JMS, remote UNIX Syslog daemons, and various database APIs. See the
section on Appenders for more details on the various types available. More than one Appender can be
attached to a Logger.

An Appender can be added to a Logger by calling the addLoggerAppender method of the current
Configuration. If a LoggerConfig matching the name of the Logger does not exist, one will be created,
the Appender will be attached to it and then all Loggers will be notified to update their LoggerConfig
references.

Each enabled logging request for a given logger will be forwarded to all the appenders in
that Logger's LoggerConfig as well as the Appenders of the LoggerConfig's parents. In other
words, Appenders are inherited additively from the LoggerConfig hierarchy. For example, if a
console appender is added to the root logger, then all enabled logging requests will at least print
on the console. If in addition a file appender is added to a LoggerConfig, say C, then enabled
logging requests for C and C's children will print in a file and on the console. It is possible to
override this default behavior so that Appender accumulation is no longer additive by setting
additivity="false" on the Logger declaration in the configuration file.

The rules governing appender additivity are summarized below.

Appender Additivity

The output of a log statement of Logger L will go to all the Appenders in the LoggerConfig
associated with L and the ancestors of that LoggerConfig. This is the meaning of the term
"appender additivity".

However, if an ancestor of the LoggerConfig associated with Logger L, say P, has the
additivity flag set to false, then L's output will be directed to all the appenders in L's
LoggerConfig and it's ancestors up to and including P but not the Appenders in any of the
ancestors of P.

Loggers have their additivity flag set to true by default.

The table below shows an example:

Logger
Name

Added
Appenders

Additivity
Flag Output Targets Comment

root A1 not applicable A1 The root logger
has no parent so
additivity does not
apply to it.

x A-x1, A-x2 true A1, A-x1, A-x2 Appenders of "x"
and root.

x.y none true A1, A-x1, A-x2 Appenders of "x"
and root. It would
not be typical to
configure a Logger
with no Appenders.

x.y.z A-xyz1 true A1, A-x1, A-x2, A-
xyz1

Appenders in
"x.y.z", "x" and root.

2 A r c h i t e c t u r e 9

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

security A-sec false A-sec No appender
accumulation since
the additivity flag is
set to false.

security.access none true A-sec Only appenders of
"security" because
the additivity flag in
"security" is set to
false.

2.1.1.8 Layout

More often than not, users wish to customize not only the output destination but also the output
format. This is accomplished by associating a Layout with an Appender. The Layout is responsible
for formatting the LogEvent according to the user's wishes, whereas an appender takes care of sending
the formatted output to its destination. The PatternLayout, part of the standard log4j distribution, lets
the user specify the output format according to conversion patterns similar to the C language printf
function.

For example, the PatternLayout with the conversion pattern "%r [%t] %-5p %c - %m%n" will output
something akin to:

176 [main] INFO org.foo.Bar - Located nearest gas station.

The first field is the number of milliseconds elapsed since the start of the program. The second field
is the thread making the log request. The third field is the level of the log statement. The fourth field
is the name of the logger associated with the log request. The text after the '-' is the message of the
statement.

Log4j comes with many different Layouts for various use cases such as JSON, XML, HTML, and
Syslog (including the new RFC 5424 version). Other appenders such as the database connectors fill in
specified fields instead of a particular textual layout.

Just as importantly, log4j will render the content of the log message according to user specified
criteria. For example, if you frequently need to log Oranges, an object type used in your current
project, then you can create an OrangeMessage that accepts an Orange instance and pass that to Log4j
so that the Orange object can be formatted into an appropriate byte array when required.

2.1.1.9 StrSubstitutor and StrLookup

The StrSubstitutor class and StrLookup interface were borrowed from Apache Commons Lang
and then modified to support evaluating LogEvents. In addition the Interpolator class was borrowed
from Apache Commons Configuration to allow the StrSubstitutor to evaluate variables that from
multiple StrLookups. It too was modified to support evaluating LogEvents. Together these provide
a mechanism to allow the configuration to reference variables coming from System Properties, the
configuration file, the ThreadContext Map, StructuredData in the LogEvent. The variables can either
be resolved when the configuration is processed or as each event is processed, if the component is
capable of handling it. See Lookups for more information.

https://commons.apache.org/proper/commons-lang/

3 L o g 4 j 1 . x M i g r a t i o n 10

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

3 Log4j 1.x Migration
...

3.1 Migrating from Log4j 1.x

3.1.1 Using the Log4j 1.x bridge

Perhaps the simplest way to convert to using Log4j 2 is to replace the log4j 1.x jar file with Log4j
2's log4j-1.2-api.jar. However, to use this successfully applications must meet the following
requirements:

1. They must not access methods and classes internal to the Log4j 1.x implementation such as
Appenders, LoggerRepository or Category's callAppenders method.

2. They must not programmatically configure Log4j.
3. They must not configure by calling the classes DOMConfigurator or
PropertyConfigurator.

3.1.2 Converting to the Log4j 2 API

For the most part, converting from the Log4j 1.x API to Log4j 2 should be fairly simple. Many of the
log statements will require no modification. However, where necessary the following changes must be
made.

1. The main package in version 1 is org.apache.log4j, in version 2 it is
org.apache.logging.log4j

2. Calls to org.apache.log4j.Logger.getLogger() must be modified to
org.apache.logging.log4j.LogManager.getLogger().

3. Calls to org.apache.log4j.Logger.getRootLogger() or
org.apache.log4j.LogManager.getRootLogger() must be replaced with
org.apache.logging.log4j.LogManager.getRootLogger().

4. Calls to org.apache.log4j.Logger.getLogger that accept a LoggerFactory must
remove the org.apache.log4j.spi.LoggerFactory and use one of Log4j 2's other
extension mechanisms.

5. Replace calls to org.apache.log4j.Logger.getEffectiveLevel() with
org.apache.logging.log4j.Logger.getLevel().

6. Remove calls to org.apache.log4j.LogManager.shutdown(), they are not needed in
version 2 because the Log4j Core now automatically adds a JVM shutdown hook on start up to
perform any Core clean ups.

7. Calls to org.apache.log4j.Logger.setLevel() or similar methods are not supported in
the API. Applications should remove these. Equivalent functionality is provided in the Log4j 2
implementation classes but may leave the application susceptible to changes in Log4j 2 internals.

8. Where appropriate, applications should convert to use parameterized messages instead of String
concatenation.

3.1.3 Configuring Log4j 2

Although the Log4j 2 configuration syntax is different than that of Log4j 1.x, most, if not all, of
the same functionality is available. Below are the example configurations for Log4j 1.x and their
counterparts in Log4j 2.

3 L o g 4 j 1 . x M i g r a t i o n 11

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

3.1.3.1 Sample 1 - Simple configuration using a Console Appender

Log4j 1.x XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="info" />

 </category>

 <Root>

 <priority value ="debug" />

 <appender-ref ref="STDOUT" />

 </Root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>

 <Appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="org.apache.log4j.xml" level="info"/>

 <Root level="debug">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

3.1.3.2 Sample 2 - Simple configuration using a File Appender

Log4j 1.x XML configuration

3 L o g 4 j 1 . x M i g r a t i o n 12

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="A1" class="org.apache.log4j.FileAppender">

 <param name="File" value="A1.log" />

 <param name="Append" value="false" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%t %-5p %c{2} - %m%n"/>

 </layout>

 </appender>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="debug" />

 <appender-ref ref="A1" />

 </category>

 <root>

 <priority value ="debug" />

 <appender-ref ref="STDOUT" />

 </Root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>

 <Appenders>

 <File name="A1" fileName="A1.log" append="false">

 <PatternLayout pattern="%t %-5p %c{2} - %m%n"/>

 </File>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="org.apache.log4j.xml" level="debug">

 <AppenderRef ref="A1"/>

 </Logger>

 <Root level="debug">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

3.1.3.3 Sample 3 - SocketAppender

Log4j 1.x XML configuration. This example from Log4j 1.x is misleading. The SocketAppender does
not actually use a Layout. Configuring one will have no effect.

3 L o g 4 j 1 . x M i g r a t i o n 13

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="A1" class="org.apache.log4j.net.SocketAppender">

 <param name="RemoteHost" value="localhost"/>

 <param name="Port" value="5000"/>

 <param name="LocationInfo" value="true"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%t %-5p %c{2} - %m%n"/>

 </layout>

 </appender>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="debug"/>

 <appender-ref ref="A1"/>

 </category>

 <root>

 <priority value="debug"/>

 <appender-ref ref="STDOUT"/>

 </Root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>

 <Appenders>

 <Socket name="A1" host="localHost" port="5000">

 <SerializedLayout/>

 </Socket>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="org.apache.log4j.xml" level="debug">

 <AppenderRef ref="A1"/>

 </Logger>

 <Root level="debug">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

3.1.3.4 Sample 4 - AsyncAppender

Log4j 1.x XML configuration using the AsyncAppender.

3 L o g 4 j 1 . x M i g r a t i o n 14

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" configDebug="true">

 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">

 <appender-ref ref="TEMP"/>

 </appender>

 <appender name="TEMP" class="org.apache.log4j.FileAppender">

 <param name="File" value="temp"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <root>

 <priority value="debug"/>

 <appender-ref ref="ASYNC"/>

 </Root>

</log4j:configuration>

Log4j 2 XML configuration.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="debug">

 <Appenders>

 <File name="TEMP" fileName="temp">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </File>

 <Async name="ASYNC">

 <AppenderRef ref="TEMP"/>

 </Async>

 </Appenders>

 <Loggers>

 <Root level="debug">

 <AppenderRef ref="ASYNC"/>

 </Root>

 </Loggers>

</Configuration>

3.1.3.5 Sample 5 - AsyncAppender with Console and File

Log4j 1.x XML configuration using the AsyncAppender.

3 L o g 4 j 1 . x M i g r a t i o n 15

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" configDebug="true">

 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">

 <appender-ref ref="TEMP"/>

 <appender-ref ref="CONSOLE"/>

 </appender>

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <appender name="TEMP" class="org.apache.log4j.FileAppender">

 <param name="File" value="temp"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <root>

 <priority value="debug"/>

 <appender-ref ref="ASYNC"/>

 </Root>

</log4j:configuration>

Log4j 2 XML configuration. Note that the Async Appender should be configured after the appenders
it references. This will allow it to shutdown properly.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="debug">

 <Appenders>

 <Console name="CONSOLE" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 <File name="TEMP" fileName="temp">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </File>

 <Async name="ASYNC">

 <AppenderRef ref="TEMP"/>

 <AppenderRef ref="CONSOLE"/>

 </Async>

 </Appenders>

 <Loggers>

 <Root level="debug">

 <AppenderRef ref="ASYNC"/>

 </Root>

 </Loggers>

</Configuration>

4 A P I 16

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

4 API
...

4.1 Log4j 2 API

4.1.1 Overview

The Log4j 2 API provides the interface that applications should code to and provides the adapter
components required for implementers to create a logging implementation. Although Log4j 2 is
broken up between an API and an implementation, the primary purpose of doing so was not to allow
multiple implementations, although that is certainly possible, but to clearly define what classes and
methods are safe to use in "normal" application code.

4.1.1.1 Hello World!

No introduction would be complete without the customary Hello, World example. Here is ours. First,
a Logger with the name "HelloWorld" is obtained from the LogManager. Next, the logger is used
to write the "Hello, World!" message, however the message will be written only if the Logger is
configured to allow informational messages.

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class HelloWorld {

 private static final Logger logger = LogManager.getLogger("HelloWorld");

 public static void main(String[] args) {

 logger.info("Hello, World!");

 }

}

The output from the call to logger.info() will vary significantly depending on the configuration used.
See the Configuration section for more details.

4.1.1.2 Substituting Parameters

Frequently the purpose of logging is to provide information about what is happening in the system,
which requires including information about the objects being manipulated. In Log4j 1.x this could be
accomplished by doing:

if (logger.isDebugEnabled()) {

 logger.debug("Logging in user " + user.getName() + " with birthday " + user.getBirthdayCalendar());

}

Doing this repeatedly has the effect of making the code feel like it is more about logging than the
actual task at hand. In addition, it results in the logging level being checked twice; once on the call to
isDebugEnabled and once on the debug method. A better alternative would be:

logger.debug("Logging in user {} with birthday {}", user.getName(), user.getBirthdayCalendar());

With the code above the logging level will only be checked once and the String construction will only
occur when debug logging is enabled.

4.1.1.3 Formatting Parameters

Substituting parameters leaves formatting up to you if toString() is not what you want. To
facilitate formatting, you can use the same format strings as Java's Formatter. For example:

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html#syntax

4 A P I 17

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

public static Logger logger = LogManager.getFormatterLogger("Foo");

logger.debug("Logging in user %s with birthday %s", user.getName(), user.getBirthdayCalendar());

logger.debug("Logging in user %1$s with birthday %2$tm %2$te,%2$tY", user.getName(), user.getBirthdayCalendar());

logger.debug("Integer.MAX_VALUE = %,d", Integer.MAX_VALUE);

logger.debug("Long.MAX_VALUE = %,d", Long.MAX_VALUE);

To use a formatter Logger, you must call one of the LogManager getFormatterLogger method. The
output for this example shows that Calendar toString() is verbose compared to custom formatting:

2012-12-12 11:56:19,633 [main] DEBUG: User John Smith with birthday java.util.GregorianCalendar[time=?,areFieldsSet=false,areAllFieldsSet=false,lenient=true,zone=sun.util.calendar.ZoneInfo[id="America/New_York",offset=-18000000,dstSavings=3600000,useDaylight=true,transitions=235,lastRule=java.util.SimpleTimeZone[id=America/New_York,offset=-18000000,dstSavings=3600000,useDaylight=true,startYear=0,startMode=3,startMonth=2,startDay=8,startDayOfWeek=1,startTime=7200000,startTimeMode=0,endMode=3,endMonth=10,endDay=1,endDayOfWeek=1,endTime=7200000,endTimeMode=0]],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=?,YEAR=1995,MONTH=4,WEEK_OF_YEAR=?,WEEK_OF_MONTH=?,DAY_OF_MONTH=23,DAY_OF_YEAR=?,DAY_OF_WEEK=?,DAY_OF_WEEK_IN_MONTH=?,AM_PM=0,HOUR=0,HOUR_OF_DAY=0,MINUTE=0,SECOND=0,MILLISECOND=?,ZONE_OFFSET=?,DST_OFFSET=?]

2012-12-12 11:56:19,643 [main] DEBUG: User John Smith with birthday 05 23, 1995

2012-12-12 11:56:19,643 [main] DEBUG: Integer.MAX_VALUE = 2,147,483,647

2012-12-12 11:56:19,643 [main] DEBUG: Long.MAX_VALUE = 9,223,372,036,854,775,807

4.1.1.4 Mixing Loggers with Formatter Loggers

Formatter loggers give fine-grained control over the output format, but have the drawback that the
correct type must be specified (for example, passing anything other than a decimal integer for a %d
format parameter gives an exception).

If your main usage is to use {}-style parameters, but occasionally you need fine-grained control over
the output format, you can use the printf method:

public static Logger logger = LogManager.getLogger("Foo");

logger.debug("Opening connection to {}...", someDataSource);

logger.printf(Level.INFO, "Logging in user %1$s with birthday %2$tm %2$te,%2$tY", user.getName(), user.getBirthdayCalendar());

4.1.1.5 Logger Names

Most logging implementations use a hierarchical scheme for matching logger names with logging
configuration. In this scheme the logger name hierarchy is represented by '.' characters in the
logger name, in a fashion very similar to the hierarchy used for Java package names. For example,
org.apache.logging.appender and org.apache.logging.filter both have org.apache.logging as their
parent. In most cases, applications name their loggers by passing the current class's name to
LogManager.getLogger. Because this usage is so common, Log4j 2 provides that as the default when
the logger name parameter is either omitted or is null. For example, in both examples below the
Logger will have a name of "org.apache.test.MyTest".

package org.apache.test;

public class MyTest {

 private static final Logger logger = LogManager.getLogger(MyTest.class.getName());

}

package org.apache.test;

public class MyTest {

 private static final Logger logger = LogManager.getLogger();

}

5 C o n f i g u r a t i o n 18

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5 Configuration
...

5.1 Configuration
Inserting log requests into the application code requires a fair amount of planning and effort.
Observation shows that approximately 4 percent of code is dedicated to logging. Consequently, even
moderately sized applications will have thousands of logging statements embedded within their code.
Given their number, it becomes imperative to manage these log statements without the need to modify
them manually.

Configuration of Log4j 2 can be accomplished in 1 of 4 ways:

1. Through a configuration file written in XML, JSON, or YAML.
2. Programmatically, by creating a ConfigurationFactory and Configuration implementation.
3. Programmatically, by calling the APIs exposed in the Configuration interface to add components

to the default configuration.
4. Programmatically, by calling methods on the internal Logger class.

This page focuses primarily on configuring Log4j through a configuration file. Information on
programmatically configuring Log4j can be found at Extending Log4j 2.

Note that unlike Log4j 1.x, the public Log4j 2 API does not expose methods to add, modify or remove
appenders and filters or manipulate the configuration in any way.

5.1.1 Automatic Configuration

Log4j has the ability to automatically configure itself during initialization. When Log4j starts it will
locate all the ConfigurationFactory plugins and arrange then in weighted order from highest to lowest.
As delivered, Log4j contains three ConfigurationFactory implementations: one for JSON, one for
YAML, and one for XML.

1. Log4j will inspect the "log4j.configurationFile" system property and, if set, will attempt
to load the configuration using the ConfigurationFactory that matches the file extension.

2. If no system property is set the YAML ConfigurationFactory will look for log4j2-test.yaml
or log4j2-test.yml in the classpath.

3. If no such file is found the JSON ConfigurationFactory will look for log4j2-test.json or
log4j2-test.jsn in the classpath.

4. If no such file is found the XML ConfigurationFactory will look for log4j2-test.xml in the
classpath.

5. If a test file cannot be located the YAML ConfigurationFactory will look for log4j2.yaml or
log4j2.yml on the classpath.

6. If a YAML file cannot be located the JSON ConfigurationFactory will look for log4j2.json or
log4j2.jsn on the classpath.

7. If a JSON file cannot be located the XML ConfigurationFactory will try to locate log4j2.xml
on the classpath.

8. If no configuration file could be located the DefaultConfiguration will be used. This will
cause logging output to go to the console.

An example application named MyApp that uses log4j can be used to illustrate how this is done.

5 C o n f i g u r a t i o n 19

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

import com.foo.Bar;

// Import log4j classes.

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.LogManager;

public class MyApp {

 // Define a static logger variable so that it references the

 // Logger instance named "MyApp".

 private static final Logger logger = LogManager.getLogger(MyApp.class);

 public static void main(final String... args) {

 // Set up a simple configuration that logs on the console.

 logger.trace("Entering application.");

 Bar bar = new Bar();

 if (!bar.doIt()) {

 logger.error("Didn't do it.");

 }

 logger.trace("Exiting application.");

 }

}

MyApp begins by importing log4j related classes. It then defines a static logger variable with the name
MyApp which happens to be the fully qualified name of the class.

MyApp uses the Bar class defined in the package com.foo.

package com.foo;

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.LogManager;

public class Bar {

 static final Logger logger = LogManager.getLogger(Bar.class.getName());

 public boolean doIt() {

 logger.entry();

 logger.error("Did it again!");

 return logger.exit(false);

 }

}

Log4j will provide a default configuration if it cannot locate a configuration file. The default
configuration, provided in the DefaultConfiguration class, will set up:

• A ConsoleAppender attached to the root logger.
• A PatternLayout set to the pattern "%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg

%n" attached to the ConsoleAppender
Note that by default Log4j assigns the root logger to Level.ERROR.

The output of MyApp would be similar to:

5 C o n f i g u r a t i o n 20

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

17:13:01.540 [main] ERROR MyApp - Didn't do it.

As was described previously, Log4j will first attempt to configure itself from configuration files. A
configuration equivalent to the default would look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="WARN">

 <Appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Console"/>

 </Root>

 </Loggers>

</Configuration>

Once the file above is placed into the classpath as log4j2.xml you will get results identical to those
listed above. Changing the root level to trace will result in results similar to:

17:13:01.540 [main] TRACE MyApp - Entering application.

17:13:01.540 [main] TRACE com.foo.Bar - entry

17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

17:13:01.540 [main] TRACE com.foo.Bar - exit with (false)

17:13:01.540 [main] ERROR MyApp - Didn't do it.

17:13:01.540 [main] TRACE MyApp - Exiting application.

Note that status logging is disabled when the default configuration is used.

Perhaps it is desired to eliminate all the TRACE output from everything except com.foo.Bar.
Simply changing the log level would not accomplish the task. Instead, the solution is to add a new
logger definition to the configuration:

<Logger name="com.foo.Bar" level="TRACE"/>

<Root level="ERROR">

 <AppenderRef ref="STDOUT">

</Root>

With this configuration all log events from com.foo.Bar will be recorded while only error events
will be recorded from all other components.

5.1.2 Additivity

In the previous example all the events from com.foo.Bar were still written to the Console. This is
because the logger for com.foo.Bar did not have any appenders configured while its parent did. In
fact, the following configuration

5 C o n f i g u r a t i o n 21

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="WARN">

 <Appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="com.foo.Bar" level="trace">

 <AppenderRef ref="Console"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="Console"/>

 </Root>

 </Loggers>

</Configuration>

would result in

17:13:01.540 [main] TRACE com.foo.Bar - entry

17:13:01.540 [main] TRACE com.foo.Bar - entry

17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

17:13:01.540 [main] TRACE com.foo.Bar - exit (false)

17:13:01.540 [main] TRACE com.foo.Bar - exit (false)

17:13:01.540 [main] ERROR MyApp - Didn't do it.

Notice that the trace messages from com.foo.Bar appear twice. This is because the appender
associated with logger com.foo.Bar is first used, which writes the first instance to the Console.
Next, the parent of com.foo.Bar, which in this case is the root logger, is referenced. The event is
then passed to its appender, which is also writes to the Console, resulting in the second instance. This
is known as additivity. While additivity can be quite a convenient feature (as in the first previous
example where no appender reference needed to be configured), in many cases this behavior is
considered undesirable and so it is possible to disable it by setting the additivity attribute on the logger
to false:

5 C o n f i g u r a t i o n 22

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="WARN">

 <Appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="com.foo.Bar" level="trace" additivity="false">

 <AppenderRef ref="Console"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="Console"/>

 </Root>

 </Loggers>

</Configuration>

Once an event reaches a logger with its additivity set to false the event will not be passed to any of its
parent loggers, regardless of their additivity setting.

5.1.3 Automatic Reconfiguration

When configured from a File, Log4j has the ability to automatically detect changes to the
configuration file and reconfigure itself. If the monitorInterval attribute is specified on the
configuration element and is set to a non-zero value then the file will be checked the next time a
log event is evaluated and/or logged and the monitorInterval has elapsed since the last check. The
example below shows how to configure the attribute so that the configuration file will be checked for
changes only after at least 30 seconds have elapsed. The minimum interval is 5 seconds.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration monitorInterval="30">

...

</Configuration>

5.1.4 Chainsaw can automatically process your log files (Advertising appender configurations)

Log4j provides the ability to 'advertise' appender configuration details for all file-based appenders
as well as socket-based appenders. For example, for file-based appenders, the file location and the
pattern layout in the file are included in the advertisement. Chainsaw and other external systems can
discover these advertisements and use that information to intelligently process the log file.

The mechanism by which an advertisement is exposed, as well as the advertisement format, is specific
to each Advertiser implementation. An external system which would like to work with a specific
Advertiser implementation must understand how to locate the advertised configuration as well as the
format of the advertisement. For example, a 'database' Advertiser may store configuration details in
a database table. An external system can read that database table in order to discover the file location
and the file format.

5 C o n f i g u r a t i o n 23

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Log4j provides one Advertiser implementation, a 'multicastdns' Advertiser, which advertises appender
configuration details via IP multicast using the http://jmdns.sourceforge.net library.

Chainsaw automatically discovers log4j's multicastdns-generated advertisements and displays
those discovered advertisements in Chainsaw's Zeroconf tab (if the jmdns library is in Chainsaw's
classpath). To begin parsing and tailing a log file provided in an advertisement, just double-click
the advertised entry in Chainsaw's Zeroconf tab. Currently, Chainsaw only supports FileAppender
advertisements.

To advertise an appender configuration:

• Add the JmDns library from http://jmdns.sourceforge.net to the application classpath
• Set the 'advertiser' attribute of the configuration element to 'multicastdns'
• Set the 'advertise' attribute on the appender element to 'true'
• If advertising a FileAppender-based configuration, set the 'advertiseURI' attribute on the

appender element to an appropriate URI
FileAppender-based configurations require an additional 'advertiseURI' attribute to be specified on
the appender. The 'advertiseURI' attribute provides Chainsaw with information on how the file can be
accessed. For example, the file may be remotely accessible to Chainsaw via ssh/sftp by specifying a
Commons VFS (http://commons.apache.org/proper/commons-vfs/) sftp:// URI, an http:// URI may
be used if the file is accessible through a web server, or a file:// URI can be specified if accessing the
file from a locally-running instance of Chainsaw.

Here is an example advertisement-enabled appender configuration which can be used by a locally-
running Chainsaw to automatically tail the log file (notice the file:// advertiseURI):

Please note, you must add the JmDns library from http://jmdns.sourceforge.net to your
application classpath in order to advertise with the 'multicastdns' advertiser.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration advertiser="multicastdns">

...

</Configuration>

<Appenders>

 <File name="File1" fileName="output.log" bufferedIO="false" advertiseURI="file://path/to/output.log" advertise="true">

 ...

 </File>

</Appenders>

5.1.5 Configuration Syntax

As the previous examples have shown as well as those to follow, Log4j allows you to easily redefine
logging behavior without needing to modify your application. It is possible to disable logging for
certain parts of the application, log only when specific criteria are met such as the action being
performed for a specific user, route output to Flume or a log reporting system, etc. Being able to do
this requires understanding the syntax of the configuration files.

5.1.5.1 Configuration with XML

The configuration element in the XML file accepts several attributes:

http://jmdns.sourceforge.net
http://jmdns.sourceforge.net
http://commons.apache.org/proper/commons-vfs/
http://jmdns.sourceforge.net

5 C o n f i g u r a t i o n 24

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Attribute Name Description

advertiser (Optional) The Advertiser plugin name which will
be used to advertise individual FileAppender or
SocketAppender configurations. The only Advertiser
plugin provided is 'multicastdns".

dest Either "err", which will send output to stderr, or a file
path or URL.

monitorInterval The minimum amount of time, in seconds, that must
elapse before the file configuration is checked for
changes.

name The name of the configuration.

packages A comma separated list of package names to
search for plugins. Plugins are only loaded once per
classloader so changing this value may not have any
effect upon reconfiguration.

schema Identifies the location for the classloader to located the
XML Schema to use to validate the configuration. Only
valid when strict is set to true. If not set no schema
validation will take place.

shutdownHook Specifies whether or not Log4j should automatically
shutdown when the JVM shuts down. The shutdown
hook is enabled by default but may be disabled by
setting this attribute to "disable"

status The level of internal Log4j events that should be
logged to the console. Valid values for this attribute
are "trace", "debug", "info", "warn", "error" and "fatal".
Log4j will log details about initialization, rollover and
other internal actions to the status logger. Setting
status="trace" is one of the first tools available
to you if you need to troubleshoot log4j.

strict Enables the use of the strict XML format. Not
supported in JSON configurations.

verbose Enables diagnostic information while loading plugins.

Log4j can be configured using two XML flavors; concise and strict. The concise format makes
configuration very easy as the element names match the components they represent however it cannot
be validated with an XML schema. For example, the ConsoleAppender is configured by declaring an
XML element named Console under its parent appenders element. However, element and attribute
names are are not case sensitive. In addition, attributes can either be specified as an XML attribute or
as an XML element that has no attributes and has a text value. So

<PatternLayout pattern="%m%n"/>

and

<PatternLayout>

 <Pattern>%m%n</Pattern>

</PatternLayout>

are equivalent.

5 C o n f i g u r a t i o n 25

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The file below represents the structure of an XML configuration, but note that the elements in italics
below represent the concise element names that would appear in their place.

<?xml version="1.0" encoding="UTF-8"?>;

<Configuration>

 <Properties>

 <Property name="name1">value</property>

 <Property name="name2" value="value2"/>

 </Properties>

 <

filter ... />

 <Appenders>

 <

appender ... >

 <

filter ... />

 </

appender>

 ...

 </Appenders>

 <Loggers>

 <Logger name="name1">

 <

filter ... />

 </Logger>

 ...

 <Root level="level">

 <AppenderRef ref="name"/>

 </Root>

 </Loggers>

</Configuration>

See the many examples on this page for sample appender, filter and logger declarations.

5.Strict XML

In addition to the concise XML format above, Log4j allows configurations to be specified in a
more "normal" XML manner that can be validated using an XML Schema. This is accomplished by
replacing the friendly element names above with their object type as shown below. For example,
instead of the ConsoleAppender being configuerd using an element named Console it is instead
configured as an appender element with a type attribute containing "Console".

5 C o n f i g u r a t i o n 26

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>;

<Configuration>

 <Properties>

 <Property name="name1">value</property>

 <Property name="name2" value="value2"/>

 </Properties>

 <Filter type="type" ... />

 <Appenders>

 <Appender type="type" name="name">

 <Filter type="type" ... />

 </Appender>

 ...

 </Appenders>

 <Loggers>

 <Logger name="name1">

 <Filter type="type" ... />

 </Logger>

 ...

 <Root level="level">

 <AppenderRef ref="name"/>

 </Root>

 </Loggers>

</Configuration>

Below is a sample configuration using the strict format.

5 C o n f i g u r a t i o n 27

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="debug" strict="true" name="XMLConfigTest"

 packages="org.apache.logging.log4j.test">

 <Properties>

 <Property name="filename">target/test.log</Property>

 </Properties>

 <Filter type="ThresholdFilter" level="trace"/>

 <Appenders>

 <Appender type="Console" name="STDOUT">

 <Layout type="PatternLayout" pattern="%m MDC%X%n"/>

 <Filters>

 <Filter type="MarkerFilter" marker="FLOW" onMatch="DENY" onMismatch="NEUTRAL"/>

 <Filter type="MarkerFilter" marker="EXCEPTION" onMatch="DENY" onMismatch="ACCEPT"/>

 </Filters>

 </Appender>

 <Appender type="Console" name="FLOW">

 <Layout type="PatternLayout" pattern="%C{1}.%M %m %ex%n"/><!-- class and line number -->

 <Filters>

 <Filter type="MarkerFilter" marker="FLOW" onMatch="ACCEPT" onMismatch="NEUTRAL"/>

 <Filter type="MarkerFilter" marker="EXCEPTION" onMatch="ACCEPT" onMismatch="DENY"/>

 </Filters>

 </Appender>

 <Appender type="File" name="File" fileName="${filename}">

 <Layout type="PatternLayout">

 <Pattern>%d %p %C{1.} [%t] %m%n</Pattern>

 </Layout>

 </Appender>

 <Appender type="List" name="List">

 </Appender>

 </Appenders>

 <Loggers>

 <Logger name="org.apache.logging.log4j.test1" level="debug" additivity="false">

 <Filter type="ThreadContextMapFilter">

 <KeyValuePair key="test" value="123"/>

 </Filter>

 <AppenderRef ref="STDOUT"/>

 </Logger>

 <Logger name="org.apache.logging.log4j.test2" level="debug" additivity="false">

 <AppenderRef ref="File"/>

 </Logger>

 <Root level="trace">

 <AppenderRef ref="List"/>

 </Root>

 </Loggers>

</Configuration>

5 C o n f i g u r a t i o n 28

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.5.2 Configuration with JSON

In addition to XML, Log4j can be configured using JSON. The JSON format is very similar to the
concise XML format. Each key represents the name of a plugin and the key/value pairs associated
with it are its attributes. Where a key contains more than a simple value it itself will be a subordinate
plugin. In the example below, ThresholdFilter, Console, and PatternLayout are all plugins while the
Console plugin will be assigned a value of STDOUT for its name attribute and the ThresholdFilter
will be assigned a level of debug.

{ "configuration": { "status": "error", "name": "RoutingTest",

 "packages": "org.apache.logging.log4j.test",

 "properties": {

 "property": { "name": "filename",

 "value" : "target/rolling1/rollingtest-$${sd:type}.log" }

 },

 "ThresholdFilter": { "level": "debug" },

 "appenders": {

 "Console": { "name": "STDOUT",

 "PatternLayout": { "pattern": "%m%n" }

 },

 "List": { "name": "List",

 "ThresholdFilter": { "level": "debug" }

 },

 "Routing": { "name": "Routing",

 "Routes": { "pattern": "$${sd:type}",

 "Route": [

 {

 "RollingFile": {

 "name": "Rolling-${sd:type}", "fileName": "${filename}",

 "filePattern": "target/rolling1/test1-${sd:type}.%i.log.gz",

 "PatternLayout": {"pattern": "%d %p %c{1.} [%t] %m%n"},

 "SizeBasedTriggeringPolicy": { "size": "500" }

 }

 },

 { "AppenderRef": "STDOUT", "key": "Audit"},

 { "AppenderRef": "List", "key": "Service"}

]

 }

 }

 },

 "loggers": {

 "logger": { "name": "EventLogger", "level": "info", "additivity": "false",

 "AppenderRef": { "ref": "Routing" }},

 "root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}

 }

 }

}

Note that in the RoutingAppender the Route element has been declared as an array. This is valid
because each array element will be a Route component. This won't work for elements such as
appenders and filters, where each element has a different name in the concise format. Appenders and
filters can be defined as array elements if each appender or filter declares an attribute named "type"

5 C o n f i g u r a t i o n 29

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

that contains the type of the appender. The following example illustrates this as well as how to declare
multiple loggers as an array.

{ "configuration": { "status": "debug", "name": "RoutingTest",

 "packages": "org.apache.logging.log4j.test",

 "properties": {

 "property": { "name": "filename",

 "value" : "target/rolling1/rollingtest-$${sd:type}.log" }

 },

 "ThresholdFilter": { "level": "debug" },

 "appenders": {

 "appender": [

 { "type": "Console", "name": "STDOUT", "PatternLayout": { "pattern": "%m%n" }},

 { "type": "List", "name": "List", "ThresholdFilter": { "level": "debug" }},

 { "type": "Routing", "name": "Routing",

 "Routes": { "pattern": "$${sd:type}",

 "Route": [

 {

 "RollingFile": {

 "name": "Rolling-${sd:type}", "fileName": "${filename}",

 "filePattern": "target/rolling1/test1-${sd:type}.%i.log.gz",

 "PatternLayout": {"pattern": "%d %p %c{1.} [%t] %m%n"},

 "SizeBasedTriggeringPolicy": { "size": "500" }

 }

 },

 { "AppenderRef": "STDOUT", "key": "Audit"},

 { "AppenderRef": "List", "key": "Service"}

]

 }

 }

]

 },

 "loggers": {

 "logger": [

 { "name": "EventLogger", "level": "info", "additivity": "false",

 "AppenderRef": { "ref": "Routing" }},

 { "name": "com.foo.bar", "level": "error", "additivity": "false",

 "AppenderRef": { "ref": "Console" }}

],

 "root": { "level": "error", "AppenderRef": { "ref": "STDOUT" }}

 }

 }

}

The JSON support uses the Jackson Data Processor to parse the JSON files. These dependencies must
be added to a project that wants to use JSON for configuration:

5 C o n f i g u r a t i o n 30

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-core</artifactId>

 <version>${jackson2Version}</version>

</dependency>

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>${jackson2Version}</version>

</dependency>

<dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>${jackson2Version}</version>

</dependency>

5.1.5.3 Configuring loggers

An understanding of how loggers work in Log4j is critical before trying to configure them. Please
reference the Log4j architecture if more information is required. Trying to configure Log4j without
understanding those concepts will lead to frustration.

A LoggerConfig is configured using the logger element. The logger element must have a name
attribute specified, will usually have a level attribute specified and may also have an additivity
attribute specified. The level may be configured with one of TRACE, DEBUG, INFO, WARN,
ERROR, ALL or OFF. If no level is specified it will default to ERROR. The additivity attribute may
be assigned a value of true or false. If the attribute is omitted the default value of false will be used.

A LoggerConfig (including the root LoggerConfig) can be configured with properties that will be
added to the properties copied from the ThreadContextMap. These properties can be referenced from
Appenders, Filters, Layouts, etc just as if they were part of the ThreadContext Map. The properties
can contain variables that will be resolved either when the configuration is parsed or dynamically
when each event is logged. See Property Substitution for more information on using variables.

The LoggerConfig may also be configured with one or more AppenderRef elements. Each appender
referenced will become associated with the specified LoggerConfig. If multiple appenders are
configured on the LoggerConfig each of them be called when processing logging events.

Every configuration must have a root logger. If one is not configured the default root LoggerConfig,
which has a level of ERROR and has a Console appender attached, will be used. The main differences
between the root logger and other loggers are

1. The root logger does not have a name attribute.
2. The root logger does not support the additivity attribute since it has no parent.

5.1.5.4 Configuring Appenders

An appender is configured either using the specific appender plugin's name or with an appender
element and the type attibute containing the appender plugin's name. In addition each appender must
have a name attribute specified with a value that is unique within the set of appenders. The name will
be used by loggers to reference the appender as described in the previous section.

5 C o n f i g u r a t i o n 31

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Most appenders also support a layout to be configured (which again may be specified either using the
specific Layout plugin's name as the element or with "layout" as the element name along with a type
attribute that contains the layout plugin's name. The various appenders will contain other attributes or
elements that are required for them to function properly.

5.1.5.5 Configuring Filters

Log4j allows a filter to be specified in any of 4 places:

1. At the same level as the appenders, loggers and properties elements. These filters can accept or
reject events before they have been passed to a LoggerConfig.

2. In a logger element. These filters can accept or reject events for specific loggers.
3. In an appender element. These filters can prevent or cause events to be processed by the

appender.
4. In an appender reference element. These filters are used to determine if a Logger should route the

event to an appender.
Although only a single filter element can be configured, that element may be the filters element
which represents the CompositeFilter. The filters element allows any number of filter elements
to be configured within it. The following example shows how multiple filters can be configured on the
ConsoleAppender.

5 C o n f i g u r a t i o n 32

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="debug" name="XMLConfigTest" packages="org.apache.logging.log4j.test">

 <Properties>

 <Property name="filename">target/test.log</Property>

 </Properties>

 <ThresholdFilter level="trace"/>

 <Appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m MDC%X%n"/>

 </Console>

 <Console name="FLOW">

 <!-- this pattern outputs class name and line number -->

 <PatternLayout pattern="%C{1}.%M %m %ex%n"/>

 <filters>

 <MarkerFilter marker="FLOW" onMatch="ACCEPT" onMismatch="NEUTRAL"/>

 <MarkerFilter marker="EXCEPTION" onMatch="ACCEPT" onMismatch="DENY"/>

 </filters>

 </Console>

 <File name="File" fileName="${filename}">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 <List name="List">

 </List>

 </Appenders>

 <Loggers>

 <Logger name="org.apache.logging.log4j.test1" level="debug" additivity="false">

 <ThreadContextMapFilter>

 <KeyValuePair key="test" value="123"/>

 </ThreadContextMapFilter>

 <AppenderRef ref="STDOUT"/>

 </Logger>

 <Logger name="org.apache.logging.log4j.test2" level="debug" additivity="false">

 <Property name="user">${sys:user.name}</Property>

 <AppenderRef ref="File">

 <ThreadContextMapFilter>

 <KeyValuePair key="test" value="123"/>

 </ThreadContextMapFilter>

 </AppenderRef>

 <AppenderRef ref="STDOUT" level="error"/>

 </Logger>

 <Root level="trace">

 <AppenderRef ref="List"/>

 </Root>

 </Loggers>

</Configuration>

5 C o n f i g u r a t i o n 33

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.6 Property Substitution

Log4j 2 supports the ability to specify tokens in the configuration as references to properties defined
elsewhere. Some of these properties will be resolved when the configuration file is interpreted while
others may be passed to components where they will be evaluated at runtime. To accomplish this,
Log4j uses variations of Apache Commons Lang's StrSubstitutor and StrLookup classes. In a
manner similar to Ant or Maven, this allows variables declared as ${name} to be resolved using
properties declared in the configuration itself. For example, the following example shows the filename
for the rolling file appender being declared as a property.

https://commons.apache.org/proper/commons-lang/

5 C o n f i g u r a t i o n 34

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="debug" name="RoutingTest" packages="org.apache.logging.log4j.test">

 <Properties>

 <Property name="filename">target/rolling1/rollingtest-$${sd:type}.log</Property>

 </Properties>

 <ThresholdFilter level="debug"/>

 <Appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <List name="List">

 <ThresholdFilter level="debug"/>

 </List>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route ref="STDOUT" key="Audit"/>

 <Route ref="List" key="Service"/>

 </Routes>

 </Routing>

 </Appenders>

 <Loggers>

 <Logger name="EventLogger" level="info" additivity="false">

 <AppenderRef ref="Routing"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

While this is useful, there are many more places properties can originate from. To accommodate this,
Log4j also supports the syntax ${prefix:name} where the prefix identifies tells Log4j that variable
name should be evaluated in a specific context. The contexts that are built in to Logj4 are:

Prefix Context

5 C o n f i g u r a t i o n 35

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

bundle Resource bundle. The format is
${bundle:BundleName:BundleKey}.
The bundle name follows package
naming conventions, for example:
${bundle:com.domain.Messages:MyKey}.

ctx Thread Context Map (MDC)

date Inserts the current date and/or time using the specified
format

env System environment variables

jvmrunargs A JVM input argument accessed through
JMX, but not a main argument; see
RuntimeMXBean.getInputArguments(). Not available
on Android.

main A value set with
MapLookup.setMainArguments(String[])

map A value from a MapMessage

sd A value from a StructuredDataMessage. The key "id"
will return the name of the StructuredDataId without
the enterprise number. The key "type" will return the
message type. Other keys will retrieve individual
elements from the Map.

sys System properties

A default property map can be declared in the configuration file. If the value cannot be located in
the specified lookup the value in the default property map will be used. The default map is pre-
populated with a value for "hostName" that is the current system's host name or IP address and the
"contextName" with is the value of the current logging context.

An interesting feature of StrLookup processing is that when a variable reference is declared with
multiple leading '$' characters each time the variable is resolved the leading '$' is simply removed. In
the previous example the "Routes" element is capable of resolving the variable at runtime. To allow
this the prefix value is specified as a variable with two leading '$' characters. When the configuration
file is first processed the first variable is simply removed. Thus, when the Routes element is evaluated
at runtime it is the variable declaration "${sd:type}" which causes the event to be inspected for a
StructuredDataMessage and if one is present the value of its type attribute to be used as the routing
key. Not all elements support resolving variables at runtime. Components that do will specifically call
that out in their documentation.

If no value is found for the key in the Lookup associated with the prefix then the value associated
with the key in the properties declaration in the configuration file will be used. If no value is found the
variable declaration will be returned as the value. Default values may be declared in the configuration
by doing:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration>

 <Properties>

 <Property name="type">Audit</property>

 </Properties>

 ...

</Configuration>

http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--
http://docs.oracle.com/javase/6/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

5 C o n f i g u r a t i o n 36

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

As a footnote, it is worth pointing out that the variables in the RollingFile appender declaration will
also not be evaluated when the configuration is processed. This is simply because the resolution
of the whole RollingFile element is deferred until a match occurs. See RoutingAppender for more
information.

5.1.7 XInclude

XML configuration files can include other files with XInclude. Here is an example log4j2.xml file
that includes two other files:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:xi="http://www.w3.org/2001/XInclude"

 status="warn" name="XIncludeDemo">

 <properties>

 <property name="filename">xinclude-demo.log</property>

 </properties>

 <ThresholdFilter level="debug"/>

 <xi:include href="log4j-xinclude-appenders.xml" />

 <xi:include href="log4j-xinclude-loggers.xml" />

</configuration>

log4j-xinclude-appenders.xml:

<?xml version="1.0" encoding="UTF-8"?>

<appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m%n" />

 </Console>

 <File name="File" fileName="${filename}" bufferedIO="true" immediateFlush="true">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

</appenders>

log4j-xinclude-loggers.xml:

http://www.xml.com/lpt/a/1009

5 C o n f i g u r a t i o n 37

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<loggers>

 <logger name="org.apache.logging.log4j.test1" level="debug" additivity="false">

 <ThreadContextMapFilter>

 <KeyValuePair key="test" value="123" />

 </ThreadContextMapFilter>

 <AppenderRef ref="STDOUT" />

 </logger>

 <logger name="org.apache.logging.log4j.test2" level="debug" additivity="false">

 <AppenderRef ref="File" />

 </logger>

 <root level="error">

 <AppenderRef ref="STDOUT" />

 </root>

</loggers>

5.1.8 Status Messages

Troubleshooting tip for the impatient:

• Before a configuration is found, status logger level can be controlled with system property
org.apache.logging.log4j.simplelog.StatusLogger.level.

• After a configuration is found, status logger level can be controlled in the configuration file with the "status"
attribute, for example: <Configuration status="trace">.

Just as it is desirable to be able to diagnose problems in applications, it is frequently necessary to
be able to diagnose problems in the logging configuration or in the configured components. Since
logging has not been configured, "normal" logging cannot be used during initialization. In addition,
normal logging within appenders could create infinite recursion which Log4j will detect and cause the
recursive events to be ignored. To accomodate this need, the Log4j 2 API includes a StatusLogger.
Components declare an instance of the StatusLogger similar to:

protected final static Logger logger = StatusLogger.getLogger();

Since StatusLogger implements the Log4j 2 API's Logger interface, all the normal Logger methods
may be used.

When configuring Log4j it is sometimes necessary to view the generated status events. This can
be accomplished by adding the status attribute to the configuration element or a default value can
be provided by setting the "Log4jDefaultStatusLevel" system property. Valid values of the status
attribute are "trace", "debug", "info", "warn", "error" and "fatal". The following configuration has the
status attribute set to debug.

5 C o n f i g u r a t i o n 38

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>;

<Configuration status="debug" name="RoutingTest">

 <Properties>

 <Property name="filename">target/rolling1/rollingtest-$${sd:type}.log</Property>

 </Properties>

 <ThresholdFilter level="debug"/>

 <Appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <List name="List">

 <ThresholdFilter level="debug"/>

 </List>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route ref="STDOUT" key="Audit"/>

 <Route ref="List" key="Service"/>

 </Routes>

 </Routing>

 </Appenders>

 <Loggers>

 <Logger name="EventLogger" level="info" additivity="false">

 <AppenderRef ref="Routing"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

During startup this configuration produces:

5 C o n f i g u r a t i o n 39

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

2011-11-23 17:08:00,769 DEBUG Generated plugins in 0.003374000 seconds

2011-11-23 17:08:00,789 DEBUG Calling createProperty on class org.apache.logging.log4j.core.

 config.Property for element property with params(name="filename",

 value="target/rolling1/rollingtest-${sd:type}.log")

2011-11-23 17:08:00,792 DEBUG Calling configureSubstitutor on class org.apache.logging.log4j.

 core.config.plugins.PropertiesPlugin for element properties with

 params(properties={filename=target/rolling1/rollingtest-${sd:type}.log})

2011-11-23 17:08:00,794 DEBUG Generated plugins in 0.001362000 seconds

2011-11-23 17:08:00,797 DEBUG Calling createFilter on class org.apache.logging.log4j.core.

 filter.ThresholdFilter for element ThresholdFilter with params(level="debug",

 onMatch="null", onMismatch="null")

2011-11-23 17:08:00,800 DEBUG Calling createLayout on class org.apache.logging.log4j.core.

 layout.PatternLayout for element PatternLayout with params(pattern="%m%n",

 Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08:00,802 DEBUG Generated plugins in 0.001349000 seconds

2011-11-23 17:08:00,804 DEBUG Calling createAppender on class org.apache.logging.log4j.core.

 appender.ConsoleAppender for element Console with params(PatternLayout(%m%n), null,

 target="null", name="STDOUT", ignoreExceptions="null")

2011-11-23 17:08:00,804 DEBUG Calling createFilter on class org.apache.logging.log4j.core.

 filter.ThresholdFilter for element ThresholdFilter with params(level="debug",

 onMatch="null", onMismatch="null")

2011-11-23 17:08:00,806 DEBUG Calling createAppender on class org.apache.logging.log4j.test.

 appender.ListAppender for element List with params(name="List", entryPerNewLine="null",

 raw="null", null, ThresholdFilter(DEBUG))

2011-11-23 17:08:00,813 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(AppenderRef="null", key="null", Node=Route)

2011-11-23 17:08:00,823 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(AppenderRef="STDOUT", key="Audit", Node=Route)

2011-11-23 17:08:00,824 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(AppenderRef="List", key="Service", Node=Route)

2011-11-23 17:08:00,825 DEBUG Calling createRoutes on class org.apache.logging.log4j.core.appender.

 routing.Routes for element Routes with params(pattern="${sd:type}",

 routes={Route(type=dynamic default), Route(type=static Reference=STDOUT key='Audit'),

 Route(type=static Reference=List key='Service')})

2011-11-23 17:08:00,827 DEBUG Calling createAppender on class org.apache.logging.log4j.core.appender.

 routing.RoutingAppender for element Routing with params(name="Routing",

 ignoreExceptions="null", Routes({Route(type=dynamic default),Route(type=static

 Reference=STDOUT key='Audit'),

 Route(type=static Reference=List key='Service')}), Configuration(RoutingTest), null, null)

2011-11-23 17:08:00,827 DEBUG Calling createAppenders on class org.apache.logging.log4j.core.config.

 plugins.AppendersPlugin for element appenders with params(appenders={STDOUT, List, Routing})

2011-11-23 17:08:00,828 DEBUG Calling createAppenderRef on class org.apache.logging.log4j.core.

 config.plugins.AppenderRefPlugin for element AppenderRef with params(ref="Routing")

2011-11-23 17:08:00,829 DEBUG Calling createLogger on class org.apache.logging.log4j.core.config.

 LoggerConfig for element logger with params(additivity="false", level="info", name="EventLogger",

 AppenderRef={Routing}, null)

2011-11-23 17:08:00,830 DEBUG Calling createAppenderRef on class org.apache.logging.log4j.core.

 config.plugins.AppenderRefPlugin for element AppenderRef with params(ref="STDOUT")

5 C o n f i g u r a t i o n 40

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

2011-11-23 17:08:00,831 DEBUG Calling createLogger on class org.apache.logging.log4j.core.config.

 LoggerConfig$RootLogger for element root with params(additivity="null", level="error",

 AppenderRef={STDOUT}, null)

2011-11-23 17:08:00,833 DEBUG Calling createLoggers on class org.apache.logging.log4j.core.

 config.plugins.LoggersPlugin for element loggers with params(loggers={EventLogger, root})

2011-11-23 17:08:00,834 DEBUG Reconfiguration completed

2011-11-23 17:08:00,846 DEBUG Calling createLayout on class org.apache.logging.log4j.core.

 layout.PatternLayout for element PatternLayout with params(pattern="%d %p %c{1.} [%t] %m%n",

 Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08:00,849 DEBUG Calling createPolicy on class org.apache.logging.log4j.core.

 appender.rolling.SizeBasedTriggeringPolicy for element SizeBasedTriggeringPolicy with

 params(size="500")

2011-11-23 17:08:00,851 DEBUG Calling createAppender on class org.apache.logging.log4j.core.

 appender.RollingFileAppender for element RollingFile with

 params(fileName="target/rolling1/rollingtest-Unknown.log",

 filePattern="target/rolling1/test1-Unknown.%i.log.gz", append="null", name="Rolling-Unknown",

 bufferedIO="null", immediateFlush="null",

 SizeBasedTriggeringPolicy(SizeBasedTriggeringPolicy(size=500)), null,

 PatternLayout(%d %p %c{1.} [%t] %m%n), null, ignoreExceptions="null")

2011-11-23 17:08:00,858 DEBUG Generated plugins in 0.002014000 seconds

2011-11-23 17:08:00,889 DEBUG Reconfiguration started for context sun.misc.

 Launcher$AppClassLoader@37b90b39

2011-11-23 17:08:00,890 DEBUG Generated plugins in 0.001355000 seconds

2011-11-23 17:08:00,959 DEBUG Generated plugins in 0.001239000 seconds

2011-11-23 17:08:00,961 DEBUG Generated plugins in 0.001197000 seconds

2011-11-23 17:08:00,965 WARN No Loggers were configured, using default

2011-11-23 17:08:00,976 DEBUG Reconfiguration completed

If the status attribute is set to error than only error messages will be written to the console. This makes
troubleshooting configuration errors possible. As an example, if the configuration above is changed to
have the status set to error and the logger declaration is:

<logger name="EventLogger" level="info" additivity="false">

 <AppenderRef ref="Routng"/>

</logger>

the following error message will be produced.

2011-11-24 23:21:25,517 ERROR Unable to locate appender Routng for logger EventLogger

Applications may wish to direct the status output to some other destination. This can be accomplished
by setting the dest attribute to either "err" to send the output to stderr or to a file location or URL. This
can also be done by insuring the configured status is set to OFF and then configuring the application
programmatically such as:

StatusConsoleListener listener = new StatusConsoleListener(Level.ERROR);

StatusLogger.getLogger().registerListener(listener);

5 C o n f i g u r a t i o n 41

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.9 Testing in Maven

Maven can run unit and functional tests during the build cycle. By default, any files placed in src/
test/resources are automatically copied to target/test-classes and are included in the classpath
during execution of any tests. As such, placing a log4j2-test.xml into this directory will cause it to be
used instead of a log4j2.xml or log4j2.json that might be present. Thus a different log configuration
can be used during testing than what is used in production.

A second approach, which is extensively used by Log4j 2, is to set the log4j.configurationFile
property in the method annotated with @BeforeClass in the junit test class. This will allow an
arbitrarily named file to be used during the test.

A third approach, also used extensively by Log4j 2, is to use the InitialLoggerContext JUnit
test rule which provides additional convenience methods for testing. This requires adding the log4j-
core test-jar dependency to your test scope dependencies. For example:

public class AwesomeTest {

 @Rule

 public InitialLoggerContext init = new InitialLoggerContext("MyTestConfig.xml");

 @Test

 public void testSomeAwesomeFeature() {

 final LoggerContext ctx = init.getContext();

 final Logger logger = init.getLogger("org.apache.logging.log4j.my.awesome.test.logger");

 final Configuration cfg = init.getConfiguration();

 final ListAppender app = init.getListAppender("List");

 logger.warn("Test message");

 final List<LogEvent> events = app.getEvents();

 // etc.

 }

}

5.1.10 System Properties

Below follows a number of system properties that can be used to control Log4j 2 behaviour. Any
spaces present in the property name are for visual flow and should be removed.

System Property Default Value Description

log4j.configurationFile Path to an XML or JSON Log4j 2
configuration file.

5 C o n f i g u r a t i o n 42

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Log4jContextSelector ClassLoaderContextSelector Creates the LoggerContexts.
An application can have one
or more active LoggerContexts
depending on the circumstances.
See Log Separation for more
details. Available context selector
implementation classes:
org.apache.logging.log4j.core.async .AsyncLoggerContextSelector
- makes all loggers asynchronous.
org.apache.logging.log4j.core.selector .BasicContextSelector
- creates a single shared
LoggerContext.
org.apache.logging.log4j.core.selector .ClassLoaderContextSelector
- separate LoggerContexts for each
web application.
org.apache.logging.log4j.core.selector .JndiContextSelector
- use JNDI to locate each web
application's LoggerContext.
org.apache.logging.log4j.core.osgi .BundleContextSelector
- separate LoggerContexts for each
OSGi bundle.

Log4jLogEventFactory org.apache.logging.log4j.core.impl .DefaultLogEventFactoryFactory class used by
LoggerConfig to create LogEvent
instances. (Ignored when the
AsyncLoggerContextSelector
is used.)

log4j2.loggerContextFactory org.apache.logging.log4j.simple .SimpleLoggerContextFactoryFactory class used by
LogManager to bootstrap
the logging implementation.
The core jar provides
org.apache.logging.log4j.core.impl.Log4jContextFactory.

log4j.configurationFactory Fully specified class
name of a class extending
org.apache.logging.log4j.core.config.ConfigurationFactory.
If specified, an instance of this
class is added to the list of
configuration factories.

log4j.shutdownHookEnabled true Overrides the global flag for
whether or not a shutdown
hook should be used to stop a
LoggerContext. By default,
this is enabled and can be disabled
on a per-configuration basis.
When running with the log4j-
web module, this is automatically
disabled.

log4j.shutdownCallbackRegistry org.apache.logging.log4j.core.util .DefaultShutdownCallbackRegistryFully specified class name
of a class implementing
ShutdownCallbackRegistry.
If specified, an instance of
this class is used instead of
DefaultShutdownCallbackRegistry.
The specified class must have a
default constructor.

5 C o n f i g u r a t i o n 43

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

log4j.Clock SystemClock Implementation of the
org.apache.logging.log4j.core.util.Clock
interface that is used for
timestamping the log events.
By default,
System.currentTimeMillis
is called on every log event.
You can also specify a fully
qualified class name of a custom
class that implements the Clock
interface.

org.apache.logging.log4j.level ERROR Log level of the default
configuration. The default
configuration is used if the
ConfigurationFactory could not
successfully create a configuration
(e.g. no log4j2.xml file was found).

disableThreadContext false If true, the ThreadContext stack
and map are disabled. (May be
ignored if a custom ThreadContext
map is specified.)

disableThreadContextStack false If true, the ThreadContext stack
is disabled.

disableThreadContextMap false If true, the ThreadContext map
is disabled. (May be ignored if a
custom ThreadContext map is
specified.)

log4j2.threadContextMap Fully specified class name of a
custom ThreadContextMap
implementation class.

isThreadContextMapInheritable false If true use a
InheritableThreadLocal
to implement the ThreadContext
map. Otherwise, use a plain
ThreadLocal. (May be ignored
if a custom ThreadContext map is
specified.)

log4j2.disable.jmx false If true, Log4j configuration
objects like LoggerContexts,
Appenders, Loggers, etc. will not
be instrumented with MBeans and
cannot be remotely monitored and
managed.

log4j2.jmx.notify.async false for web apps, true otherwise If true, log4j's JMX notifications
are sent from a separate
background thread, otherwise they
are sent from the caller thread. If
the javax.servlet.Servlet
class is on the classpath, the
default behaviour is to use
the caller thread to send JMX
notifications.

5 C o n f i g u r a t i o n 44

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

log4j.skipJansi false If true, the ConsoleAppender
will not try to use the Jansi output
stream on Windows.

log4j.ignoreTCL false If true, classes are only loaded
with the default class loader.
Otherwise, an attempt is made
to load classes with the current
thread's context class loader before
falling back to the default class
loader.

org.apache.logging.log4j.uuidSequence0 System property that may be used
to seed the UUID generation with
an integer value.

org.apache.logging.log4j.simplelog .showContextMapfalse If true, the full ThreadContext
map is included in each
SimpleLogger log message.

org.apache.logging.log4j.simplelog .showlognamefalse If true, the logger name is
included in each SimpleLogger log
message.

org.apache.logging.log4j.simplelog .showShortLognametrue If true, only the last component
of a logger name is included in
SimpleLogger log messages.
(E.g., if the logger name is
"mycompany.myproject.mycomponent",
only "mycomponent" is logged.

org.apache.logging.log4j.simplelog .showdatetimefalse If true, SimpleLogger log
messages contain timestamp
information.

org.apache.logging.log4j.simplelog .dateTimeFormat"yyyy/MM/dd HH:mm:ss:SSS zzz" Date-time format to use. Ignored if
org.apache.logging.log4j.simplelog.showdatetime
is false.

org.apache.logging.logj.simplelog .logFilesystem.err "system.err" (case-insensitive) logs
to System.err, "system.out" (case-
insensitive) logs to System.out,
any other value is interpreted as
a file name to save SimpleLogger
messages to.

org.apache.logging.log4j.simplelog .levelERROR Default level for new SimpleLogger
instances.

org.apache.logging.log4j.simplelog.<loggerName>levelSimpleLogger default log level Log level for a the SimpleLogger
instance with the specified name.

5 C o n f i g u r a t i o n 45

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

org.apache.logging.log4j.simplelog .StatusLogger.levelERROR This property is used to control the
initial StatusLogger level, and can
be overridden in code by calling
StatusLogger.getLogger().setLevel(someLevel).
Note that the StatusLogger level is
only used to determine the status
log output level until a listener is
registered. In practice, a listener is
registered when a configuration is
found, and from that point onwards,
status messages are only sent to
the listeners (depending on their
statusLevel).

Log4jDefaultStatusLevel ERROR The StatusLogger logs events
that occur in the logging
system to the console.
During configuration,
AbstractConfiguration registers
a StatusConsoleListener with
the StatusLogger that may
redirect status log events from
the default console output to a
file. The listener also supports
fine-grained filtering. This
system property specifies
the default status log level
for the listener to use if the
configuration does not specify a
status level.

Note: this property is used by
the log4j-core implementation
only after a configuration file
has been found.

5 C o n f i g u r a t i o n 46

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

log4j2.StatusLogger.level WARN The initial "listenersLevel"
of the StatusLogger. If
StatusLogger listeners are
added, the "listenerLevel" is
changed to that of the most
verbose listener. If any listeners
are registered, the listenerLevel
is used to quickly determine if
an interested listener exists.

By default, StatusLogger
listeners are added when a
configuration is found and by
the JMX StatusLoggerAdmin
MBean. For example, if
a configuration contains
<Configuration
status="trace">, a listener
with statusLevel TRACE is
registered and the StatusLogger
listenerLevel is set to TRACE,
resulting in verbose status
messages displayed on the
console.

If no listeners are registered,
the listenersLevel is not
used, and the StatusLogger
output level is determined by
StatusLogger.getLogger().getLevel()
(see property
org.apache.logging.log4j.simplelog .StatusLogger.level).

log4j2.status.entries 200 Number of StatusLogger
events that are kept in a buffer
and can be retrieved with
StatusLogger.getStatusData().

AsyncLogger.ExceptionHandler See Async Logger System
Properties for details.

AsyncLogger.RingBufferSize 256 * 1024 See Async Logger System
Properties for details.

AsyncLogger.WaitStrategy Sleep See Async Logger System
Properties for details.

AsyncLogger.ThreadNameStrategy CACHED See Async Logger System
Properties for details.

AsyncLoggerConfig.ExceptionHandler See Mixed Async/Synchronous
Logger System Properties for
details.

AsyncLoggerConfig.RingBufferSize 256 * 1024 See Mixed Async/Synchronous
Logger System Properties for
details.

5 C o n f i g u r a t i o n 47

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

AsyncLoggerConfig.WaitStrategy Sleep See Mixed Async/Synchronous
Logger System Properties for
details.

log4j.jul.LoggerAdapter org.apache.logging.log4j.jul .ApiLoggerAdapterDefault LoggerAdapter to use in the
JUL adapter. By default, if log4j-
core is available, then the class
org.apache.logging.log4j.jul .CoreLoggerAdapter
will be used. Otherwise, the
ApiLogggerAdapter will be
used. Custom implementations
must provide a public default
constructor.

Log4j 2 System Properties

6 W e b A p p l i c a t i o n s a n d J S P s 48

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

6 Web Applications and JSPs
...

6.1 Using Log4j 2 in Web Applications
You must take particular care when using Log4j or any other logging framework within a Java EE
web application. It's important for logging resources to be properly cleaned up (database connections
closed, files closed, etc.) when the container shuts down or the web application is undeployed.
Because of the nature of class loaders within web applications, Log4j resources cannot be cleaned up
through normal means. Log4j must be "started" when the web application deploys and "shut down"
when the web application undeploys. How this works varies depending on whether your application is
a Servlet 3.0 or newer or Servlet 2.5 web application.

In either case, you'll need to add the log4j-web module to your deployment as detailed in the
Maven, Ivy, and Gradle Artifacts manual page.

To avoid problems the Log4j shutdown hook will automatically be disabled when the log4j-web jar is
included.

6.1.1 Configuration

Log4j allows the configuration file to be specified in web.xml using the log4jConfiguration
context parameter. Log4j will search for configuration files by:

1. If a location is provided it will be searched for as a servlet context resource. For example, if
log4jConfiguration contains "logging.xml" then Log4j will look for a file with that name in
the root directory of the web application.

2. If no location is defined Log4j will search for a file that starts with "log4j2" in the WEB-INF
directory. If more than one file is found, and if a file that starts with "log4j2-name" is present,
where name is the name of the web application, then it will be used. Otherwise the first file will
be used.

3. The "normal" search sequence using the classpath and file URLs will be used to locate the
configuration file.

6.1.2 Servlet 3.0 and Newer Web Applications

A Servlet 3.0 or newer web application is any <web-app> whose version attribute has a value
of "3.0" or higher. Of course, the application must also be running in a compatible web container.
Some examples are: Tomcat 7.0 and higher, GlassFish 3.0 and higher, JBoss 7.0 and higher, Oracle
WebLogic 12c and higher, and IBM WebSphere 8.0 and higher.

6.1.2.1 The Short Story

Log4j 2 "just works" in Servlet 3.0 and newer web applications. It is capable of automatically
starting when the application deploys and shutting down when the application undeploys.
Thanks to the ServletContainerInitializer API added to Servlet 3.0, the relevant Filter and
ServletContextListener classes can be registered dynamically on web application startup.

Important Note! For performance reasons, containers often ignore certain JARs known not to
contain TLDs or ServletContainerInitializers and do not scan them for web-fragments and
initializers. Importantly, Tomcat 7 <7.0.43 ignores all JAR files named log4j*.jar, which prevents this
feature from working. This has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change catalina.properties and remove "log4j*.jar" from the jarsToSkip

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContainerInitializer.html

6 W e b A p p l i c a t i o n s a n d J S P s 49

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

property. You may need to do something similar on other containers if they skip scanning Log4j JAR
files.

6.1.2.2 The Long Story

The Log4j 2 Web JAR file is a web-fragment configured to order before any other web
fragments in your application. It contains a ServletContainerInitializer (
Log4jServletContainerInitializer) that the container automatically discovers and initializes. This adds
the Log4jServletContextListener and Log4jServletFilter to the ServletContext. These classes
properly initialize and deinitialize the Log4j configuration.

For some users, automatically starting Log4j is problematic or undesirable. You can easily disable
this feature using the isLog4jAutoInitializationDisabled context parameter. Simply add it
to your deployment descriptor with the value "true" to disable auto-initialization. You must define the
context parameter in web.xml. If you set in programmatically, it will be too late for Log4j to detect
the setting.

 <context-param>

 <param-name>isLog4jAutoInitializationDisabled</param-name>

 <param-value>true</param-value>

 </context-param>

Once you disable auto-initialization, you must initialize Log4j as you would a Servlet 2.5 web
application. You must do so in a way that this initialization happens before any other application code
(such as Spring Framework startup code) executes.

You can customize the behavior of the listener and filter using the log4jContextName,
log4jConfiguration, and/or isLog4jContextSelectorNamed context parameters. Read
more about this in the Context Parameters section below. You must not manually configure the
Log4jServletContextListener or Log4jServletFilter in your deployment descriptor (
web.xml) or in another initializer or listener in a Servlet 3.0 or newer application unless you disable
auto-initialization with isLog4jAutoInitializationDisabled. Doing so will result in startup
errors and unspecified erroneous behavior.

6.1.3 Servlet 2.5 Web Applications

A Servlet 2.5 web application is any <web-app> whose version attribute has a value of "2.5." The
version attribute is the only thing that matters; even if the web application is running in a Servlet
3.0 or newer container, it is a Servlet 2.5 web application if the version attribute is "2.5." Note that
Log4j 2 does not support Servlet 2.4 and older web applications.

If you are using Log4j in a Servlet 2.5 web application, or if you have disabled auto-initialization
with the isLog4jAutoInitializationDisabled context parameter, you must configure
the Log4jServletContextListener and Log4jServletFilter in the deployment descriptor or
programmatically. The filter should match all requests of any type. The listener should be the very
first listener defined in your application, and the filter should be the very first filter defined and
mapped in your application. This is easily accomplished using the following web.xml code:

6 W e b A p p l i c a t i o n s a n d J S P s 50

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 <listener>

 <listener-class>org.apache.logging.log4j.web.Log4jServletContextListener</listener-class>

 </listener>

 <filter>

 <filter-name>log4jServletFilter</filter-name>

 <filter-class>org.apache.logging.log4j.web.Log4jServletFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>log4jServletFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 <dispatcher>ERROR</dispatcher>

 <dispatcher>ASYNC</dispatcher><!-- Servlet 3.0 w/ disabled auto-initialization only; not supported in 2.5 -->

 </filter-mapping>

You can customize the behavior of the listener and filter using the log4jContextName,
log4jConfiguration, and/or isLog4jContextSelectorNamed context parameters. Read more
about this in the Context Parameters section below.

6.1.4 Context Parameters

By default, Log4j 2 uses the ServletContext's context name as the LoggerContext name
and uses the standard pattern for locating the Log4j configuration file. There are three context
parameters that you can use to control this behavior. The first, isLog4jContextSelectorNamed,
specifies whether the context should be selected using the JndiContextSelector. If
isLog4jContextSelectorNamed is not specified or is anything other than true, it is assumed to
be false.

If isLog4jContextSelectorNamed is true, log4jContextName must be specified or
display-name must be specified in web.xml; otherwise, the application will fail to start with an
exception. log4jConfiguration should also be specified in this case, and must be a valid URI for
the configuration file; however, this parameter is not required.

If isLog4jContextSelectorNamed is not true, log4jConfiguration may optionally be
specified and must be a valid URI or path to a configuration file or start with "classpath:" to denote
a configuration file that can be found on the classpath. Without this parameter, Log4j will use the
standard mechanisms for locating the configuration file.

When specifying these context parameters, you must specify them in the deployment descriptor (
web.xml) even in a Servlet 3.0 or never application. If you add them to the ServletContext within
a listener, Log4j will initialize before the context parameters are available and they will have no
effect. Here are some sample uses of these context parameters.

6.1.4.1 Set the Logging Context Name to "myApplication"

 <context-param>

 <param-name>log4jContextName</param-name>

 <param-value>myApplication</param-value>

 </context-param>

http://docs.oracle.com/javaee/6/api/javax/servlet/ServletContext.html#getServletContextName()

6 W e b A p p l i c a t i o n s a n d J S P s 51

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

6.1.4.2 Set the Configuration Path/File/URI to "/etc/myApp/myLogging.xml"

 <context-param>

 <param-name>log4jConfiguration</param-name>

 <param-value>file:///etc/myApp/myLogging.xml</param-value>

 </context-param>

6.1.4.3 Use the JndiContextSelector

 <context-param>

 <param-name>isLog4jContextSelectorNamed</param-name>

 <param-value>true</param-value>

 </context-param>

 <context-param>

 <param-name>log4jContextName</param-name>

 <param-value>appWithJndiSelector</param-value>

 </context-param>

 <context-param>

 <param-name>log4jConfiguration</param-name>

 <param-value>file:///D:/conf/myLogging.xml</param-value>

 </context-param>

Note that in this case you must also set the "Log4jContextSelector" system property to
"org.apache.logging.log4j.core.selector.JndiContextSelector".

6.1.5 Using Web Application Information During the Configuration

You may want to use information about the web application during configuration. For example,
you could embed the web application's context path in the name of a Rolling File Appender. See
WebLookup in Lookups for more information.

6.1.6 JavaServer Pages Logging

You may use Log4j 2 within JSPs just as you would within any other Java code. Simple obtain
a Logger and call its methods to log events. However, this requires you to use Java code within
your JSPs, and some development teams rightly are not comfortable with doing this. If you have a
dedicated user interface development team that is not familiar with using Java, you may even have
Java code disabled in your JSPs.

For this reason, Log4j 2 provides a JSP Tag Library that enables you to log events without using any
Java code. To read more about using this tag library, read the Log4j Tag Library documentation.

Important Note! As noted above, containers often ignore certain JARs known not to contain TLDs
and do not scan them for TLD files. Importantly, Tomcat 7 <7.0.43 ignores all JAR files named
log4j*.jar, which prevents the JSP tag library from being automatically discovered. This does not
affect Tomcat 6.x and has been fixed in Tomcat 7.0.43, Tomcat 8, and later. In Tomcat 7 <7.0.43
you will need to change catalina.properties and remove "log4j*.jar" from the jarsToSkip
property. You may need to do something similar on other containers if they skip scanning Log4j JAR
files.

6.1.7 Asynchronous Requests and Threads

6 W e b A p p l i c a t i o n s a n d J S P s 52

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The handling of asynchronous requests is tricky, and regardless of Servlet container version or
configuration Log4j cannot handle everything automatically. When standard requests, forwards,
includes, and error resources are processed, the Log4jServletFilter binds the LoggerContext
to the thread handling the request. After request processing completes, the filter unbinds the
LoggerContext from the thread.

Similarly, when an internal request is dispatched using a javax.servlet.AsyncContext, the
Log4jServletFilter also binds the LoggerContext to the thread handling the request and
unbinds it when request processing completes. However, this only happens for requests dispatched
through the AsyncContext. There are other asynchronous activities that can take place other than
internal dispatched requests.

For example, after starting an AsyncContext you could start up a separate thread to process the
request in the background, possibly writing the response with the ServletOutputStream. Filters
cannot intercept the execution of this thread. Filters also cannot intercept threads that you start in the
background during non-asynchronous requests. This is true whether you use a brand new thread or a
thread borrowed from a thread pool. So what can you do for these special threads?

You may not need to do anything. If you didn't use the isLog4jContextSelectorNamed
context parameter, there is no need to bind the LoggerContext to the thread. Log4j can safely
locate the LoggerContext on its own. In these cases, the filter provides only very modest
performance gains, and only when creating new Loggers. However, if you did specify the
isLog4jContextSelectorNamed context parameter with the value "true", you will need to
manually bind the LoggerContext to asynchronous threads. Otherwise, Log4j will not be able to
locate it.

Thankfully, Log4j provides a simple mechanism for binding the LoggerContext to asynchronous
threads in these special circumstances. The simplest way to do this is to wrap the Runnable instance
that is passed to the AsyncContext.start() method.

6 W e b A p p l i c a t i o n s a n d J S P s 53

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

import java.io.IOException;

import javax.servlet.AsyncContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.web.WebLoggerContextUtils;

public class TestAsyncServlet extends HttpServlet {

 @Override

 protected void doGet(final HttpServletRequest req, final HttpServletResponse resp) throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();

 asyncContext.start(WebLoggerContextUtils.wrapExecutionContext(this.getServletContext(), new Runnable() {

 @Override

 public void run() {

 final Logger logger = LogManager.getLogger(TestAsyncServlet.class);

 logger.info("Hello, servlet!");

 }

 }));

 }

 @Override

 protected void doPost(final HttpServletRequest req, final HttpServletResponse resp) throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();

 asyncContext.start(new Runnable() {

 @Override

 public void run() {

 final Log4jWebSupport webSupport =

 WebLoggerContextUtils.getWebLifeCycle(TestAsyncServlet.this.getServletContext());

 webSupport.setLoggerContext();

 // do stuff

 webSupport.clearLoggerContext();

 }

 });

 }

}

This can be slightly more convenient when using Java 1.8 and lambda functions as demonstrated
below.

6 W e b A p p l i c a t i o n s a n d J S P s 54

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

import java.io.IOException;

import javax.servlet.AsyncContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.web.WebLoggerContextUtils;

public class TestAsyncServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();

 asyncContext.start(WebLoggerContextUtils.wrapExecutionContext(this.getServletContext(), () -> {

 final Logger logger = LogManager.getLogger(TestAsyncServlet.class);

 logger.info("Hello, servlet!");

 }));

 }

}

Alternatively, you can obtain the Log4jWebLifeCycle instance from the ServletContext
attributes, call its setLoggerContext method as the very first line of code in your asynchronous
thread, and call its clearLoggerContext method as the very last line of code in your asynchronous
thread. The following code demonstrates this. It uses the container thread pool to execute
asynchronous request processing, passing an anonymous inner Runnable to the start method.

6 W e b A p p l i c a t i o n s a n d J S P s 55

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

import java.io.IOException;

import javax.servlet.AsyncContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

import org.apache.logging.log4j.web.Log4jWebLifeCycle;

import org.apache.logging.log4j.web.WebLoggerContextUtils;

public class TestAsyncServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {

 final AsyncContext asyncContext = req.startAsync();

 asyncContext.start(new Runnable() {

 @Override

 public void run() {

 final Log4jWebLifeCycle webLifeCycle =

 WebLoggerContextUtils.getWebLifeCycle(TestAsyncServlet.this.getServletContext());

 webLifeCycle.setLoggerContext();

 try {

 final Logger logger = LogManager.getLogger(TestAsyncServlet.class);

 logger.info("Hello, servlet!");

 } finally {

 webLifeCycle.clearLoggerContext();

 }

 }

 });

 }

}

Note that you must call clearLoggerContext once your thread is finished processing. Failing
to do so will result in memory leaks. If using a thread pool, it can even disrupt the logging of other
web applications in your container. For that reason, the example here shows clearing the context in a
finally block, which will always execute.

7 P l u g i n s 56

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

7 Plugins
...

7.1 Plugins

7.1.1 Introduction

Log4j 1.x allowed for extension by requiring class attributes on most of the configuration
declarations. In the case of some elements, notably the PatternLayout, the only way to add new
pattern converters was to extend the PatternLayout class and add them via code. One of goals of
Log4j 2 is to make extending it extremely easy through the use of plugins.

In Log4j 2 a plugin is declared by adding a @Plugin annotation to the class declaration. During
initialization the Configuration will invoke the PluginManager to load the built-in Log4j plugins as
well as any custom plugins. The PluginManager locates plugins by looking in four places:

• Serialized plugin listing files on the classpath. These files are generated automatically during the
build (more details below).

• (OSGi only) Serialized plugin listing files in each active OSGi bundle. A BundleListener is
added on activation to continue checking new bundles after log4j-core has started.

• A comma-separated list of packages specified by the log4j.plugin.packages system
property.

• Packages passed to the static PluginManager.addPackages method (before Log4j
configuration occurs).

• The packages declared in your log4j2 configuration file.
If multiple Plugins specify the same (case-insensitive) name, then the load order above determines
which one will be used. For example, to override the File plugin which is provided by the built-
in FileAppender class, you would need to place your plugin in a JAR file in the CLASSPATH
ahead of log4j-core.jar. This is not recommended; plugin name collisions will cause a warning
to be emitted. Note that in an OSGi environment, the order that bundles are scanned for plugins
generally follows the same order that bundles were installed into the framework. See getBundles()
and SynchronousBundleListener. In short, name collisions are even more unpredictable in an OSGi
environment.

Serialized plugin listing files are generated by an annotation processor contained in the log4j-
core artifact which will automatically scan your code for Log4j 2 plugins and output a metadata
file in your processed classes. There is nothing extra that needs to be done to enable this; the
Java compiler will automatically pick up the annotation processor on the class path unless you
explicitly disable it. In that case, it would be important to add another compiler pass to your build
process that only handles annotation processing using the Log4j 2 annotation processor class,
org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor. To
do this using Apache Maven, add the following execution to your maven-compiler-plugin (version 2.2
or higher) build plugin:

http://www.osgi.org/javadoc/r5/core/org/osgi/framework/BundleContext.html#getBundles()
http://www.osgi.org/javadoc/r5/core/org/osgi/framework/SynchronousBundleListener.html

7 P l u g i n s 57

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.1</version>

 <executions>

 <execution>

 <id>log4j-plugin-processor</id>

 <goals>

 <goal>compile</goal>

 </goals>

 <phase>process-classes</phase>

 <configuration>

 <proc>only</proc>

 <annotationProcessors>

 <annotationProcessor>org.apache.logging.log4j.core.config.plugins.processor.PluginProcessor</annotationProcessor>

 </annotationProcessors>

 </configuration>

 </execution>

 </executions>

</plugin>

As the configuration is processed the appropriate plugins will be automatically configured and
initialized. Log4j 2 utilizes a few different categories of plugins which are described in the following
sections.

7.1.2 Core

Core plugins are those that are directly represented by an element in a configuration file, such as an
Appender, Logger or Filter. Custom plugins that conform to the rules laid out in the next paragraph
may simply be referenced in the configuration, provided they are appropriate configured to be loaded
by the PluginManager.

Every Core plugin must declare a static method that is marked with a PluginFactory annotation. To
allow the Configuration to pass the correct parameters to the method, every parameter to the method
must be annotated as one of the following attribute types. Each attribute or element annotation must
include the name that must be present in the configuration in order to match the configuration item to
its respective parameter.

7.1.2.1 Attribute Types

PluginAttribute

The parameter must be convertible from a String using a TypeConverter. Most built-in
types are already supported, but custom TypeConverter plugins may also be provided for
more type support.

PluginElement

The parameter may represent a complex object that itself has parameters that can be
configured.

PluginConfiguration

The current Configuration object will be passed to the plugin as a parameter.

7 P l u g i n s 58

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

PluginNode

The current Node being parsed will be passed to the plugin as a parameter.

Required

While not strictly an attribute, this annotation can be added to any plugin factory parameter
to make it automatically validated as non- null and non-empty.

7.1.3 Converters

Converters are used by PatternLayout to render the elements identified by the conversion pattern.
Every converter must specify its type as "Converter" on the Plugin attribute, have a static newInstance
method that accepts an array of Strings as its only parameter and returns an instance of the Converter,
and must have a ConverterKeys annotation present that contains the array of converter patterns that
will cause the Converter to be selected. Converters that are meant to handle LogEvents must extend
the LogEventPatternConverter class and must implement a format method that accepts a LogEvent
and a StringBuilder as arguments. The Converter should append the result of its operation to the
StringBuilder.

A second type of Converter is the FileConverter - which must have "FileConverter" specified in the
type attribute of the Plugin annotation. While similar to a LogEventPatternConverter, instead of a
single format method these Converters will have two variations; one that takes an Object and one
that takes an array of Objects instead of the LogEvent. Both append to the provided StringBuilder
in the same fashion as a LogEventPatternConverter. These Converters are typically used by the
RollingFileAppender to construct the name of the file to log to.

If multiple Converters specify the same ConverterKeys, then the load order above determines
which one will be used. For example, to override the %date converter which is provided by the
built-in DatePatternConverter class, you would need to place your plugin in a JAR file in
the CLASSPATH ahead of log4j-core.jar. This is not recommended; pattern ConverterKeys
collisions will cause a warning to be emitted. Try to use unique ConverterKeys for your custom
pattern converters.

7.1.4 KeyProviders

Some components within Log4j may provide the ability to perform data encryption. These
components require a secret key to perform the encryption. Applications may provide the key by
creating a class that implements the SecretKeyProvider interface.

7.1.5 Lookups

Lookups are perhaps the simplest plugins of all. They must declare their type as "Lookup" on the
plugin annotation and must implement the StrLookup interface. They will have two methods; a
lookup method that accepts a String key and returns a String value and a second lookup method
that accepts both a LogEvent and a String key and returns a String. Lookups may be referenced by
specifying ${name:key} where name is the name specified in the Plugin annotation and key is the
name of the item to locate.

7.1.6 TypeConverters

7 P l u g i n s 59

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

TypeConverters are a sort of meta-plugin used for converting strings into other types in a plugin
factory method parameter. Other plugins can already be injected via the @PluginElement
annotation; now, any type supported by the type conversion system can be used in a
@PluginAttribute parameter. Conversion of enum types are supported on demand and do
not require custom TypeConverter classes. A large number of built-in Java classes are already
supported; see TypeConverters for a more exhaustive listing.

Unlike other plugins, the plugin name of a TypeConverter is purely cosmetic. Appropriate type
converters are looked up via the Type interface rather than via Class<?> objects only. Do note that
TypeConverter plugins must have a default constructor.

7.2 Developer Notes

If a plugin class implements Collection or Map, then no factory method is used. Instead, the class
is instantiated using the default constructor, and all child configuration nodes are added to the
Collection or Map.

http://docs.oracle.com/javase/6/docs/api/java/util/Collection.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

8 L o o k u p s 60

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

8 Lookups
...

8.1 Lookups
Lookups provide a way to add values to the Log4j configuration at arbitrary places. They are a
particular type of Plugin that implements the StrLookup interface. Information on how to use
Lookups in configuration files can be found in the Property Substitution section of the Configuration
page.

8.1.1 Context Map Lookup

The ContextMapLookup allows applications to store data in the Log4j ThreadContext Map and then
retrieve the values in the Log4j configuration. In the example below, the application would store the
current user's login id in the ThreadContext Map with the key "loginId". During initial configuration
processing the first '$' will be removed. The PatternLayout supports interpolation with Lookups and
will then resolve the variable for each event. Note that the pattern "%X{loginId}" would achieve the
same result.

<File name="Application" fileName="application.log">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] $${ctx:loginId} %m%n</pattern>

 </PatternLayout>

</File>

8.1.2 Date Lookup

The DateLookup is somewhat unusual from the other lookups as it doesn't use the key to locate an
item. Instead, the key can be used to specify a date format string that is valid for SimpleDateFormat.
The current date, or the date associated with the current log event will be formatted as specified.

<RollingFile name="Rolling-${map:type}" fileName="${filename}" filePattern="target/rolling1/test1-$${date:MM-dd-yyyy}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

</RollingFile>

8.1.3 Environment Lookup

The EnvironmentLookup allows systems to configure environment variables, either in global files
such as /etc/profile or in the startup scripts for applications, and then retrieve those variables from
within the logging configuration. The example below includes the name of the currently logged in
user in the application log.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

8 L o o k u p s 61

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<File name="Application" fileName="application.log">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] $${env:USER} %m%n</pattern>

 </PatternLayout>

</File>

8.1.4 Java Lookup

The JavaLookup allows Java environment information to be retrieved in convenient preformatted
strings using the java: prefix.

Key Description

version The short Java version, like:

Java version 1.7.0_67

runtime The Java runtime version, like:

Java(TM) SE Runtime Environment
(build 1.7.0_67-b01) from Oracle
Corporation

vm The Java VM version, like:

Java HotSpot(TM) 64-Bit Server VM
(build 24.65-b04, mixed mode)

os The OS version, like:

Windows 7 6.1 Service Pack 1,
architecture: amd64-64

locale Hardware information, like:

default locale: en_US, platform
encoding: Cp1252

hw Hardware information, like:

processors: 4, architecture:
amd64-64, instruction sets: amd64

For example:

<File name="Application" fileName="application.log">

 <PatternLayout header="${java:runtime} - ${java:vm} - ${java:os}">

 <Pattern>%d %m%n</Pattern>

 </PatternLayout>

</File>

8.1.5 Jndi Lookup

The JndiLookup allows variables to be retrieved via JNDI. By default the key will be prefixed with
java:comp/env/, however if the key contains a ":" no prefix will be added.

8 L o o k u p s 62

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<File name="Application" fileName="application.log">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] $${jndi:logging/context-name} %m%n</pattern>

 </PatternLayout>

</File>

Java's JNDI module is not available on Android.

8.1.6 JVM Input Arguments Lookup (JMX)

Maps JVM input arguments -- but not main arguments -- using JMX to acquire the JVM arguments.

Use the prefix jvmrunargs to access JVM arguments.

See the Javadocs for java.lang.management.RuntimeMXBean.getInputArguments() .

Java's JMX module is not available on Android.

8.1.7 Main Arguments Lookup (Application)

This lookup requires that you manually provide the main arguments of the application to Log4j:

import org.apache.logging.log4j.core.lookup.MapLookup;

public static void main(String args[]) {

 MapLookup.setMainArguments(args);

 ...

}

If the main arguments have been set, this lookup allows applications to retrieve these main argument
values from within the logging configuration. The key that follows the main: prefix can either be a
0-based index into the argument list, or a string, where ${main:myString} is substituted with the
value that follows myString in the main argument list.

For example, suppose the static void main String[] arguments are:

--file foo.txt --verbose -x bar

Then the following substitutions are possible:

Expression Result

${main:0} --file

${main:1} foo.txt

${main:2} --verbose

${main:3} -x

${main:4} bar

${main:--file} foo.txt

${main:-x} bar

http://docs.oracle.com/javase/8/docs/api/java/lang/management/RuntimeMXBean.html#getInputArguments--

8 L o o k u p s 63

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

${main:bar} null

Example usage:

<File name="Application" fileName="application.log">

 <PatternLayout header="File: ${main:--file}">

 <Pattern>%d %m%n</Pattern>

 </PatternLayout>

</File>

8.1.8 Map Lookup

The MapLookup serves several purposes.

1. Provide the base for Properties declared in the configuration file.
2. Retrieve values from MapMessages in LogEvents.
3. Retrieve values set with MapLookup.setMainArguments(String[])

The first item simply means that the MapLookup is used to substitute properties that are defined in the
configuration file. These variables are specified without a prefix - e.g. ${name}. The second usage
allows a value from the current MapMessage, if one is part of the current log event, to be substituted.
In the example below the RoutingAppender will use a different RollingFileAppender for each unique
value of the key named "type" in the MapMessage. Note that when used this way a value for "type"
should be declared in the properties declaration to provide a default value in case the message is not a
MapMessage or the MapMessage does not contain the key. See the Property Substitution section of
the Configuration page for information on how to set the default values.

<Routing name="Routing">

 <Routes pattern="$${map:type}">

 <Route>

 <RollingFile name="Rolling-${map:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${map:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 </Routes>

</Routing>

8.1.9 Structured Data Lookup

The StructuredDataLookup is very similar to the MapLookup in that it will retrieve values from
StructuredDataMessages. In addition to the Map values it will also return the name portion of
the id (not including the enterprise number) and the type field. The main difference between
the example below and the example for MapMessage is that the "type" is an attribute of the
StructuredDataMessage while "type" would have to be an item in the Map in a MapMessage.

8 L o o k u p s 64

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 </Routes>

</Routing>

8.1.10 System Properties Lookup

As it is quite common to define values inside and outside the application by using System Properties,
it is only natural that they should be accessible via a Lookup. As system properties are often defined
outside the application it would be quite common to see something like:

<Appenders>

 <File name="ApplicationLog" fileName="${sys:logPath}/app.log"/>

</Appenders>

8.1.11 Web Lookup

The WebLookup allows applications to retrieve variables that are associated with the ServletContext.
In addition to being able to retrieve various fields in the ServletContext, WebLookup supports looking
up values stored as attributes or configured as initialization parameters. The following table lists
various keys that can be retrieved:

Key Description

attr. name Returns the ServletContext attribute with the specified
name

contextPath The context path of the web application

effectiveMajorVersion Gets the major version of the Servlet specification that
the application represented by this ServletContext is
based on.

effectiveMinorVersion Gets the minor version of the Servlet specification that
the application represented by this ServletContext is
based on.

initParam. name Returns the ServletContext initialization parameter
with the specified name

majorVersion Returns the major version of the Servlet API that this
servlet container supports.

minorVersion Returns the minor version of the Servlet API that this
servlet container supports.

8 L o o k u p s 65

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

rootDir Returns the result of calling getRealPath with a value
of "/".

serverInfo Returns the name and version of the servlet container
on which the servlet is running.

servletContextName Returns the name of the web application as defined
in the display-name element of the deployment
descriptor

Any other key names specified will first be checked to see if a ServletContext attribute exists with that
name and then will be checked to see if an initialization parameter of that name exists. If the key is
located then the corresponding value will be returned.

<Appenders>

 <File name="ApplicationLog" fileName="${web:rootDir}/app.log"/>

</Appenders>

9 A p p e n d e r s 66

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9 Appenders
...

9.1 Appenders
Appenders are responsible for delivering LogEvents to their destination. Every Appender must
implement the Appender interface. Most Appenders will extend AbstractAppender which
adds Lifecycle and Filterable support. Lifecycle allows components to finish initialization after
configuration has completed and to perform cleanup during shutdown. Filterable allows the
component to have Filters attached to it which are evaluated during event processing.

Appenders usually are only responsible for writing the event data to the target destination. In most
cases they delegate responsibility for formatting the event to a layout. Some appenders wrap other
appenders so that they can modify the LogEvent, handle a failure in an Appender, route the event to a
subordinate Appender based on advanced Filter criteria or provide similar functionality that does not
directly format the event for viewing.

Appenders always have a name so that they can be referenced from Loggers.

9.1.1 AsyncAppender

The AsyncAppender accepts references to other Appenders and causes LogEvents to be written to
them on a separate Thread. Note that exceptions while writing to those Appenders will be hidden from
the application. The AsyncAppender should be configured after the appenders it references to allow it
to shut down properly.

Parameter Name Type Description

AppenderRef String The name of the Appenders to
invoke asynchronously. Multiple
AppenderRef elements can be
configured.

blocking boolean If true, the appender will wait until
there are free slots in the queue. If
false, the event will be written to the
error appender if the queue is full.
The default is true.

bufferSize integer Specifies the maximum number of
events that can be queued. The
default is 128.

errorRef String The name of the Appender to
invoke if none of the appenders can
be called, either due to errors in the
appenders or because the queue is
full. If not specified then errors will
be ignored.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

9 A p p e n d e r s 67

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

includeLocation boolean Extracting location is an expensive
operation (it can make logging 5
- 20 times slower). To improve
performance, location is not
included by default when adding
a log event to the queue. You
can change this by setting
includeLocation="true".

AsyncAppender Parameters

A typical AsyncAppender configuration might look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <File name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 </File>

 <Async name="Async">

 <AppenderRef ref="MyFile"/>

 </Async>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Async"/>

 </Root>

 </Loggers>

</Configuration>

9.1.2 ConsoleAppender

As one might expect, the ConsoleAppender writes its output to either System.err or System.out with
System.err being the default target. A Layout must be provided to format the LogEvent.

Parameter Name Type Description

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

9 A p p e n d e r s 68

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

layout Layout The Layout to use to format the
LogEvent. If no layout is supplied
the default pattern layout of "%m
%n" will be used.

follow boolean Identifies whether the appender
honors reassignments of
System.out or System.err via
System.setOut or System.setErr
made after configuration. Note that
the follow attribute cannot be used
with Jansi on Windows.

name String The name of the Appender.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

ConsoleAppender Parameters

A typical Console configuration might look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

9.1.3 FailoverAppender

The FailoverAppender wraps a set of appenders. If the primary Appender fails the secondary
appenders will be tried in order until one succeeds or there are no more secondaries to try.

Parameter Name Type Description

9 A p p e n d e r s 69

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

primary String The name of the primary Appender
to use.

failovers String[] The names of the secondary
Appenders to use.

name String The name of the Appender.

retryIntervalSeconds integer The number of seconds that should
pass before retrying the primary
Appender. The default is 60.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

FailoverAppender Parameters

A Failover configuration might look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log" filePattern="logs/app-%d{MM-dd-yyyy}.log.gz"

 ignoreExceptions="false">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 <Console name="STDOUT" target="SYSTEM_OUT" ignoreExceptions="false">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Failover name="Failover" primary="RollingFile">

 <Failovers>

 <AppenderRef ref="Console"/>

 </Failovers>

 </Failover>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Failover"/>

 </Root>

 </Loggers>

</Configuration>

9 A p p e n d e r s 70

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.1.4 FileAppender

The FileAppender is an OutputStreamAppender that writes to the File named in the fileName
parameter. The FileAppender uses a FileManager (which extends OutputStreamManager) to
actually perform the file I/O. While FileAppenders from different Configurations cannot be shared,
the FileManagers can be if the Manager is accessible. For example, two web applications in a
servlet container can have their own configuration and safely write to the same file if Log4j is in a
ClassLoader that is common to both of them.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

bufferedIO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedIO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

bufferSize int When bufferedIO is true, this is
the buffer size, the default is 8192
bytes.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

immediateFlush boolean When set to true - the default,
each write will be followed by
a flush. This will guarantee the
data is written to disk but could
impact performance.

Flushing after every write is
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of a batch of events, even if
immediateFlush is set to false.
This also guarantees the data
is written to disk but is more
efficient.

9 A p p e n d e r s 71

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

layout Layout The Layout to use to format the
LogEvent

locking boolean When set to true, I/O operations
will occur only while the file lock
is held allowing FileAppenders
in multiple JVMs and potentially
multiple hosts to write to the
same file simultaneously. This will
significantly impact performance
so should be used carefully.
Furthermore, on many systems
the file lock is "advisory" meaning
that other applications can perform
operations on the file without
acquiring a lock. The default value
is false.

name String The name of the Appender.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

FileAppender Parameters

Here is a sample File configuration:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <File name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 </File>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="MyFile"/>

 </Root>

 </Loggers>

</Configuration>

9.1.5 FlumeAppender

This is an optional component supplied in a separate jar.

Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sources to a centralized data store. The

http://flume.apache.org/index.html

9 A p p e n d e r s 72

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

FlumeAppender takes LogEvents and sends them to a Flume agent as serialized Avro events for
consumption.

The Flume Appender supports three modes of operation.

1. It can act as a remote Flume client which sends Flume events via Avro to a Flume Agent
configured with an Avro Source.

2. It can act as an embedded Flume Agent where Flume events pass directly into Flume for
processing.

3. It can persist events to a local BerkeleyDB data store and then asynchronously send the events to
Flume, similar to the embedded Flume Agent but without most of the Flume dependencies.

Usage as an embedded agent will cause the messages to be directly passed to the Flume Channel and
then control will be immediately returned to the application. All interaction with remote agents will
occur asynchronously. Setting the "type" attribute to "Embedded" will force the use of the embedded
agent. In addition, configuring agent properties in the appender configuration will also cause the
embedded agent to be used.

Parameter Name Type Description

agents Agent[] An array of Agents to which the
logging events should be sent. If
more than one agent is specified
the first Agent will be the primary
and subsequent Agents will be
used in the order specified as
secondaries should the primary
Agent fail. Each Agent definition
supplies the Agents host and port.
The specification of agents and
properties are mutually exclusive.
If both are configured an error will
result.

agentRetries integer The number of times the agent
should be retried before failing to
a secondary. This parameter is
ignored when type="persistent" is
specified (agents are tried once
before failing to the next).

batchSize integer Specifies the number of events
that should be sent as a batch. The
default is 1. This parameter only
applies to the Flume Appender.

compress boolean When set to true the message body
will be compressed using gzip

connectTimeoutMillis integer The number of milliseconds Flume
will wait before timing out the
connection.

dataDir String Directory where the Flume write
ahead log should be written. Valid
only when embedded is set to
true and Agent elements are used
instead of Property elements.

9 A p p e n d e r s 73

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

eventPrefix String The character string to prepend
to each event attribute in order to
distinguish it from MDC attributes.
The default is an empty string.

flumeEventFactory FlumeEventFactory Factory that generates the
Flume events from Log4j
events. The default factory is the
FlumeAvroAppender itself.

layout Layout The Layout to use to format the
LogEvent. If no layout is specified
RFC5424Layout will be used.

lockTimeoutRetries integer The number of times to retry if a
LockConflictException occurs while
writing to Berkeley DB. The default
is 5.

maxDelayMillis integer The maximum number of
milliseconds to wait for batchSize
events before publishing the batch.

mdcExcludes String A comma separated list of mdc
keys that should be excluded from
the FlumeEvent. This is mutually
exclusive with the mdcIncludes
attribute.

mdcIncludes String A comma separated list of mdc
keys that should be included in
the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.

mdcPrefix String A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:".

name String The name of the Appender.

9 A p p e n d e r s 74

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

properties Property[] One or more Property elements
that are used to configure the
Flume Agent. The properties
must be configured without
the agent name (the appender
name is used for this) and no
sources can be configured.
Interceptors can be specified for
the source using "sources.log4j-
source.interceptors". All other
Flume configuration properties
are allowed. Specifying both
Agent and Property elements
will result in an error.

When used to configure in
Persistent mode the valid
properties are:

1. "keyProvider" to specify the
name of the plugin to provide
the secret key for encryption.

requestTimeoutMillis integer The number of milliseconds Flume
will wait before timing out the
request.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

type enumeration One of "Avro", "Embedded", or
"Persistent" to indicate which
variation of the Appender is
desired.

FlumeAppender Parameters

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, and formats the body using the RFC5424Layout:

9 A p p e n d e r s 75

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Flume name="eventLogger" compress="true">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="eventLogger"/>

 </Root>

 </Loggers>

</Configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using the RFC5424Layout, and persists encrypted events to
disk:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Flume name="eventLogger" compress="true" type="persistent" dataDir="./logData">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 <Property name="keyProvider">MySecretProvider</Property>

 </Flume>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="eventLogger"/>

 </Root>

 </Loggers>

</Configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using RFC5424Layout and passes the events to an embedded
Flume Agent.

9 A p p e n d e r s 76

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Flume name="eventLogger" compress="true" type="Embedded">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Console name="STDOUT">

 <PatternLayout pattern="%d [%p] %c %m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="EventLogger" level="info">

 <AppenderRef ref="eventLogger"/>

 </Logger>

 <Root level="warn">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent
using Flume configuration properties, compresses the body, formats the body using RFC5424Layout
and passes the events to an embedded Flume Agent.

9 A p p e n d e r s 77

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error" name="MyApp" packages="">

 <Appenders>

 <Flume name="eventLogger" compress="true" type="Embedded">

 <Property name="channels">file</Property>

 <Property name="channels.file.type">file</Property>

 <Property name="channels.file.checkpointDir">target/file-channel/checkpoint</Property>

 <Property name="channels.file.dataDirs">target/file-channel/data</Property>

 <Property name="sinks">agent1 agent2</Property>

 <Property name="sinks.agent1.channel">file</Property>

 <Property name="sinks.agent1.type">avro</Property>

 <Property name="sinks.agent1.hostname">192.168.10.101</Property>

 <Property name="sinks.agent1.port">8800</Property>

 <Property name="sinks.agent1.batch-size">100</Property>

 <Property name="sinks.agent2.channel">file</Property>

 <Property name="sinks.agent2.type">avro</Property>

 <Property name="sinks.agent2.hostname">192.168.10.102</Property>

 <Property name="sinks.agent2.port">8800</Property>

 <Property name="sinks.agent2.batch-size">100</Property>

 <Property name="sinkgroups">group1</Property>

 <Property name="sinkgroups.group1.sinks">agent1 agent2</Property>

 <Property name="sinkgroups.group1.processor.type">failover</Property>

 <Property name="sinkgroups.group1.processor.priority.agent1">10</Property>

 <Property name="sinkgroups.group1.processor.priority.agent2">5</Property>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Console name="STDOUT">

 <PatternLayout pattern="%d [%p] %c %m%n"/>

 </Console>

 </Appenders>

 <Loggers>

 <Logger name="EventLogger" level="info">

 <AppenderRef ref="eventLogger"/>

 </Logger>

 <Root level="warn">

 <AppenderRef ref="STDOUT"/>

 </Root>

 </Loggers>

</Configuration>

9.1.6 JDBCAppender

The JDBCAppender writes log events to a relational database table using standard JDBC. It
can be configured to obtain JDBC connections using a JNDI DataSource or a custom factory
method. Whichever approach you take, it must be backed by a connection pool. Otherwise, logging
performance will suffer greatly.

Parameter Name Type Description

name String Required. The name of the
Appender.

9 A p p e n d e r s 78

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

bufferSize int If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

connectionSource ConnectionSource Required. The connections source
from which database connections
should be retrieved.

tableName String Required. The name of the
database table to insert log events
into.

columnConfigs ColumnConfig[] Required. Information about the
columns that log event data should
be inserted into and how to insert
that data. This is represented with
multiple <Column> elements.

JDBCAppender Parameters

When configuring the JDBCAppender, you must specify a ConnectionSource implementation
from which the Appender gets JDBC connections. You must use exactly one of the <DataSource>
or <ConnectionFactory> nested elements.

Parameter Name Type Description

jndiName String Required. The full, prefixed
JNDI name that the
javax.sql.DataSource
is bound to, such as java:/
comp/env/jdbc/
LoggingDatabase. The
DataSource must be backed
by a connection pool; otherwise,
logging will be very slow.

DataSource Parameters

Parameter Name Type Description

9 A p p e n d e r s 79

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

class Class Required. The fully qualified name
of a class containing a static
factory method for obtaining JDBC
connections.

method Method Required. The name of a static
factory method for obtaining
JDBC connections. This method
must have no parameters and
its return type must be either
java.sql.Connection or
DataSource. If the method
returns Connections, it must
obtain them from a connection
pool (and they will be returned to
the pool when Log4j is done with
them); otherwise, logging will be
very slow. If the method returns a
DataSource, the DataSource
will only be retrieved once, and it
must be backed by a connection
pool for the same reasons.

ConnectionFactory Parameters

When configuring the JDBCAppender, use the nested <Column> elements to specify which columns
in the table should be written to and how to write to them. The JDBCAppender uses this information
to formulate a PreparedStatement to insert records without SQL injection vulnerability.

Parameter Name Type Description

name String Required. The name of the
database column.

pattern String Use this attribute to insert a value
or values from the log event in this
column using a PatternLayout
pattern. Simply specify any legal
pattern in this attribute. Either
this attribute, literal, or
isEventTimestamp="true"
must be specified, but not more
than one of these.

9 A p p e n d e r s 80

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

literal String Use this attribute to insert a literal
value in this column. The value
will be included directly in the
insert SQL, without any quoting
(which means that if you want this
to be a string, your value should
contain single quotes around it
like this: literal="'Literal
String'"). This is especially
useful for databases that don't
support identity columns. For
example, if you are using
Oracle you could specify
literal="NAME_OF_YOUR_SEQUENCE.NEXTVAL"
to insert a unique ID in
an ID column. Either this
attribute, pattern, or
isEventTimestamp="true"
must be specified, but not more
than one of these.

isEventTimestamp boolean Use this attribute to insert the
event timestamp in this column,
which should be a SQL datetime.
The value will be inserted as a
java.sql.Types.TIMESTAMP.
Either this attribute (equal
to true), pattern, or
isEventTimestamp must be
specified, but not more than one of
these.

isUnicode boolean This attribute is ignored unless
pattern is specified. If
true or omitted (default),
the value will be inserted as
unicode (setNString or
setNClob). Otherwise, the value
will be inserted non-unicode (
setString or setClob).

isClob boolean This attribute is ignored unless
pattern is specified. Use this
attribute to indicate that the column
stores Character Large Objects
(CLOBs). If true, the value will be
inserted as a CLOB (setClob or
setNClob). If false or omitted
(default), the value will be inserted
as a VARCHAR or NVARCHAR (
setString or setNString).

Column Parameters

Here are a couple sample configurations for the JDBCAppender, as well as a sample factory
implementation that uses Commons Pooling and Commons DBCP to pool database connections:

9 A p p e n d e r s 81

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <JDBC name="databaseAppender" tableName="dbo.application_log">

 <DataSource jndiName="java:/comp/env/jdbc/LoggingDataSource" />

 <Column name="eventDate" isEventTimestamp="true" />

 <Column name="level" pattern="%level" />

 <Column name="logger" pattern="%logger" />

 <Column name="message" pattern="%message" />

 <Column name="exception" pattern="%ex{full}" />

 </JDBC>

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <JDBC name="databaseAppender" tableName="LOGGING.APPLICATION_LOG">

 <ConnectionFactory class="net.example.db.ConnectionFactory" method="getDatabaseConnection" />

 <Column name="EVENT_ID" literal="LOGGING.APPLICATION_LOG_SEQUENCE.NEXTVAL" />

 <Column name="EVENT_DATE" isEventTimestamp="true" />

 <Column name="LEVEL" pattern="%level" />

 <Column name="LOGGER" pattern="%logger" />

 <Column name="MESSAGE" pattern="%message" />

 <Column name="THROWABLE" pattern="%ex{full}" />

 </JDBC>

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

9 A p p e n d e r s 82

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

package net.example.db;

import java.sql.Connection;

import java.sql.SQLException;

import java.util.Properties;

import javax.sql.DataSource;

import org.apache.commons.dbcp.DriverManagerConnectionFactory;

import org.apache.commons.dbcp.PoolableConnection;

import org.apache.commons.dbcp.PoolableConnectionFactory;

import org.apache.commons.dbcp.PoolingDataSource;

import org.apache.commons.pool.impl.GenericObjectPool;

public class ConnectionFactory {

 private static interface Singleton {

 final ConnectionFactory INSTANCE = new ConnectionFactory();

 }

 private final DataSource dataSource;

 private ConnectionFactory() {

 Properties properties = new Properties();

 properties.setProperty("user", "logging");

 properties.setProperty("password", "abc123"); // or get properties from some configuration file

 GenericObjectPool<PoolableConnection> pool = new GenericObjectPool<PoolableConnection>();

 DriverManagerConnectionFactory connectionFactory = new DriverManagerConnectionFactory(

 "jdbc:mysql://example.org:3306/exampleDb", properties

);

 new PoolableConnectionFactory(

 connectionFactory, pool, null, "SELECT 1", 3, false, false, Connection.TRANSACTION_READ_COMMITTED

);

 this.dataSource = new PoolingDataSource(pool);

 }

 public static Connection getDatabaseConnection() throws SQLException {

 return Singleton.INSTANCE.dataSource.getConnection();

 }

}

9.1.7 JMSAppender

The JMSAppender sends the formatted log event to a JMS Destination.

Note that in Log4j 2.0, this appender was split into a JMSQueueAppender and a JMSTopicAppender.
Starting in Log4j 2.1, these appenders were combined into the JMSAppender which makes no
distinction between queues and topics. However, configurations written for 2.0 which use the
<JMSQueue/> or <JMSTopic/> elements will continue to work with the new <JMS/> configuration
element.

9 A p p e n d e r s 83

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Parameter Name Type Description

factoryBindingName String The name to locate in the
Context that provides the
ConnectionFactory. This
can be any subinterface of
ConnectionFactory as well.
This attribute is required.

factoryName String The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.
If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without
a providerURL a warning message
will be logged as this is likely to
cause problems.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

layout Layout The Layout to use to format the
LogEvent. If you do not specify a
layout, this appender will use a
SerializedLayout.

name String The name of the Appender.
Required.

password String The password to use to create the
JMS connection.

providerURL String The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

destinationBindingName String The name to use to locate
the Destination. This can
be a Queue or Topic, and
as such, the attribute names
queueBindingName and
topicBindingName are aliases
to maintain compatibility with the
Log4j 2.0 JMS appenders.

securityPrincipalName String The name of the identity of
the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

securityCredentials String The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Destination.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS

9 A p p e n d e r s 84

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

urlPkgPrefixes String A colon-separated list of package
prefixes for the class name of
the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

userName String The user id used to create the JMS
connection.

JMSAppender Parameters

Here is a sample JMSAppender configuration:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp">

 <Appenders>

 <JMS name="jmsQueue" destinationBindingName="MyQueue"

 factoryBindingName="MyQueueConnectionFactory"/>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="jmsQueue"/>

 </Root>

 </Loggers>

</Configuration>

9.1.8 JPAAppender

The JPAAppender writes log events to a relational database table using the Java Persistence
API 2.1. It requires the API and a provider implementation be on the classpath. It also requires
a decorated entity configured to persist to the table desired. The entity should either extend
org.apache.logging.log4j.core.appender.db.jpa.BasicLogEventEntity
(if you mostly want to use the default mappings) and provide at least an @Id property, or
org.apache.logging.log4j.core.appender.db.jpa.AbstractLogEventWrapperEntity
(if you want to significantly customize the mappings). See the Javadoc for these two classes for
more information. You can also consult the source code of these two classes as an example of how to
implement the entity.

Parameter Name Type Description

name String Required. The name of the
Appender.

http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES

9 A p p e n d e r s 85

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

bufferSize int If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

entityClassName String Required. The fully qualified
name of the concrete
LogEventWrapperEntity
implementation that has JPA
annotations mapping it to a
database table.

persistenceUnitName String Required. The name of the JPA
persistence unit that should be
used for persisting log events.

JPAAppender Parameters

Here is a sample configuration for the JPAAppender. The first XML sample is the Log4j
configuration file, the second is the persistence.xml file. EclipseLink is assumed here, but
any JPA 2.1 or higher provider will do. You should always create a separate persistence unit
for logging, for two reasons. First, <shared-cache-mode> must be set to "NONE," which is
usually not desired in normal JPA usage. Also, for performance reasons the logging entity should
be isolated in its own persistence unit away from all other entities and you should use a non-JTA
data source. Note that your persistence unit must also contain <class> elements for all of the
org.apache.logging.log4j.core.appender.db.jpa.converter converter classes.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <JPA name="databaseAppender" persistenceUnitName="loggingPersistenceUnit"

 entityClassName="com.example.logging.JpaLogEntity" />

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

9 A p p e n d e r s 86

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"

 version="2.1">

 <persistence-unit name="loggingPersistenceUnit" transaction-type="RESOURCE_LOCAL">

 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.ContextMapAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.ContextMapJsonAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.ContextStackAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.ContextStackJsonAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.MarkerAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.MessageAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.StackTraceElementAttributeConverter</class>

 <class>org.apache.logging.log4j.core.appender.db.jpa.converter.ThrowableAttributeConverter</class>

 <class>com.example.logging.JpaLogEntity</class>

 <non-jta-data-source>jdbc/LoggingDataSource</non-jta-data-source>

 <shared-cache-mode>NONE</shared-cache-mode>

 </persistence-unit>

</persistence>

package com.example.logging;

...

@Entity

@Table(name="application_log", schema="dbo")

public class JpaLogEntity extends BasicLogEventEntity {

 private static final long serialVersionUID = 1L;

 private long id = 0L;

 public TestEntity() {

 super(null);

 }

 public TestEntity(LogEvent wrappedEvent) {

 super(wrappedEvent);

 }

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Column(name = "id")

 public long getId() {

 return this.id;

 }

 public void setId(long id) {

 this.id = id;

 }

 // If you want to override the mapping of any properties mapped in BasicLogEventEntity,

 // just override the getters and re-specify the annotations.

}

9 A p p e n d e r s 87

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

package com.example.logging;

...

@Entity

@Table(name="application_log", schema="dbo")

public class JpaLogEntity extends AbstractLogEventWrapperEntity {

 private static final long serialVersionUID = 1L;

 private long id = 0L;

 public TestEntity() {

 super(null);

 }

 public TestEntity(LogEvent wrappedEvent) {

 super(wrappedEvent);

 }

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 @Column(name = "logEventId")

 public long getId() {

 return this.id;

 }

 public void setId(long id) {

 this.id = id;

 }

 @Override

 @Enumerated(EnumType.STRING)

 @Column(name = "level")

 public Level getLevel() {

 return this.getWrappedEvent().getLevel();

 }

 @Override

 @Column(name = "logger")

 public String getLoggerName() {

 return this.getWrappedEvent().getLoggerName();

 }

 @Override

 @Column(name = "message")

 @Convert(converter = MyMessageConverter.class)

 public Message getMessage() {

 return this.getWrappedEvent().getMessage();

 }

 ...

}

9.1.9 MemoryMappedFileAppender

New since 2.1. Be aware that this is a new addition, and although it has been tested on several
platforms, it does not have as much track record as the other file appenders.

9 A p p e n d e r s 88

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The MemoryMappedFileAppender maps a part of the specified file into memory and writes log
events to this memory, relying on the operating system's virtual memory manager to synchronize the
changes to the storage device. The main benefit of using memory mapped files is I/O performance.
Instead of making system calls to write to disk, this appender can simply change the program's
local memory, which is orders of magnitude faster. Also, in most operating systems the memory
region mapped actually is the kernel's page cache (file cache), meaning that no copies need to be
created in user space. (TODO: performance tests that compare performance of this appender to
RandomAccessFileAppender and FileAppender.)

There is some overhead with mapping a file region into memory, especially very large regions (half
a gigabyte or more). The default region size is 32 MB, which should strike a reasonable balance
between the frequency and the duration of remap operations. (TODO: performance test remapping
various sizes.)

Similar to the FileAppender and the RandomAccessFileAppender, MemoryMappedFileAppender uses
a MemoryMappedFileManager to actually perform the file I/O. While MemoryMappedFileAppender
from different Configurations cannot be shared, the MemoryMappedFileManagers can be if the
Manager is accessible. For example, two web applications in a servlet container can have their own
configuration and safely write to the same file if Log4j is in a ClassLoader that is common to both of
them.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filters Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

http://en.wikipedia.org/wiki/Page_cache

9 A p p e n d e r s 89

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

immediateFlush boolean When set to true, each write
will be followed by a call to
MappedByteBuffer.force().
This will guarantee the data is
written to the storage device.

The default for this parameter is
false. This means that the data
is written to the storage device
even if the Java process crashes,
but there may be data loss if the
operating system crashes.

Note that manually forcing
a sync on every log event
loses most of the performance
benefits of using a memory
mapped file.

Flushing after every write is
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of a batch of events, even if
immediateFlush is set to false.
This also guarantees the data
is written to disk but is more
efficient.

regionLength int The length of the mapped region,
defaults to 32 MB (32 * 1024
* 1024 bytes). This parameter
must be a value between 256 and
1,073,741,824 (1 GB or 2^30);
values outside this range will be
adjusted to the closest valid value.
Log4j will round the specified value
up to the nearest power of two.

layout Layout The Layout to use to format the
LogEvent

name String The name of the Appender.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

MemoryMappedFileAppender Parameters

Here is a sample MemoryMappedFile configuration:

http://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html#force()
http://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html#force()

9 A p p e n d e r s 90

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <MemoryMappedFile name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 </MemoryMappedFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="MyFile"/>

 </Root>

 </Loggers>

</Configuration>

9.1.10 NoSQLAppender

The NoSQLAppender writes log events to a NoSQL database using an internal lightweight provider
interface. Provider implementations currently exist for MongoDB and Apache CouchDB, and writing
a custom provider is quite simple.

Parameter Name Type Description

name String Required. The name of the
Appender.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

bufferSize int If an integer greater than 0, this
causes the appender to buffer log
events and flush whenever the
buffer reaches this size.

NoSqlProvider NoSQLProvider<C extends
NoSQLConnection<W, T extends
NoSQLObject<W>>>

Required. The NoSQL provider that
provides connections to the chosen
NoSQL database.

NoSQLAppender Parameters

You specify which NoSQL provider to use by specifying the appropriate configuration element within
the <NoSql> element. The types currently supported are <MongoDb> and <CouchDb>. To create
your own custom provider, read the JavaDoc for the NoSQLProvider, NoSQLConnection, and

9 A p p e n d e r s 91

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

NoSQLObject classes and the documentation about creating Log4j plugins. We recommend you
review the source code for the MongoDB and CouchDB providers as a guide for creating your own
provider.

Parameter Name Type Description

collectionName String Required. The name of the
MongoDB collection to insert the
events into.

writeConcernConstant Field By default, the MongoDB provider
inserts records with the instructions
com.mongodb.WriteConcern.ACKNOWLEDGED.
Use this optional attribute to specify
the name of a constant other than
ACKNOWLEDGED.

writeConcernConstantClass Class If you specify
writeConcernConstant,
you can use this attribute to
specify a class other than
com.mongodb.WriteConcern
to find the constant on (to create
your own custom instructions).

factoryClassName Class To provide a connection to
the MongoDB database, you
can use this attribute and
factoryMethodName to specify
a class and static method to get the
connection from. The method must
return a com.mongodb.DB or a
com.mongodb.MongoClient.
If the DB is not authenticated, you
must also specify a username
and password. If you use the
factory method for providing a
connection, you must not specify
the databaseName, server, or
port attributes.

factoryMethodName Method See the documentation for attribute
factoryClassName.

databaseName String If you do not specify a
factoryClassName and
factoryMethodName for
providing a MongoDB connection,
you must specify a MongoDB
database name using this
attribute. You must also specify
a username and password.
You can optionally also specify a
server (defaults to localhost),
and a port (defaults to the default
MongoDB port).

server String See the documentation for attribute
databaseName.

port int See the documentation for attribute
databaseName.

9 A p p e n d e r s 92

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

username String See the documentation for
attributes databaseName and
factoryClassName.

password String See the documentation for
attributes databaseName and
factoryClassName.

MongoDB Provider Parameters

Parameter Name Type Description

factoryClassName Class To provide a connection to
the CouchDB database, you
can use this attribute and
factoryMethodName
to specify a class and static
method to get the connection
from. The method must return a
org.lightcouch.CouchDbClient
or a
org.lightcouch.CouchDbProperties.
If you use the factory method for
providing a connection, you must
not specify the databaseName,
protocol, server, port,
username, or password
attributes.

factoryMethodName Method See the documentation for attribute
factoryClassName.

databaseName String If you do not specify a
factoryClassName and
factoryMethodName for
providing a CouchDB connection,
you must specify a CouchDB
database name using this
attribute. You must also specify
a username and password.
You can optionally also specify
a protocol (defaults to http),
server (defaults to localhost),
and a port (defaults to 80 for http
and 443 for https).

protocol String Must either be "http" or "https."
See the documentation for attribute
databaseName.

server String See the documentation for attribute
databaseName.

port int See the documentation for attribute
databaseName.

username String See the documentation for
attributes databaseName.

9 A p p e n d e r s 93

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

password String See the documentation for
attributes databaseName.

CouchDB Provider Parameters

Here are a few sample configurations for the NoSQLAppender:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <NoSql name="databaseAppender">

 <MongoDb databaseName="applicationDb" collectionName="applicationLog" server="mongo.example.org"

 username="loggingUser" password="abc123" />

 </NoSql>

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <NoSql name="databaseAppender">

 <MongoDb collectionName="applicationLog" factoryClassName="org.example.db.ConnectionFactory"

 factoryMethodName="getNewMongoClient" />

 </NoSql>

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="error">

 <Appenders>

 <NoSql name="databaseAppender">

 <CouchDb databaseName="applicationDb" protocol="https" server="couch.example.org"

 username="loggingUser" password="abc123" />

 </NoSql>

 </Appenders>

 <Loggers>

 <Root level="warn">

 <AppenderRef ref="databaseAppender"/>

 </Root>

 </Loggers>

</Configuration>

The following example demonstrates how log events are persisted in NoSQL databases if represented
in a JSON format:

9 A p p e n d e r s 94

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

{

 "level": "WARN",

 "loggerName": "com.example.application.MyClass",

 "message": "Something happened that you might want to know about.",

 "source": {

 "className": "com.example.application.MyClass",

 "methodName": "exampleMethod",

 "fileName": "MyClass.java",

 "lineNumber": 81

 },

 "marker": {

 "name": "SomeMarker",

 "parent" {

 "name": "SomeParentMarker"

 }

 },

 "threadName": "Thread-1",

 "millis": 1368844166761,

 "date": "2013-05-18T02:29:26.761Z",

 "thrown": {

 "type": "java.sql.SQLException",

 "message": "Could not insert record. Connection lost.",

 "stackTrace": [

 { "className": "org.example.sql.driver.PreparedStatement$1", "methodName": "responder", "fileName": "PreparedStatement.java", "lineNumber": 1049 },

 { "className": "org.example.sql.driver.PreparedStatement", "methodName": "executeUpdate", "fileName": "PreparedStatement.java", "lineNumber": 738 },

 { "className": "com.example.application.MyClass", "methodName": "exampleMethod", "fileName": "MyClass.java", "lineNumber": 81 },

 { "className": "com.example.application.MainClass", "methodName": "main", "fileName": "MainClass.java", "lineNumber": 52 }

],

 "cause": {

 "type": "java.io.IOException",

 "message": "Connection lost.",

 "stackTrace": [

 { "className": "java.nio.channels.SocketChannel", "methodName": "write", "fileName": null, "lineNumber": -1 },

 { "className": "org.example.sql.driver.PreparedStatement$1", "methodName": "responder", "fileName": "PreparedStatement.java", "lineNumber": 1032 },

 { "className": "org.example.sql.driver.PreparedStatement", "methodName": "executeUpdate", "fileName": "PreparedStatement.java", "lineNumber": 738 },

 { "className": "com.example.application.MyClass", "methodName": "exampleMethod", "fileName": "MyClass.java", "lineNumber": 81 },

 { "className": "com.example.application.MainClass", "methodName": "main", "fileName": "MainClass.java", "lineNumber": 52 }

]

 }

 },

 "contextMap": {

 "ID": "86c3a497-4e67-4eed-9d6a-2e5797324d7b",

 "username": "JohnDoe"

 },

 "contextStack": [

 "topItem",

 "anotherItem",

 "bottomItem"

]

}

9 A p p e n d e r s 95

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.1.11 OutputStreamAppender

The OutputStreamAppender provides the base for many of the other Appenders such as the File
and Socket appenders that write the event to an Output Stream. It cannot be directly configured.
Support for immediateFlush and buffering is provided by the OutputStreamAppender. The
OutputStreamAppender uses an OutputStreamManager to handle the actual I/O, allowing the stream
to be shared by Appenders in multiple configurations.

9.1.12 RandomAccessFileAppender

As of beta-9, the name of this appender has been changed from FastFile to RandomAccessFile.
Configurations using the FastFile element no longer work and should be modified to use the
RandomAccessFile element.

The RandomAccessFileAppender is similar to the standard FileAppender except it is always
buffered (this cannot be switched off) and internally it uses a ByteBuffer + RandomAccessFile
instead of a BufferedOutputStream. We saw a 20-200% performance improvement compared
to FileAppender with "bufferedIO=true" in our measurements. Similar to the FileAppender,
RandomAccessFileAppender uses a RandomAccessFileManager to actually perform the file
I/O. While RandomAccessFileAppender from different Configurations cannot be shared, the
RandomAccessFileManagers can be if the Manager is accessible. For example, two web applications
in a servlet container can have their own configuration and safely write to the same file if Log4j is in a
ClassLoader that is common to both of them.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filters Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

9 A p p e n d e r s 96

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

immediateFlush boolean When set to true - the default,
each write will be followed by
a flush. This will guarantee the
data is written to disk but could
impact performance.

Flushing after every write is
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of a batch of events, even if
immediateFlush is set to false.
This also guarantees the data
is written to disk but is more
efficient.

bufferSize int The buffer size, defaults to 262,144
bytes (256 * 1024).

layout Layout The Layout to use to format the
LogEvent

name String The name of the Appender.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

RandomAccessFileAppender Parameters

Here is a sample RandomAccessFile configuration:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RandomAccessFile name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 </RandomAccessFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="MyFile"/>

 </Root>

 </Loggers>

</Configuration>

9 A p p e n d e r s 97

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.1.13 RewriteAppender

The RewriteAppender allows the LogEvent to manipulated before it is processed by another
Appender. This can be used to mask sensitive information such as passwords or to inject
information into each event. The RewriteAppender must be configured with a RewritePolicy. The
RewriteAppender should be configured after any Appenders it references to allow it to shut down
properly.

Parameter Name Type Description

AppenderRef String The name of the Appenders to
call after the LogEvent has been
manipulated. Multiple AppenderRef
elements can be configured.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolicy The RewritePolicy that will
manipulate the LogEvent.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

RewriteAppender Parameters

9.1.13.1 RewritePolicy

RewritePolicy is an interface that allows implementations to inspect and possibly modify LogEvents
before they are passed to Appender. RewritePolicy declares a single method named rewrite that must
be implemented. The method is passed the LogEvent and can return the same event or create a new
one.

9.MapRewritePolicy

MapRewritePolicy will evaluate LogEvents that contain a MapMessage and will add or update
elements of the Map.

Parameter Name Type Description

mode String "Add" or "Update"

keyValuePair KeyValuePair[] An array of keys and their values.

The following configuration shows a RewriteAppender configured to add a product key and its value
to the MapMessage.:

9 A p p e n d e r s 98

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Rewrite name="rewrite">

 <AppenderRef ref="STDOUT"/>

 <MapRewritePolicy mode="Add">

 <KeyValuePair key="product" value="TestProduct"/>

 </MapRewritePolicy>

 </Rewrite>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Rewrite"/>

 </Root>

 </Loggers>

</Configuration>

9.PropertiesRewritePolicy

PropertiesRewritePolicy will add properties configured on the policy to the ThreadContext Map being
logged. The properties will not be added to the actual ThreadContext Map. The property values may
contain variables that will be evaluated when the configuration is processed as well as when the event
is logged.

Parameter Name Type Description

properties Property[] One of more Property elements to
define the keys and values to be
added to the ThreadContext Map.

The following configuration shows a RewriteAppender configured to add a product key and its value
to the MapMessage.:

9 A p p e n d e r s 99

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Rewrite name="rewrite">

 <AppenderRef ref="STDOUT"/>

 <PropertiesRewritePolicy>

 <Property name="user">${sys:user.name}</Property>

 <Property name="env">${sys:environment}</Property>

 </PropertiesRewritePolicy>

 </Rewrite>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Rewrite"/>

 </Root>

 </Loggers>

</Configuration>

9.1.14 RollingFileAppender

The RollingFileAppender is an OutputStreamAppender that writes to the File named in the fileName
parameter and rolls the file over according the TriggeringPolicy and the RolloverPolicy. The
RollingFileAppender uses a RollingFileManager (which extends OutputStreamManager) to
actually perform the file I/O and perform the rollover. While RolloverFileAppenders from different
Configurations cannot be shared, the RollingFileManagers can be if the Manager is accessible. For
example, two web applications in a servlet container can have their own configuration and safely
write to the same file if Log4j is in a ClassLoader that is common to both of them.

A RollingFileAppender requires a TriggeringPolicy and a RolloverStrategy. The triggering
policy determines if a rollover should be performed while the RolloverStrategy defines how the
rollover should be done. If no RolloverStrategy is configured, RollingFileAppender will use the
DefaultRolloverStrategy.

File locking is not supported by the RollingFileAppender.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

9 A p p e n d e r s 100

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

bufferedIO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedIO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

bufferSize int When bufferedIO is true, this is
the buffer size, the default is 8192
bytes.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filePattern String The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on
the RolloverPolicy that is used.
The DefaultRolloverPolicy will
accept both a date/time pattern
compatible with SimpleDateFormat
and and/or a %i which represents
an integer counter. The pattern also
supports interpolation at runtime so
any of the Lookups (such as the
DateLookup can be included in the
pattern.

immediateFlush boolean When set to true - the default,
each write will be followed by
a flush. This will guarantee the
data is written to disk but could
impact performance.

Flushing after every write is
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of a batch of events, even if
immediateFlush is set to false.
This also guarantees the data
is written to disk but is more
efficient.

layout Layout The Layout to use to format the
LogEvent

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

9 A p p e n d e r s 101

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

name String The name of the Appender.

policy TriggeringPolicy The policy to use to determine if a
rollover should occur.

strategy RolloverStrategy The strategy to use to determine
the name and location of the
archive file.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

RollingFileAppender Parameters

9.1.14.1 Triggering Policies

9.Composite Triggering Policy

The CompositeTriggeringPolicy combines multiple triggering policies and returns true if any
of the configured policies return true. The CompositeTriggeringPolicy is configured simply by
wrapping other policies in a Policies element.

For example, the following XML fragment defines policies that rollover the log when the JVM starts,
when the log size reaches twenty megabytes, and when the current date no longer matches the log’s
start date.

<Policies>

 <OnStartupTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="20 MB" />

 <TimeBasedTriggeringPolicy />

</Policies>

9.OnStartup Triggering Policy

The OnStartupTriggeringPolicy policy takes no parameters and causes a rollover if the log file
is older than the current JVM's start time.

Google App Engine note:
When running in Google App Engine, the OnStartup policy causes a rollover if
the log file is older than the time when Log4J initialized. (Google App Engine
restricts access to certain classes so Log4J cannot determine JVM start time with
java.lang.management.ManagementFactory.getRuntimeMXBean().getStartTime() and
falls back to Log4J initialization time instead.)

9.SizeBased Triggering Policy

The SizeBasedTriggeringPolicy causes a rollover once the file has reached the specified size.
The size can be specified in bytes, with the suffix KB, MB or GB, for example 20MB.

9 A p p e n d e r s 102

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.TimeBased Triggering Policy

The TimeBasedTriggeringPolicy causes a rollover once the date/time pattern no longer applies
to the active file. This policy accepts an increment attribute which indicates how frequently the
rollover should occur based on the time pattern and a modulate boolean attribute.

Parameter Name Type Description

interval integer How often a rollover should
occur based on the most specific
time unit in the date pattern. For
example, with a date pattern with
hours as the most specific item and
and increment of 4 rollovers would
occur every 4 hours. The default
value is 1.

modulate boolean Indicates whether the interval
should be adjusted to cause the
next rollover to occur on the interval
boundary. For example, if the item
is hours, the current hour is 3 am
and the interval is 4 then then the
first rollover will occur at 4 am and
then next ones will occur at 8 am,
noon, 4pm, etc.

TimeBasedTriggeringPolicy Parameters

9.1.14.2 Rollover Strategies

9.Default Rollover Strategy

The default rollover strategy accepts both a date/time pattern and an integer from the filePattern
attribute specified on the RollingFileAppender itself. If the date/time pattern is present it will be
replaced with the current date and time values. If the pattern contains an integer it will be incremented
on each rollover. If the pattern contains both a date/time and integer in the pattern the integer will
be incremented until the result of the date/time pattern changes. If the file pattern ends with ".gz" or
".zip" the resulting archive will be compressed using the compression scheme that matches the suffix.
The pattern may also contain lookup references that can be resolved at runtime such as is shown in the
example below.

The default rollover strategy supports two variations for incrementing the counter. The first is the
"fixed window" strategy. To illustrate how it works, suppose that the min attribute is set to 1, the max
attribute is set to 3, the file name is "foo.log", and the file name pattern is "foo-%i.log".

Number of rollovers Active output target Archived log files Description

0 foo.log - All logging is going to the
initial file.

9 A p p e n d e r s 103

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1 foo.log foo-1.log During the first rollover
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

2 foo.log foo-1.log, foo-2.log During the second rollover
foo-1.log is renamed to
foo-2.log and foo.log is
renamed to foo-1.log. A
new foo.log file is created
and starts being written
to.

3 foo.log foo-1.log, foo-2.log,
foo-3.log

During the third rollover
foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

4 foo.log foo-1.log, foo-2.log,
foo-3.log

In the fourth and
subsequent rollovers,
foo-3.log is deleted,
foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

By way of contrast, when the the fileIndex attribute is set to "max" but all the other settings are the
same the following actions will be performed.

Number of rollovers Active output target Archived log files Description

0 foo.log - All logging is going to the
initial file.

1 foo.log foo-1.log During the first rollover
foo.log is renamed to
foo-1.log. A new foo.log
file is created and starts
being written to.

2 foo.log foo-1.log, foo-2.log During the second rollover
foo.log is renamed to
foo-2.log. A new foo.log
file is created and starts
being written to.

3 foo.log foo-1.log, foo-2.log,
foo-3.log

During the third rollover
foo.log is renamed to
foo-3.log. A new foo.log
file is created and starts
being written to.

9 A p p e n d e r s 104

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

4 foo.log foo-1.log, foo-2.log,
foo-3.log

In the fourth and
subsequent rollovers,
foo-1.log is deleted,
foo-2.log is renamed to
foo-1.log, foo-3.log is
renamed to foo-2.log and
foo.log is renamed to
foo-3.log. A new foo.log
file is created and starts
being written to.

Parameter Name Type Description

fileIndex String If set to "max" (the default), files
with a higher index will be newer
than files with a smaller index.
If set to "min", file renaming and
the counter will follow the Fixed
Window strategy described above.

min integer The minimum value of the counter.
The default value is 1.

max integer The maximum value of the counter.
Once this values is reached
older archives will be deleted on
subsequent rollovers.

compressionLevel integer Sets the compression level, 0-9,
where 0 = none, 1 = best speed,
through 9 = best compression. Only
implemented for ZIP files.

DefaultRolloverStrategy Parameters

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory
based on the current year and month, and will compress each archive using gzip:

9 A p p e n d e r s 105

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

This second example shows a rollover strategy that will keep up to 20 files before removing them.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 <DefaultRolloverStrategy max="20"/>

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory
based on the current year and month, and will compress each archive using gzip and will roll every 6
hours when the hour is divisible by 6:

9 A p p e n d e r s 106

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{yyyy-MM-dd-HH}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy interval="6" modulate="true"/>

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

9.1.15 RollingRandomAccessFileAppender

As of beta-9, the name of this appender has been changed from FastRollingFile to
RollingRandomAccessFile. Configurations using the FastRollingFile element no longer work and
should be modified to use the RollingRandomAccessFile element.

The RollingRandomAccessFileAppender is similar to the standard RollingFileAppender except
it is always buffered (this cannot be switched off) and internally it uses a ByteBuffer +
RandomAccessFile instead of a BufferedOutputStream. We saw a 20-200% performance
improvement compared to RollingFileAppender with "bufferedIO=true" in our measurements. The
RollingRandomAccessFileAppender writes to the File named in the fileName parameter and rolls the
file over according the TriggeringPolicy and the RolloverPolicy. Similar to the RollingFileAppender,
RollingRandomAccessFileAppender uses a RollingRandomAccessFileManager to actually perform
the file I/O and perform the rollover. While RollingRandomAccessFileAppender from different
Configurations cannot be shared, the RollingRandomAccessFileManagers can be if the Manager is
accessible. For example, two web applications in a servlet container can have their own configuration
and safely write to the same file if Log4j is in a ClassLoader that is common to both of them.

A RollingRandomAccessFileAppender requires a TriggeringPolicy and a RolloverStrategy.
The triggering policy determines if a rollover should be performed while the RolloverStrategy
defines how the rollover should be done. If no RolloverStrategy is configured,
RollingRandomAccessFileAppender will use the DefaultRolloverStrategy.

File locking is not supported by the RollingRandomAccessFileAppender.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new records are
written.

9 A p p e n d e r s 107

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

fileName String The name of the file to write to.
If the file, or any of its parent
directories, do not exist, they will be
created.

filePattern String The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on the
RolloverPolicy that is used. The
DefaultRolloverPolicy will accept
both a date/time pattern compatible
with SimpleDateFormat and/or
a %i which represents an integer
counter. The pattern also supports
interpolation at runtime so any
of the Lookups (such as the
DateLookup can be included in the
pattern.

immediateFlush boolean When set to true - the default,
each write will be followed by
a flush. This will guarantee the
data is written to disk but could
impact performance.

Flushing after every write is
only useful when using this
appender with synchronous
loggers. Asynchronous
loggers and appenders will
automatically flush at the end
of a batch of events, even if
immediateFlush is set to false.
This also guarantees the data
is written to disk but is more
efficient.

bufferSize int The buffer size, defaults to 262,144
bytes (256 * 1024).

layout Layout The Layout to use to format the
LogEvent

name String The name of the Appender.

policy TriggeringPolicy The policy to use to determine if a
rollover should occur.

strategy RolloverStrategy The strategy to use to determine
the name and location of the
archive file.

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

9 A p p e n d e r s 108

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

RollingRandomAccessFileAppender Parameters

9.1.15.1 Triggering Policies

See RollingFileAppender Triggering Policies.

9.1.15.2 Rollover Strategies

See RollingFileAppender Rollover Strategies.

Below is a sample configuration that uses a RollingRandomAccessFileAppender with both the time
and size based triggering policies, will create up to 7 archives on the same day (1-7) that are stored in
a directory based on the current year and month, and will compress each archive using gzip:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingRandomAccessFile name="RollingRandomAccessFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingRandomAccessFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingRandomAccessFile"/>

 </Root>

 </Loggers>

</Configuration>

This second example shows a rollover strategy that will keep up to 20 files before removing them.

9 A p p e n d e r s 109

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingRandomAccessFile name="RollingRandomAccessFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 <DefaultRolloverStrategy max="20"/>

 </RollingRandomAccessFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingRandomAccessFile"/>

 </Root>

 </Loggers>

</Configuration>

Below is a sample configuration that uses a RollingRandomAccessFileAppender with both the time
and size based triggering policies, will create up to 7 archives on the same day (1-7) that are stored in
a directory based on the current year and month, and will compress each archive using gzip and will
roll every 6 hours when the hour is divisible by 6:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingRandomAccessFile name="RollingRandomAccessFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{yyyy-MM-dd-HH}-%i.log.gz">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m%n</Pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy interval="6" modulate="true"/>

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingRandomAccessFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingRandomAccessFile"/>

 </Root>

 </Loggers>

</Configuration>

9.1.16 RoutingAppender

The RoutingAppender evaluates LogEvents and then routes them to a subordinate Appender. The
target Appender may be an appender previously configured and may be referenced by its name or the
Appender can be dynamically created as needed. The RoutingAppender should be configured after
any Appenders it references to allow it to shut down properly.

9 A p p e n d e r s 110

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Parameter Name Type Description

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolicy The RewritePolicy that will
manipulate the LogEvent.

routes Routes Contains one or more Route
declarations to identify the criteria
for choosing Appenders.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

RoutingAppender Parameters

9.1.16.1 Routes

The Routes element accepts a single, required attribute named "pattern". The pattern is evaluated
against all the registered Lookups and the result is used to select a Route. Each Route may be
configured with a key. If the key matches the result of evaluating the pattern then that Route will
be selected. If no key is specified on a Route then that Route is the default. Only one Route can be
configured as the default.

Each Route must reference an Appender. If the Route contains a ref attribute then the Route will
reference an Appender that was defined in the configuration. If the Route contains an Appender
definition then an Appender will be created within the context of the RoutingAppender and will be
reused each time a matching Appender name is referenced through a Route.

Below is a sample configuration that uses a RoutingAppender to route all Audit events to a
FlumeAppender and all other events will be routed to a RollingFileAppender that captures only the
specific event type. Note that the AuditAppender was predefined while the RollingFileAppenders are
created as needed.

9 A p p e n d e r s 111

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Flume name="AuditLogger" compress="true">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${sd:type}.log"

 filePattern="${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route ref="AuditLogger" key="Audit"/>

 </Routes>

 </Routing>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Routing"/>

 </Root>

 </Loggers>

</Configuration>

9.1.17 SMTPAppender

Sends an e-mail when a specific logging event occurs, typically on errors or fatal errors.

The number of logging events delivered in this e-mail depend on the value of BufferSize option.
The SMTPAppender keeps only the last BufferSize logging events in its cyclic buffer. This keeps
memory requirements at a reasonable level while still delivering useful application context. All events
in the buffer are included in the email. The buffer will contain the most recent events of level TRACE
to WARN preceding the event that triggered the email.

The default behavior is to trigger sending an email whenever an ERROR or higher severity event
is logged and to format it as HTML. The circumstances on when the email is sent can be controlled
by setting one or more filters on the Appender. As with other Appenders, the formatting can be
controlled by specifying a Layout for the Appender.

Parameter Name Type Description

bcc String The comma-separated list of BCC
email addresses.

cc String The comma-separated list of CC
email addresses.

9 A p p e n d e r s 112

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

bufferSize integer The maximum number of log
events to be buffered for inclusion
in the message. Defaults to 512.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

from String The email address of the sender.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

name String The name of the Appender.

replyTo String The comma-separated list of reply-
to email addresses.

smtpDebug boolean When set to true enables session
debugging on STDOUT. Defaults to
false.

smtpHost String The SMTP hostname to send to.
This parameter is required.

smtpPassword String The password required to
authenticate against the SMTP
server.

smtpPort integer The SMTP port to send to.

smtpProtocol String The SMTP transport protocol (such
as "smtps", defaults to "smtp").

smtpUsername String The username required to
authenticate against the SMTP
server.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

to String The comma-separated list of
recipient email addresses.

SMTPAppender Parameters

9 A p p e n d e r s 113

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <SMTP name="Mail" subject="Error Log" to="errors@logging.apache.org" from="test@logging.apache.org"

 smtpHost="localhost" smtpPort="25" bufferSize="50">

 </SMTP>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="Mail"/>

 </Root>

 </Loggers>

</Configuration>

9.1.18 SocketAppender

The SocketAppender is an OutputStreamAppender that writes its output to a remote destination
specified by a host and port. The data can be sent over either TCP or UDP and can be sent in any
format. The default format is to send a Serialized LogEvent. Log4j 2 contains a SocketServer which is
capable of receiving serialized LogEvents and routing them through the logging system on the server.
You can optionally secure communication with SSL.

Parameter Name Type Description

name String The name of the Appender.

host String The name or address of the system
that is listening for log events. This
parameter is required.

port integer The port on the host that is listening
for log events. This parameter must
be specified.

protocol String "TCP" (default), "SSL" or "UDP".

SSL SslConfiguration Contains the configuration for the
KeyStore and TrustStore.

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

immediateFail boolean When set to true, log events will
not wait to try to reconnect and will
fail immediately if the socket is not
available.

immediateFlush boolean When set to true - the default,
each write will be followed by a
flush. This will guarantee the data
is written to disk but could impact
performance.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

9 A p p e n d e r s 114

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

reconnectionDelayMillis integer If set to a value greater than 0,
after an error the SocketManager
will attempt to reconnect to the
server after waiting the specified
number of milliseconds. If the
reconnect fails then an exception
will be thrown (which can be
caught by the application if
ignoreExceptions is set to
false).

connectTimeoutMillis integer The connect timeout in
milliseconds. The default
is 0 (infinite timeout, like
Socket.connect() methods).

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

SocketAppender Parameters

This is an unsecured TCP configuration:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Socket name="socket" host="localhost" port="9500">

 <SerializedLayout />

 </Socket>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="socket"/>

 </Root>

 </Loggers>

</Configuration>

This is a secured SSL configuration:

9 A p p e n d e r s 115

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Socket name="socket" host="localhost" port="9500">

 <SerializedLayout />

 <SSL>

 <KeyStore location="log4j2-keystore.jks" password="changeme"/>

 <TrustStore location="truststore.jks" password="changeme"/>

 </SSL>

 </Socket>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="socket"/>

 </Root>

 </Loggers>

</Configuration>

9.1.19 SyslogAppender

The SyslogAppender is a SocketAppender that writes its output to a remote destination specified
by a host and port in a format that conforms with either the BSD Syslog format or the RFC 5424
format. The data can be sent over either TCP or UDP.

Parameter Name Type Description

advertise boolean Indicates whether the appender
should be advertised.

appName String The value to use as the APP-
NAME in the RFC 5424 syslog
record.

charset String The character set to use when
converting the syslog String to a
byte array. The String must be
a valid Charset. If not specified,
the default system Charset will be
used.

connectTimeoutMillis integer The connect timeout in
milliseconds. The default
is 0 (infinite timeout, like
Socket.connect() methods).

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

filter Filter A Filter to determine if the
event should be handled by
this Appender. More than one
Filter may be used by using a
CompositeFilter.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

9 A p p e n d e r s 116

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper
or lower case characters.

format String If set to "RFC5424" the data will
be formatted in accordance with
RFC 5424. Otherwise, it will be
formatted as a BSD Syslog record.
Note that although BSD Syslog
records are required to be 1024
bytes or shorter the SyslogLayout
does not truncate them. The
RFC5424Layout also does not
truncate records since the receiver
must accept records of up to 2048
bytes and may accept records that
are longer.

host String The name or address of the system
that is listening for log events. This
parameter is required.

id String The default structured data id to
use when formatting according to
RFC 5424. If the LogEvent contains
a StructuredDataMessage the id
from the Message will be used
instead of this value.

ignoreExceptions boolean The default is true, causing
exceptions encountered while
appending events to be internally
logged and then ignored. When
set to false exceptions will be
propagated to the caller, instead.
You must set this to false when
wrapping this Appender in a
FailoverAppender.

immediateFail boolean When set to true, log events will
not wait to try to reconnect and will
fail immediately if the socket is not
available.

immediateFlush boolean When set to true - the default,
each write will be followed by a
flush. This will guarantee the data
is written to disk but could impact
performance.

9 A p p e n d e r s 117

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

includeMDC boolean Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

loggerFields List of KeyValuePairs Allows arbitrary PatternLayout
patterns to be included as
specified ThreadContext fields;
no default specified. To use,
include a >LoggerFields< nested
element, containing one or more
>KeyValuePair< elements. Each
>KeyValuePair< must have a key
attribute, which specifies the key
name which will be used to identify
the field within the MDC Structured
Data element, and a value attribute,
which specifies the PatternLayout
pattern to use as the value.

mdcExcludes String A comma separated list of mdc
keys that should be excluded from
the LogEvent. This is mutually
exclusive with the mdcIncludes
attribute. This attribute only applies
to RFC 5424 syslog records.

mdcIncludes String A comma separated list of mdc
keys that should be included in
the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute. This attribute only applies
to RFC 5424 syslog records.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

mdcPrefix String A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:". This
attribute only applies to RFC 5424
syslog records.

messageId String The default value to be used in the
MSGID field of RFC 5424 syslog
records.

name String The name of the Appender.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

port integer The port on the host that is listening
for log events. This parameter must
be specified.

9 A p p e n d e r s 118

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

protocol String "TCP" or "UDP". This parameter is
required.

SSL SslConfiguration Contains the configuration for the
KeyStore and TrustStore.

reconnectionDelayMillis integer If set to a value greater than 0,
after an error the SocketManager
will attempt to reconnect to the
server after waiting the specified
number of milliseconds. If the
reconnect fails then an exception
will be thrown (which can be
caught by the application if
ignoreExceptions is set to
false).

SyslogAppender Parameters

A sample syslogAppender configuration that is configured with two SyslogAppenders, one using
the BSD format and one using RFC 5424.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <Syslog name="bsd" host="localhost" port="514" protocol="TCP"/>

 <Syslog name="RFC5424" format="RFC5424" host="localhost" port="8514"

 protocol="TCP" appName="MyApp" includeMDC="true"

 facility="LOCAL0" enterpriseNumber="18060" newLine="true"

 messageId="Audit" id="App"/>

 </Appenders>

 <Loggers>

 <Logger name="com.mycorp" level="error">

 <AppenderRef ref="RFC5424"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="bsd"/>

 </Root>

 </Loggers>

</Configuration>

For SSL this appender writes its output to a remote destination specified by a host and port over SSL
in a format that conforms with either the BSD Syslog format or the RFC 5424 format.

9 A p p e n d e r s 119

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <TLSSyslog name="bsd" host="localhost" port="6514">

 <SSL>

 <KeyStore location="log4j2-keystore.jks" password="changeme"/>

 <TrustStore location="truststore.jks" password="changeme"/>

 </SSL>

 </TLSSyslog>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="bsd"/>

 </Root>

 </Loggers>

</Configuration>

1 0 L a y o u t s 120

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

10 Layouts
...

10.1 Layouts
An Appender uses a Layout to format a LogEvent into a form that meets the needs of whatever will
be consuming the log event. In Log4j 1.x and Logback Layouts were expected to transform an event
into a String. In Log4j 2 Layouts return a byte array. This allows the result of the Layout to be useful
in many more types of Appenders. However, this means you need to configure most Layouts with a
Charset to ensure the byte array contains correct values.

10.1.1 JSONLayout

Appends a series of JSON events as strings serialized as bytes. This layout requires Jackson jar files
(see pom.xml for details).

10.1.1.1 Complete well-formed JSON vs. fragment JSON

If you configure complete="true", the appender outputs a well-formed JSON document. By
default, with complete="false", you should include the output as an external file in a separate file
to form a well-formed JSON document.

A well-formed JSON document follows this pattern:

[

 {

 "logger":"com.foo.Bar",

 "timestamp":"1376681196470",

 "level":"INFO",

 "thread":"main",

 "message":"Message flushed with immediate flush=true"

 },

 {

 "logger":"com.foo.Bar",

 "timestamp":"1376681196471",

 "level":"ERROR",

 "thread":"main",

 "message":"Message flushed with immediate flush=true",

 "throwable":"java.lang.IllegalArgumentException: badarg\\n\\tat org.apache.logging.log4j.core.appender.JSONCompleteFileAppenderTest.testFlushAtEndOfBatch(JSONCompleteFileAppenderTest.java:54)\\n\\tat sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)\\n\\tat sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)\\n\\tat sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)\\n\\tat java.lang.reflect.Method.invoke(Method.java:606)\\n\\tat org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47)\\n\\tat org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)\\n\\tat org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44)\\n\\tat org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)\\n\\tat org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271)\\n\\tat org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70)\\n\\tat org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)\\n\\tat org.junit.runners.ParentRunner$3.run(ParentRunner.java:238)\\n\\tat org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63)\\n\\tat org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236)\\n\\tat org.junit.runners.ParentRunner.access$000(ParentRunner.java:53)\\n\\tat org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229)\\n\\tat org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)\\n\\tat org.junit.runners.ParentRunner.run(ParentRunner.java:309)\\n\\tat org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:50)\\n\\tat org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38)\\n\\tat org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:467)\\n\\tat org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:683)\\n\\tat org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:390)\\n\\tat org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:197)\\n"

 }

]

If complete="false", the appender does not write the JSON open array character "[" at the start of
the document. and "]" and the end.

This approach enforces the independence of the JSONLayout and the appender where you embed it.

10.1.1.2 Encoding

Appenders using this layout should have their charset set to UTF-8 or UTF-16, otherwise events
containing non-ASCII characters could result in corrupted log files. The default charset is UTF-8.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

1 0 L a y o u t s 121

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

10.1.1.3 Pretty vs. compact JSON

By default, the JSON layout is not compact (a.k.a. not "pretty") with compact="false",
which means the appender uses end-of-line characters and indents lines to format the text. If
compact="true", then no end-of-line or indentation is used. Message content may contain, of
course, escaped end-of-lines.

Parameter Name Type Description

charset String The character set to use when
converting the HTML String to a
byte array. The value must be a
valid Charset. If not specified,
UTF-8 will be used.

compact boolean If true, the appender does not
use end-of-lines and indentation.
Defaults to false.

eventEol boolean If true, the appender appends
an end-of-line after each record.
Defaults to false. Use with
eventEol=true and compact=true to
get one record per line.

complete boolean If true, the appender includes the
JSON header and footer. Defaults
to false.

properties boolean If true, the appender includes the
thread context in the generated
JSON. Defaults to false.

locationInfo boolean If true, the appender includes
the location information in the
generated JSON. Defaults to
false.

Generating location
information is an expensive
operation and may impact
performance. Use with caution.

JSON Layout Parameters

10.1.2 HTMLLayout

The HTMLLayout generates an HTML page and adds each LogEvent to a row in a table.

Parameter Name Type Description

charset String The character set to use when
converting the HTML String to a
byte array. The value must be a
valid Charset. If not specified,
the default system Charset will be
used.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

1 0 L a y o u t s 122

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

contentType String The value to assign to the Content-
Type header. The default is "text/
html".

locationInfo boolean

If true, the filename and line
number will be included in
the HTML output. The default
value is false.

Generating location
information is an expensive
operation and may impact
performance. Use with caution.

title String A String that will appear as the
HTML title.

HTML Layout Parameters

10.1.3 PatternLayout

A flexible layout configurable with pattern string. The goal of this class is to format a LogEvent and
return the results. The format of the result depends on the conversion pattern.

The conversion pattern is closely related to the conversion pattern of the printf function in C. A
conversion pattern is composed of literal text and format control expressions called conversion
specifiers.

Note that any literal text, including Special Characters, may be included in the conversion pattern.
Special Characters include \t, \n, \r, \f. Use \\ to insert a single backslash into the output.

Each conversion specifier starts with a percent sign (%) and is followed by optional format modifiers
and a conversion character. The conversion character specifies the type of data, e.g. category,
priority, date, thread name. The format modifiers control such things as field width, padding, left and
right justification. The following is a simple example.

Let the conversion pattern be "%-5p [%t]: %m%n" and assume that the Log4j environment was set
to use a PatternLayout. Then the statements
Logger logger = LogManager.getLogger("MyLogger");

logger.debug("Message 1");

logger.warn("Message 2");

would yield the output
DEBUG [main]: Message 1

WARN [main]: Message 2

Note that there is no explicit separator between text and conversion specifiers. The pattern parser
knows when it has reached the end of a conversion specifier when it reads a conversion character. In
the example above the conversion specifier %-5p means the priority of the logging event should be
left justified to a width of five characters.

If the pattern string does not contain a specifier to handle a Throwable being logged, parsing of
the pattern will act as if the "%xEx" specifier had be added to the end of the string. To suppress
formatting of the Throwable completely simply add "%ex{0}" as a specifier in the pattern string.

1 0 L a y o u t s 123

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Parameter Name Type Description

charset String The character set to use when
converting the syslog String to a
byte array. The String must be
a valid Charset. If not specified,
the default system Charset will be
used.

pattern String A composite pattern string of one or
more conversion patterns from the
table below.

replace RegexReplacement Allows portions of the resulting
String to be replaced. If configured,
the replace element must
specify the regular expression to
match and the substitution. This
performs a function similar to the
RegexReplacement converter but
applies to the whole message while
the converter only applies to the
String its pattern generates.

alwaysWriteExceptions boolean If true (it is by default) exceptions
are always written even if the
pattern contains no exception
conversions. This means that if
you do not include a way to output
exceptions in your pattern, the
default exception formatter will be
added to the end of the pattern.
Setting this to false disables
this behavior and allows you to
exclude exceptions from your
pattern output.

header String The optional header string to
include at the top of each log file.

footer String The optional footer string to include
at the bottom of each log file.

noConsoleNoAnsi boolean If true (default is false) and
System.console() is null, do
not output ANSI escape codes.

PatternLayout Parameters

Parameter Name Type Description

regex String A Java-compliant regular
expression to match in the resulting
string. See Pattern .

replacement String The string to replace any matched
sub-strings with.

RegexReplacement Parameters

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

1 0 L a y o u t s 124

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

10.1.3.1 Patterns

The conversions that are provided with Log4j are:

Conversion Pattern Description

c{precision}
logger{precision}

Outputs the name of the logger that published
the logging event. The logger conversion
specifier can be optionally followed by precision
specifier, which consists of a decimal integer, or
a pattern starting with a decimal integer.

If a precision specifier is given and it is an
integer value, then only the corresponding
number of right most components of the logger
name will be printed. If the precision contains
other non-integer characters then the name
will be abbreviated based on the pattern. If the
precision integer is less than one the right-most
token will still be printed in full. By default the
logger name is printed in full.

Conversion
Pattern Logger Name Result

%c{1} org.apache.
commons.Foo

Foo

%c{2} org.apache.
commons.Foo

commons.Foo

%c{1.} org.apache.
commons.Foo

o.a.c.Foo

%c{1.1.~.~} org.apache.
commons.test.
Foo

o.a.~.~.Foo

%c{.} org.apache.
commons.test.
Foo

....Foo

 C{precision}
class{precision}

Outputs the fully qualified class name of
the caller issuing the logging request. This
conversion specifier can be optionally followed
by precision specifier, that follows the same
rules as the logger name converter.

Generating the class name of the caller (
location information) is an expensive operation
and may impact performance. Use with caution.

1 0 L a y o u t s 125

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

d{pattern}
date{pattern}

Outputs the date of the logging event. The date
conversion specifier may be followed by a set of
braces containing a date and time pattern string
per SimpleDateFormat .

The predefined formats are DEFAULT,
ABSOLUTE, COMPACT, DATE, ISO8601, and
ISO8601_BASIC.

You can also use a set of braces
containing a time zone id per
java.util.TimeZone.getTimeZone. If no date
format specifier is given then ISO8601 format is
assumed.

Pattern Example

%d{DEFAULT} 2012-11-02 14:34:02,781

%d{ISO8601} 2012-11-02T14:34:02,781

%d{ISO8601_BASIC} 20121102T143402,781

%d{ABSOLUTE} 14:34:02,781

%d{DATE} 02 Nov 2012
14:34:02,781

%d{COMPACT} 20121102143402781

%d{HH:mm:ss,SSS} 14:34:02,781

%d{dd MMM yyyy
HH:mm:ss,SSS}

02 Nov 2012
14:34:02,781

%d{HH:mm:ss}{GMT+0} 18:34:02

%d{UNIX} 1351866842

%d{UNIX_MILLIS} 1351866842781

%d{UNIX} outputs the UNIX time in seconds.
%d{UNIX_MILLIS} outputs the UNIX time in
milliseconds. The UNIX time is the difference,
in seconds for UNIX and in milliseconds for
UNIX_MILLIS, between the current time and
midnight, January 1, 1970 UTC. While the time
unit is milliseconds, the granularity depends on
the operating system (Windows). This is an
efficient way to output the event time because
only a conversion from long to String takes
place, there is no Date formatting involved.

enc{pattern}
encode{pattern>

Escape newlines and HTML special characters in
the specified pattern.

Allows HTML to be safely logged.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)
http://msdn.microsoft.com/en-us/windows/hardware/gg463266.aspx

1 0 L a y o u t s 126

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

enc{pattern}
encode{pattern}

Encodes special characters such as '\n' and
HTML characters to help prevent log forging
and some XSS attacks that could occur when
displaying logs in a web browser. Anytime
user provided data is logged, this can provide a
safeguard.

A typical usage would encode the message
%enc{%m}

but user input could come from other locations as
well, such as the MDC
%enc{%mdc{key}}

The replaced characters are:

Character Replacement

'\r', '\n'
Removed from the
pattern

&, <, >, ", ', / Replaced with the
corresponding HTML
entity

ex| exception| throwable
 {["none"

 |"full"
 |depth
 |"short"

 |"short.className"
 |"short.fileName"

 |"short.lineNumber"
 |"short.methodName"

 |"short.message"
 |"short.localizedMessage"]}

Outputs the Throwable trace bound to the
LoggingEvent, by default this will output the full
trace as one would normally find with a call to
Throwable.printStackTrace().

You can follow the throwable conversion word
with an option in the form %throwable{option}.

%throwable{short} outputs the first line of the
Throwable.

%throwable{short.className} outputs the
name of the class where the exception occurred.

%throwable{short.methodName} outputs the
method name where the exception occurred.

%throwable{short.fileName} outputs the name
of the class where the exception occurred.

%throwable{short.lineNumber} outputs the
line number where the exception occurred.

%throwable{short.message} outputs the
message.

%throwable{short.localizedMessage} outputs
the localized message.

%throwable{n} outputs the first n lines of the
stack trace.

Specifying %throwable{none} or
%throwable{0} suppresses output of the
exception.

1 0 L a y o u t s 127

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 F
file

Outputs the file name where the logging request
was issued.

Generating the file information (location
information) is an expensive operation and may
impact performance. Use with caution.

highlight{pattern}{style} Adds ANSI colors to the result of the enclosed
pattern based on the current event's logging
level.

The default colors for each level are:

Level ANSI color

FATAL Bright red

ERROR Bright red

WARN Yellow

INFO Green

DEBUG Cyan

TRACE Black (looks dark grey)

The color names are ANSI names defined in the
AnsiEscape class.

The color and attribute names and are standard,
but the exact shade, hue, or value.

Intensity
Code0 1 2 3 4 5 6 7

NormalBlack Red GreenYellowBlue MagentaCyan White

BrightBlack Red GreenYellowBlue MagentaCyan White

Color table

You can use the default colors with:
%highlight{%d [%t] %-5level: %msg%n%throwable}

You can override the default colors in the
optional {style} option. For example:
%highlight{%d [%t] %-5level: %msg%n%throwable}

 {FATAL=white, ERROR=red, WARN=blue, INFO=black,

 DEBUG=green, TRACE=blue}

You can highlight only the a portion of the log
event:
%d [%t] %highlight{%-5level: %msg%n%throwable}

You can style one part of the message and
highlight the rest the log event:
%style{%d [%t]}{black} %highlight{%-5level:

 %msg%n%throwable}

1 0 L a y o u t s 128

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

You can also use the STYLE key to use a
predefined group of colors:
%highlight{%d [%t] %-5level: %msg%n%throwable}

 {STYLE=Logback}

The STYLE value can be one of:

Style Description

Default See above

Logback

Level
ANSI
color

FATAL Blinking
bright red

ERROR Bright red

WARN Red

INFO Blue

DEBUG Normal

TRACE Normal

K{key}
map{key}
MAP{key}

Outputs the entries in a MapMessage, if one is
present in the event. The K conversion character
can be followed by the key for the map placed
between braces, as in %K{clientNumber}
where clientNumber is the key. The value in
the Map corresponding to the key will be output.
If no additional sub-option is specified, then the
entire contents of the Map key value pair set is
output using a format {{key1,val1},{key2,val2}}

 l
location

Outputs location information of the caller which
generated the logging event.

The location information depends on the JVM
implementation but usually consists of the fully
qualified name of the calling method followed by
the callers source the file name and line number
between parentheses.

Generating location information is an expensive
operation and may impact performance. Use with
caution.

 L
line

Outputs the line number from where the logging
request was issued.

Generating line number information (location
information) is an expensive operation and may
impact performance. Use with caution.

1 0 L a y o u t s 129

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

m
msg

message

Outputs the application supplied message associated
with the logging event.

 M
method

Outputs the method name where the logging
request was issued.

Generating the method name of the caller (
location information) is an expensive operation
and may impact performance. Use with caution.

marker The name of the marker, if one is present.

n Outputs the platform dependent line separator
character or characters.

This conversion character offers practically
the same performance as using non-portable
line separator strings such as "\n", or "\r\n".
Thus, it is the preferred way of specifying a line
separator.

p| level{ level= label, level= label, ...} p|
level{length= n} p| level{lowerCase= true| false}

Outputs the level of the logging event.
You provide a level name map in the form
"level=value, level=value" where level is the
name of the Level and value is the value that
should be displayed instead of the name of the
Level.

For example:
%level{WARN=Warning, DEBUG=Debug, ERROR=Error, TRACE=Trace, INFO=Info}

Alternatively, for the compact-minded:
%level{WARN=W, DEBUG=D, ERROR=E, TRACE=T, INFO=I}

More succinctly, for the same result as above,
you can define the length of the level label:
%level{length=1}

If the length is greater than a level name length,
the layout uses the normal level name.

You can combine the two kinds of options:
%level{ERROR=Error, length=2}

This give you the Error level name and all other
level names of length 2.

Finally, you can output lower-case level names
(the default is upper-case):
%level{lowerCase=true}

r
relative

Outputs the number of milliseconds elapsed since
the JVM was started until the creation of the logging
event.

1 0 L a y o u t s 130

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

replace{pattern}{regex}{substitution} Replaces occurrences of 'regex', a regular
expression, with its replacement 'substitution'
in the string resulting from evaluation of the
pattern. For example, "%replace(%msg}{\s}{}"
will remove all spaces contained in the event
message.

The pattern can be arbitrarily complex and
in particular can contain multiple conversion
keywords. For instance, "%replace{%logger
%msg}{\.}{/}" will replace all dots in the logger
or the message of the event with a forward slash.

rEx["none"|"short"|"full"|depth],[filters(packages)}
rException["none"|"short"|"full"|

depth],[filters(packages)}
rThrowable["none"|"short"|"full"|

depth],[filters(packages)}

The same as the %throwable conversion word
but the stack trace is printed starting with the
first exception that was thrown followed by each
subsequent wrapping exception.

The throwable conversion word can be followed
by an option in the form %rEx{short} which
will only output the first line of the Throwable or
%rEx{n} where the first n lines of the stacktrace
will be printed. The conversion word can
also be followed by "filters(packages)" where
packages is a list of package names that should
be suppressed from stack traces. Specifying
%rEx{none} or %rEx{0} will suppress printing
of the exception.

sn
sequenceNumber

Includes a sequence number that will be incremented
in every event. The counter is a static variable so will
only be unique within applications that share the same
converter Class object.

1 0 L a y o u t s 131

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

style{pattern}{ANSI style} Uses ANSI escape sequences to style the result
of the enclosed pattern. The style can consist of
a comma separated list of style names from the
following table.

Style Name Description

Normal Normal display

Bright Bold

Dim Dimmed or faint
characters

Underline Underlined characters

Blink Blinking characters

Reverse Reverse video

Hidden

Black or FG_Black Set foreground color to
black

Red or FG_Red Set foreground color to
red

Green or FG_Green Set foreground color to
green

Yellow or FG_Yellow Set foreground color to
yellow

Blue or FG_Blue Set foreground color to
blue

Magenta or FG_Magenta Set foreground color to
magenta

Cyan or FG_Cyan Set foreground color to
cyan

White or FG_White Set foreground color to
white

Default or FG_Default Set foreground color to
default (white)

BG_Black Set background color to
black

BG_Red Set background color to
red

BG_Green Set background color to
green

BG_Yellow Set background color to
yellow

BG_Blue Set background color to
blue

BG_Magenta Set background color to
magenta

BG_Cyan Set background color to
cyan

BG_White Set background color to
white

For example:
%style{%d{ISO8601}}{black} %style{[%t]}{blue} %style{%-5level:}{yellow} %style{%msg%n%throwable}{green}

You can also combine styles:
%d %highlight{%p} %style{%logger}{bright,cyan} %C{1.} %msg%n

You can also use % with a color like %black,
%blue, %cyan, and so on. For example:
%black{%d{ISO8601}} %blue{[%t]} %yellow{%-5level:} %green{%msg%n%throwable}

1 0 L a y o u t s 132

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

t
thread

Outputs the name of the thread that generated the
logging event.

x
NDC

Outputs the Thread Context Stack (also known as the
Nested Diagnostic Context or NDC) associated with
the thread that generated the logging event.

X{key}
mdc{key}
MDC{key}

Outputs the Thread Context Map (also known
as the Mapped Diagnostic Context or MDC)
associated with the thread that generated the
logging event. The X conversion character
can be followed by the key for the map placed
between braces, as in %X{clientNumber} where
clientNumber is the key. The value in the
MDC corresponding to the key will be output.
If no additional sub-option is specified, then the
entire contents of the MDC key value pair set is
output using a format {{key1,val1},{key2,val2}}

See the ThreadContext class for more details.

u{"RANDOM" | "TIME"}
uuid

Includes either a random or a time-based UUID.
The time-based UUID is a Type 1 UUID that can
generate up to 10,000 unique ids per millisecond,
will use the MAC address of each host, and to try
to insure uniqueness across multiple JVMs and/or
ClassLoaders on the same host a random number
between 0 and 16,384 will be associated with each
instance of the UUID generator Class and included
in each time-based UUID generated. Because
time-based UUIDs contain the MAC address and
timestamp they should be used with care as they can
cause a security vulnerability.

xEx{"none"|"short"|"full"|depth],[filters(packages)}
xException["none"|"short"|"full"|

depth],[filters(packages)}
xThrowable["none"|"short"|"full"|

depth],[filters(packages)}

The same as the %throwable conversion word
but also includes class packaging information.

At the end of each stack element of the
exception, a string containing the name of the
jar file that contains the class or the directory
the class is located in and the "Implementation-
Version" as found in that jar's manifest will be
added. If the information is uncertain, then the
class packaging data will be preceded by a tilde,
i.e. the '~' character.

The throwable conversion word can be followed
by an option in the form %xEx{short} which
will only output the first line of the Throwable or
%xEx{n} where the first n lines of the stacktrace
will be printed. The conversion word can
also be followed by "filters(packages)" where
packages is a list of package names that should
be suppressed from stack traces. Specifying
%xEx{none} or %xEx{0} will suppress printing
of the exception.

% The sequence %% outputs a single percent sign.

1 0 L a y o u t s 133

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

By default the relevant information is output as is. However, with the aid of format modifiers it is
possible to change the minimum field width, the maximum field width and justification.

The optional format modifier is placed between the percent sign and the conversion character.

The first optional format modifier is the left justification flag which is just the minus (-) character.
Then comes the optional minimum field width modifier. This is a decimal constant that represents the
minimum number of characters to output. If the data item requires fewer characters, it is padded on
either the left or the right until the minimum width is reached. The default is to pad on the left (right
justify) but you can specify right padding with the left justification flag. The padding character is
space. If the data item is larger than the minimum field width, the field is expanded to accommodate
the data. The value is never truncated.

This behavior can be changed using the maximum field width modifier which is designated by
a period followed by a decimal constant. If the data item is longer than the maximum field, then
the extra characters are removed from the beginning of the data item and not from the end. For
example, it the maximum field width is eight and the data item is ten characters long, then the first
two characters of the data item are dropped. This behavior deviates from the printf function in C
where truncation is done from the end.

Below are various format modifier examples for the category conversion specifier.

Format modifier left justify minimum width maximum width comment

%20c false 20 none Left pad with spaces
if the category name
is less than 20
characters long.

%-20c true 20 none Right pad with
spaces if the
category name
is less than 20
characters long.

%.30c NA none 30 Truncate from the
beginning if the
category name
is longer than 30
characters.

%20.30c false 20 30 Left pad with spaces
if the category
name is shorter
than 20 characters.
However, if category
name is longer than
30 characters, then
truncate from the
beginning.

1 0 L a y o u t s 134

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

%-20.30c true 20 30 Right pad with
spaces if the
category name
is shorter than
20 characters.
However, if category
name is longer than
30 characters, then
truncate from the
beginning.

Pattern Converters

10.1.3.2 ANSI Styling on Windows

ANSI escape sequences are supported natively on many platforms but are not by default on Windows.
To enable ANSI support simply add the Jansi jar to your application and Log4j will automatically
make use of it when writing to the console.

10.1.3.3 Example Patterns

10.Filtered Throwables

This example shows how to filter out classes from unimportant packages in stack traces.

<properties>

 <property name="filters">org.junit,org.apache.maven,sun.reflect,java.lang.reflect</property>

</properties>

...

<PatternLayout pattern="%m%xEx{filters(${filters})}%n"/>

The result printed to the console will appear similar to:

Exception java.lang.IllegalArgumentException: IllegalArgument

 at org.apache.logging.log4j.core.pattern.ExtendedThrowableTest.

 testException(ExtendedThrowableTest.java:72) [test-classes/:?]

 ... suppressed 26 lines

 at $Proxy0.invoke(Unknown Source)} [?:?]

 ... suppressed 3 lines

 Caused by: java.lang.NullPointerException: null pointer

 at org.apache.logging.log4j.core.pattern.ExtendedThrowableTest.

 testException(ExtendedThrowableTest.java:71) ~[test-classes/:?]

 ... 30 more

10.ANSI Styled

The log level will be highlighted according to the event's log level. All the content that follows the
level will be bright green.

<PatternLayout>

 <pattern>%d %highlight{%p} %style{%C{1.} [%t] %m}{bold,green}%n</pattern>

</PatternLayout>

10.1.4 RFC5424Layout

As the name implies, the RFC5424Layout formats LogEvents in accordance with RFC 5424, the
enhanced Syslog specification. Although the specification is primarily directed at sending messages

http://jansi.fusesource.org/
http://tools.ietf.org/html/rfc5424

1 0 L a y o u t s 135

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

via Syslog, this format is quite useful for other purposes since items are passed in the message as self-
describing key/value pairs.

Parameter Name Type Description

appName String The value to use as the APP-
NAME in the RFC 5424 syslog
record.

charset String The character set to use when
converting the syslog String to a
byte array. The String must be
a valid Charset. If not specified,
the default system Charset will be
used.

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

exceptionPattern String One of the conversion specifiers
from PatternLayout that defines
which ThrowablePatternConverter
to use to format exceptions. Any
of the options that are valid for
those specifiers may be included.
The default is to not include the
Throwable from the event, if any, in
the output.

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper
or lower case characters.

format String If set to "RFC5424" the data will
be formatted in accordance with
RFC 5424. Otherwise, it will be
formatted as a BSD Syslog record.
Note that although BSD Syslog
records are required to be 1024
bytes or shorter the SyslogLayout
does not truncate them. The
RFC5424Layout also does not
truncate records since the receiver
must accept records of up to 2048
bytes and may accept records that
are longer.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

1 0 L a y o u t s 136

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

id String The default structured data id to
use when formatting according to
RFC 5424. If the LogEvent contains
a StructuredDataMessage the id
from the Message will be used
instead of this value.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

includeMDC boolean Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

loggerFields List of KeyValuePairs Allows arbitrary PatternLayout
patterns to be included as
specified ThreadContext fields;
no default specified. To use,
include a <LoggerFields> nested
element, containing one or more
<KeyValuePair> elements. Each
<KeyValuePair> must have a key
attribute, which specifies the key
name which will be used to identify
the field within the MDC Structured
Data element, and a value attribute,
which specifies the PatternLayout
pattern to use as the value.

mdcExcludes String A comma separated list of mdc
keys that should be excluded from
the LogEvent. This is mutually
exclusive with the mdcIncludes
attribute. This attribute only applies
to RFC 5424 syslog records.

mdcIncludes String A comma separated list of mdc
keys that should be included in
the FlumeEvent. Any keys in the
MDC not found in the list will be
excluded. This option is mutually
exclusive with the mdcExcludes
attribute. This attribute only applies
to RFC 5424 syslog records.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

mdcPrefix String A string that should be prepended
to each MDC key in order to
distinguish it from event attributes.
The default string is "mdc:". This
attribute only applies to RFC 5424
syslog records.

1 0 L a y o u t s 137

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

mdcId String A required MDC ID. This attribute
only applies to RFC 5424 syslog
records.

messageId String The default value to be used in the
MSGID field of RFC 5424 syslog
records.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

newLineEscape String String that should be used to
replace newlines within the
message text.

RFC5424Layout Parameters

10.1.5 SerializedLayout

The SerializedLayout simply serializes the LogEvent into a byte array. This is useful when sending
messages via JMS or via a Socket connection. The SerializedLayout accepts no parameters.

10.1.6 SyslogLayout

The SyslogLayout formats the LogEvent as BSD Syslog records matching the same format used by
Log4j 1.2.

Parameter Name Type Description

charset String The character set to use when
converting the syslog String to a
byte array. The String must be
a valid Charset. If not specified,
the default system Charset will be
used.

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper
or lower case characters.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

1 0 L a y o u t s 138

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

newLineEscape String String that should be used to
replace newlines within the
message text.

SyslogLayout Parameters

10.1.7 XMLLayout

Appends a series of Event elements as defined in the log4j.dtd.

10.1.7.1 Complete well-formed XML vs. fragment XML

If you configure complete="true", the appender outputs a well-formed XML document where
the default namespace is the Log4j namespace "http://logging.apache.org/log4j/2.0/
events". By default, with complete="false", you should include the output as an external
entity in a separate file to form a well-formed XML document, in which case the appender uses
namespacePrefix with a default of "log4j".

A well-formed XML document follows this pattern:

<?xml version="1.0" encoding="UTF-8"?>

<Events xmlns="http://logging.apache.org/log4j/2.0/events">

 <Event logger="com.foo.Bar" timestamp="1373436580419" level="INFO" thread="main">

 <Message><![CDATA[This is a log message 1]]></Message>

 <Marker parent="Parent Marker"><Child Marker></Marker>

 </Event>

 <Event logger="com.foo.Baz" timestamp="1373436580420" level="INFO" thread="main">

 <Message><![CDATA[This is a log message 2]]></Message>

 <Marker><The Marker Name></Marker>

 </Event>

</Events>

If complete="false", the appender does not write the XML processing instruction and the root
element.

This approach enforces the independence of the XMLLayout and the appender where you embed it.

10.1.7.2 Marker

Markers are represented by a Marker element within the Event element. The Marker element
appears only when a marker is used in the log message. The name of the marker's parent will be
provided in the parent attribute of the Marker element. Only the leaf marker is included, not the full
hierarchy.

10.1.7.3 Encoding

Appenders using this layout should have their charset set to UTF-8 or UTF-16, otherwise events
containing non ASCII characters could result in corrupted log files.

10.1.7.4 Pretty vs. compact XML

By default, the XML layout is not compact (a.k.a. not "pretty") with compact="false",
which means the appender uses end-of-line characters and indents lines to format the XML. If
compact="true", then no end-of-line or indentation is used. Message content may contain, of
course, end-of-lines.

1 0 L a y o u t s 139

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

10.1.8 GELF Layout

Lays out events in the Graylog Extended Log Format (GELF) 1.1.

This layout compresses JSON to GZIP or ZLIB (the compressionType) if log event data is larger
than 1024 bytes (the compressionThreshold). This layout does not implement chunking.

Configure as follows to send to a Graylog2 server:

[

 <Appenders>

 <Socket name="Graylog" protocol="udp" host="graylog.domain.com" port="12201">

 <GelfLayout host="someserver" compressionType="GZIP" compressionThreshold="1024">

 <KeyValuePair key="additionalField1" value="additional value 1"/>

 <KeyValuePair key="additionalField2" value="additional value 2"/>

 </GelfLayout>

 </Socket>

 </Appenders>

]

See also:

• The GELF home page
• The GELF specification

10.1.9 Location Information

If one of the layouts is configured with a location-related attribute like HTML locationInfo, or one of
the patterns %C or $class, %F or %file, %l or %location, %L or %line, %M or %method, Log4j
will take a snapshot of the stack, and walk the stack trace to find the location information.

This is an expensive operation: 1.3 - 5 times slower for synchronous loggers. Synchronous loggers
wait as long as possible before they take this stack snapshot. If no location is required, the snapshot
will never be taken.

However, asynchronous loggers need to make this decision before passing the log message to another
thread; the location information will be lost after that point. The performance impact of taking a stack
trace snapshot is even higher for asynchronous loggers: logging with location is 4 - 20 times slower
than without location. For this reason, asynchronous loggers and asynchronous appenders do not
include location information by default.

You can override the default behaviour in your logger or asynchronous appender configuration by
specifying includeLocation="true".

http://graylog2.org/gelf
http://graylog2.org/resources/gelf/specification

1 1 F i l t e r s 140

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

11 Filters
...

11.1 Filters
Filters allow Log Events to be evaluated to determine if or how they should be published. A Filter
will be called on one of its filter methods and will return a Result, which is an Enum that has one of 3
values - ACCEPT, DENY or NEUTRAL.

Filters may be configured in one of four locations:

1. Context-wide Filters are configured directly in the configuration. Events that are rejected by
these filters will not be passed to loggers for further processing. Once an event has been accepted
by a Context-wide filter it will not be evaluated by any other Context-wide Filters nor will the
Logger's Level be used to filter the event. The event will be evaluated by Logger and Appender
Filters however.

2. Logger Filters are configured on a specified Logger. These are evaluated after the Context-
wide Filters and the Log Level for the Logger. Events that are rejected by these filters will be
discarded and the event will not be passed to a parent Logger regardless of the additivity setting.

3. Appender Filters are used to determine if a specific Appender should handle the formatting and
publication of the event.

4. Appender Reference Filters are used to determine if a Logger should route the event to an
appender.

11.1.1 BurstFilter

The BurstFilter provides a mechanism to control the rate at which LogEvents are processed by silently
discarding events after the maximum limit has been reached.

Parameter Name Type Description

level String Level of messages to be filtered.
Anything at or below this level will
be filtered out if maxBurst has
been exceeded. The default is
WARN meaning any messages that
are higher than warn will be logged
regardless of the size of a burst.

rate float The average number of events per
second to allow.

maxBurst integer The maximum number of events
that can occur before events are
filtered for exceeding the average
rate. The default is 10 times the
rate.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

1 1 F i l t e r s 141

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Burst Filter Parameters

A configuration containing the BurstFilter might look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.2 CompositeFilter

The CompositeFilter provides a way to specify more than one filter. It is added to the configuration as
a filters element and contains other filters to be evaluated. The filters element accepts no parameters.

A configuration containing the CompositeFilter might look like:

1 1 F i l t e r s 142

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Filters>

 <Marker marker="EVENT" onMatch="ACCEPT" onMismatch="NEUTRAL"/>

 <DynamicThresholdFilter key="loginId" defaultThreshold="ERROR"

 onMatch="ACCEPT" onMismatch="NEUTRAL">

 <KeyValuePair key="User1" value="DEBUG"/>

 </DynamicThresholdFilter>

 </Filters>

 <Appenders>

 <File name="Audit" fileName="logs/audit.log">

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Logger name="EventLogger" level="info">

 <AppenderRef ref="Audit"/>

 </Logger>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.3 DynamicThresholdFilter

The DynamicThresholdFilter allows filtering by log level based on specific attributes. For example,
if the user's loginId is being captured in the ThreadContext Map then it is possible to enable debug
logging for only that user.

Parameter Name Type Description

defaultThreshold String Level of messages to be filtered. If
there is no matching key in the key/
value pairs then this level will be
compared against the event's level.

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the matching
value for the key and the Level to
evaluate when the key matches.

1 1 F i l t e r s 143

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Dynamic Threshold Filter Parameters

Here is a sample configuration containing the DynamicThresholdFilter:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <DynamicThresholdFilter key="loginId" defaultThreshold="ERROR"

 onMatch="ACCEPT" onMismatch="NEUTRAL">

 <KeyValuePair key="User1" value="DEBUG"/>

 </DynamicThresholdFilter>

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.4 MapFilter

The MapFilter allows filtering against data elements that are in a MapMessage.

Parameter Name Type Description

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key in the
map and the value to match on.
If the same key is specified more
than once then the check for that
key will automatically be an "or"
since a Map can only contain a
single value.

1 1 F i l t e r s 144

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Map Filter Parameters

As in this configuration, the MapFilter can be used to log particular events:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePair key="eventId" value="Logout"/>

 </MapFilter>

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

This sample configuration will exhibit the same behavior as the preceding example since the only
logger configured is the root.

1 1 F i l t e r s 145

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePair key="eventId" value="Logout"/>

 </MapFilter>

 <AppenderRef ref="RollingFile">

 </AppenderRef>

 </Root>

 </Loggers>

</Configuration>

This third sample configuration will exhibit the same behavior as the preceding examples since the
only logger configured is the root and the root is only configured with a single appender reference.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePair key="eventId" value="Logout"/>

 </MapFilter>

 </AppenderRef>

 </Root>

 </Loggers>

</Configuration>

1 1 F i l t e r s 146

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

11.1.5 MarkerFilter

The MarkerFilter compares the configured Marker value against the Marker that is included in the
LogEvent. A match occurs when the Marker name matches either the Log Event's Marker or one of its
parents.

Parameter Name Type Description

marker String The name of the Marker to
compare.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Marker Filter Parameters

A sample configuration that only allows the event to be written by the appender if the Marker
matches:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <MarkerFilter marker="FLOW" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.6 RegexFilter

The RegexFilter allows the formatted or unformatted message to be compared against a regular
expression.

Parameter Name Type Description

regex String The regular expression.

1 1 F i l t e r s 147

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

useRawMsg boolean If true the unformatted message will
be used, otherwise the formatted
message will be used. The default
value is false.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Regex Filter Parameters

A sample configuration that only allows the event to be written by the appender if it contains the word
"test":

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <RegexFilter regex=".* test .*" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.7 StructuredDataFilter

The StructuredDataFilter is a MapFilter that also allows filtering on the event id, type and message.

Parameter Name Type Description

1 1 F i l t e r s 148

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key
in the map and the value to
match on. "id", "id.name",
"type", and "message" should
be used to match on the
StructuredDataId, the name portion
of the StructuredDataId, the
type, and the formatted message
respectively. If the same key is
specified more than once then the
check for that key will automatically
be an "or" since a Map can only
contain a single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

StructuredData Filter Parameters

As in this configuration, the StructuredDataFilter can be used to log particular events:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <StructuredDataFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="id" value="Login"/>

 <KeyValuePair key="id" value="Logout"/>

 </StructuredDataFilter>

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

1 1 F i l t e r s 149

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

11.1.8 ThreadContextMapFilter

The ThreadContextMapFilter allows filtering against data elements that are in the ThreadContext
Map.

Parameter Name Type Description

keyValuePair KeyValuePair[] One or more KeyValuePair
elements that define the key in the
map and the value to match on.
If the same key is specified more
than once then the check for that
key will automatically be an "or"
since a Map can only contain a
single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

ThreadContext Map Filter Parameters

A configuration containing the ThreadContextMapFilter might look like:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <ThreadContextMapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="User1" value="DEBUG"/>

 <KeyValuePair key="User2" value="WARN"/>

 </ThreadContextMapFilter>

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

1 1 F i l t e r s 150

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The ThreadContextMapFilter can also be applied to a logger for filtering:

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 <ThreadContextMapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="foo" value="bar"/>

 <KeyValuePair key="User2" value="WARN"/>

 </ThreadContextMapFilter>

 </Root>

 </Loggers>

</Configuration>

11.1.9 ThresholdFilter

This filter returns the onMatch result if the level in the LogEvent is the same or more specific than
the configured level and the onMismatch value otherwise. For example, if the ThresholdFilter is
configured with Level ERROR and the LogEvent contains Level DEBUG then the onMismatch value
will be returned since ERROR events are more specific than DEBUG.

Parameter Name Type Description

level String A valid Level name to match on.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Threshold Filter Parameters

A sample configuration that only allows the event to be written by the appender if the level matches:

1 1 F i l t e r s 151

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <ThresholdFilter level="TRACE" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

11.1.10 TimeFilter

The time filter can be used to restrict filter to only a certain portion of the day.

Parameter Name Type Description

start String A time in HH:mm:ss format.

end String A time in HH:mm:ss format.
Specifying an end time less than
the start time will result in no log
entries being written.

timezone String The timezone to use when
comparing to the event timestamp.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT,
DENY or NEUTRAL. The default
value is DENY.

Time Filter Parameters

A sample configuration that only allows the event to be written by the appender from 5:00 to 5:30 am
each day using the default timezone:

1 1 F i l t e r s 152

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="warn" name="MyApp" packages="">

 <Appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <TimeFilter start="05:00:00" end="05:30:00" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %c{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </Appenders>

 <Loggers>

 <Root level="error">

 <AppenderRef ref="RollingFile"/>

 </Root>

 </Loggers>

</Configuration>

1 2 A s y n c L o g g e r s 153

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12 Async Loggers
...

12.1 Asynchronous Loggers for Low-Latency Logging
Asynchronous logging can improve your application's performance by executing the I/O operations in
a separate thread. Log4j 2 makes a number of improvements in this area.

• Asynchronous Loggers are a new addition to Log4j 2. Their aim is to return from the call to
Logger.log to the application as soon as possible. You can choose between making all Loggers
asynchronous or using a mixture of synchronous and asynchronous Loggers. Making all Loggers
asynchronous will give the best performance, while mixing gives you more flexibility.

• LMAX Disruptor technology. Asynchronous Loggers internally use the Disruptor, a lock-free
inter-thread communication library, instead of queues, resulting in higher throughput and lower
latency.

• Asynchronous Appenders already existed in Log4j 1.x, but have been enhanced to flush
to disk at the end of a batch (when the queue is empty). This produces the same result as
configuring "immediateFlush=true", that is, all received log events are always available on disk,
but is more efficient because it does not need to touch the disk on each and every log event.
(Async Appenders use ArrayBlockingQueue internally and do not need the disruptor jar on the
classpath.)

• (For synchronous and asynchronous use) Random Access File Appenders are an alternative
to Buffered File Appenders. Under the hood, these new appenders use a ByteBuffer +
RandomAccessFile instead of a BufferedOutputStream. In our testing this was about 20-200%
faster. These appenders can also be used with synchronous loggers and will give the same
performance benefits. Random Access File Appenders do not need the disruptor jar on the
classpath.

12.1.1 Trade-offs

Although asynchronous logging can give significant performance benefits, there are situations where
you may want to choose synchronous logging. This section describes some of the trade-offs of
asynchronous logging.

Benefits
• Higher throughput. With an asynchronous logger your application can log messages at 6 - 68

times the rate of a synchronous logger.
• Lower logging latency. Latency is the time it takes for a call to Logger.log to return.

Asynchronous Loggers have consistently lower latency than synchronous loggers or even queue-
based asynchronous appenders. Applications interested in low latency often care not only about
average latency, but also about worst-case latency. Our performance comparison shows that
Asynchronous Loggers also do better when comparing the maximum latency of 99% or even
99.99% of observations with other logging methods.

• Prevent or dampen latency spikes during bursts of events. If the queue size is configured large
enough to handle spikes, asynchronous logging will help prevent your application from falling
behind (as much) during sudden bursts of activity.

Drawbacks
• Error handling. If a problem happens during the logging process and an exception is thrown, it

is less easy for an asynchronous logger or appender to signal this problem to the application.
This can partly be alleviated by configuring an ExceptionHandler, but this may still not cover
all cases. For this reason, if logging is part of your business logic, for example if you are using
Log4j as an audit logging framework, we would recommend to synchronously log those audit

1 2 A s y n c L o g g e r s 154

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

messages. (Note that you can still combine them and use asynchronous logging for debug/trace
logging in addition to synchronous logging for the audit trail.)

• In some rare cases, care must be taken with mutable messages. Most of the time you don't need
to worry about this. Log4 will ensure that log messages like logger.debug("My object
is {}", myObject) will use the state of the myObject parameter at the time of the call to
logger.debug(). The log message will not change even if myObject is modified later. It is
safe to asynchronously log mutable objects because most Message implementations built-in to
Log4j take a snapshot of the parameters. There are some exceptions however: MapMessage and
StructuredDataMessage are mutable by design: fields can be added to these messages after the
message object was created. These messages should not be modified after they are logged with
asynchronous loggers or asynchronous appenders; you may or may not see the modifications in
the resulting log output. Similarly, custom Message implementations should be designed with
asynchronous use in mind, and either take a snapshot of their parameters at construction time, or
document their thread-safety characteristics.

12.1.2 Making All Loggers Asynchronous

Requires disruptor-3.0.0.jar or higher on the classpath.

This is simplest to configure and gives the best performance. To make all loggers asynchronous,
add the disruptor jar to the classpath and set the system property Log4jContextSelector to
org.apache.logging.log4j.core.async.AsyncLoggerContextSelector.

By default, location is not passed to the I/O thread by asynchronous loggers. If one of your layouts or
custom filters needs location information, you need to set "includeLocation=true" in the configuration
of all relevant loggers, including the root logger.

A configuration that does not require location might look like:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Don't forget to set system property

-DLog4jContextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector

 to make all loggers asynchronous. -->

<Configuration status="WARN">

 <Appenders>

 <!-- Async Loggers will auto-flush in batches, so switch off immediateFlush. -->

 <RandomAccessFile name="RandomAccessFile" fileName="async.log" immediateFlush="false" append="false">

 <PatternLayout>

 <Pattern>%d %p %c{1.} [%t] %m %ex%n</Pattern>

 </PatternLayout>

 </RandomAccessFile>

 </Appenders>

 <Loggers>

 <Root level="info" includeLocation="false">

 <AppenderRef ref="RandomAccessFile"/>

 </Root>

 </Loggers>

</Configuration>

When AsyncLoggerContextSelector is used to make all loggers asynchronous, make sure to use
normal <root> and <logger> elements in the configuration. The AsyncLoggerContextSelector will
ensure that all loggers are asynchronous, using a mechanism that is different from what happens when
you configure <asyncRoot> or <asyncLogger>. The latter elements are intended for mixing async

1 2 A s y n c L o g g e r s 155

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

with sync loggers. If you use both mechanisms together you will end up with two background threads,
where your application passes the log message to thread A, which passes the message to thread B,
which then finally logs the message to disk. This works, but there will be an unnecessary step in the
middle.

There are a few system properties you can use to control aspects of the asynchronous logging
subsystem. Some of these can be used to tune logging performance.

System Property Default Value Description

AsyncLogger.ExceptionHandler null Fully qualified name of a
class that implements the
com.lmax.disruptor.ExceptionHandler
interface. The class needs to have
a public zero-argument constructor.
If specified, this class will be
notified when an exception occurs
while logging the messages.

AsyncLogger.RingBufferSize 256 * 1024 Size (number of slots) in
the RingBuffer used by the
asynchronous logging subsystem.
Make this value large enough
to deal with bursts of activity.
The minimum size is 128. The
RingBuffer will be pre-allocated
at first use and will never grow or
shrink during the life of the system.

1 2 A s y n c L o g g e r s 156

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

AsyncLogger.WaitStrategy Sleep Valid values: Block, Sleep, Yield.
Block is a strategy that uses
a lock and condition variable
for the I/O thread waiting for
log events. Block can be used
when throughput and low-latency
are not as important as CPU
resource. Recommended for
resource constrained/virtualised
environments.
Sleep is a strategy that initially
spins, then uses a Thread.yield(),
and eventually parks for the
minimum number of nanos the OS
and JVM will allow while the I/O
thread is waiting for log events.
Sleep is a good compromise
between performance and CPU
resource. This strategy has very
low impact on the application
thread, in exchange for some
additional latency for actually
getting the message logged.
Yield is a strategy that uses a
Thread.yield() for waiting for log
events after an initially spinning.
Yield is a good compromise
between performance and CPU
resource, but may use more CPU
than Sleep in order to get the
message logged to disk sooner.

AsyncLogger.ThreadNameStrategy CACHED Valid values: CACHED,
UNCACHED.
By default, AsyncLogger caches
the thread name in a ThreadLocal
variable to improve performance.
Specify the UNCACHED option
if your application modifies the
thread name at runtime (with
Thread.currentThread().setName())
and you want to see the new thread
name reflected in the log.

1 2 A s y n c L o g g e r s 157

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

log4j.Clock SystemClock Implementation of the
org.apache.logging.log4j.core.helpers.Clock
interface that is used for
timestamping the log
events when all loggers are
asynchronous.
By default,
System.currentTimeMillis
is called on every log event.

CachedClock is an
optimization intended for low-
latency applications where
time stamps are generated
from a clock that updates its
internal time in a background
thread once every millisecond,
or every 1024 log events,
whichever comes first. This
reduces logging latency a
little, at the cost of some
precision in the logged time
stamps. Unless you are logging
many events, you may see
"jumps" of 10-16 milliseconds
between log time stamps. WEB
APPLICATION WARNING:
The use of a background
thread may cause issues for
web applications and OSGi
applications so CachedClock is
not recommended for this kind
of applications.

You can also specify a fully
qualified class name of a
custom class that implements
the Clock interface.

System Properties to configure all asynchronous loggers

12.1.3 Mixing Synchronous and Asynchronous Loggers

Requires disruptor-3.0.0.jar or higher on the classpath. There is no need to set system property
"Log4jContextSelector" to any value.

Synchronous and asynchronous loggers can be combined in configuration. This gives you more
flexibility at the cost of a slight loss in performance (compared to making all loggers asynchronous).
Use the <asyncRoot> or <asyncLogger> configuration elements to specify the loggers that need to
be asynchronous. The same configuration file can also contain <root> and <logger> elements for
the synchronous loggers.

1 2 A s y n c L o g g e r s 158

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

By default, location is not passed to the I/O thread by asynchronous loggers. If one of your layouts or
custom filters needs location information, you need to set "includeLocation=true" in the configuration
of all relevant loggers, including the root logger.

A configuration that mixes asynchronous loggers might look like:

<?xml version="1.0" encoding="UTF-8"?>

<!-- No need to set system property "Log4jContextSelector" to any value

 when using <asyncLogger> or <asyncRoot>. -->

<Configuration status="WARN">

 <Appenders>

 <!-- Async Loggers will auto-flush in batches, so switch off immediateFlush. -->

 <RandomAccessFile name="RandomAccessFile" fileName="asyncWithLocation.log"

 immediateFlush="false" append="false">

 <PatternLayout>

 <Pattern>%d %p %class{1.} [%t] %location %m %ex%n</Pattern>

 </PatternLayout>

 </RandomAccessFile>

 </Appenders>

 <Loggers>

 <!-- pattern layout actually uses location, so we need to include it -->

 <AsyncLogger name="com.foo.Bar" level="trace" includeLocation="true">

 <AppenderRef ref="RandomAccessFile"/>

 </AsyncLogger>

 <Root level="info" includeLocation="true">

 <AppenderRef ref="RandomAccessFile"/>

 </Root>

 </Loggers>

</Configuration>

There are a few system properties you can use to control aspects of the asynchronous logging
subsystem. Some of these can be used to tune logging performance.

System Property Default Value Description

AsyncLoggerConfig.ExceptionHandlernull Fully qualified name of a
class that implements the
com.lmax.disruptor.ExceptionHandler
interface. The class needs to have
a public zero-argument constructor.
If specified, this class will be
notified when an exception occurs
while logging the messages.

AsyncLoggerConfig.RingBufferSize 256 * 1024 Size (number of slots) in
the RingBuffer used by the
asynchronous logging subsystem.
Make this value large enough
to deal with bursts of activity.
The minimum size is 128. The
RingBuffer will be pre-allocated
at first use and will never grow or
shrink during the life of the system.

1 2 A s y n c L o g g e r s 159

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

AsyncLoggerConfig.WaitStrategy Sleep Valid values: Block, Sleep, Yield.
Block is a strategy that uses
a lock and condition variable
for the I/O thread waiting for
log events. Block can be used
when throughput and low-latency
are not as important as CPU
resource. Recommended for
resource constrained/virtualised
environments.
Sleep is a strategy that initially
spins, then uses a Thread.yield(),
and eventually parks for the
minimum number of nanos the OS
and JVM will allow while the I/O
thread is waiting for log events.
Sleep is a good compromise
between performance and CPU
resource. This strategy has very
low impact on the application
thread, in exchange for some
additional latency for actually
getting the message logged.
Yield is a strategy that uses a
Thread.yield() for waiting for log
events after an initially spinning.
Yield is a good compromise
between performance and CPU
resource, but may use more CPU
than Sleep in order to get the
message logged to disk sooner.

System Properties to configure mixed asynchronous and normal loggers

12.1.4 Location, location, location...

If one of the layouts is configured with a location-related attribute like HTML locationInfo, or one of
the patterns %C or $class, %F or %file, %l or %location, %L or %line, %M or %method, Log4j
will take a snapshot of the stack, and walk the stack trace to find the location information.

This is an expensive operation: 1.3 - 5 times slower for synchronous loggers. Synchronous loggers
wait as long as possible before they take this stack snapshot. If no location is required, the snapshot
will never be taken.

However, asynchronous loggers need to make this decision before passing the log message to another
thread; the location information will be lost after that point. The performance impact of taking a stack
trace snapshot is even higher for asynchronous loggers: logging with location is 4 - 20 times slower
than without location. For this reason, asynchronous loggers and asynchronous appenders do not
include location information by default.

You can override the default behaviour in your logger or asynchronous appender configuration by
specifying includeLocation="true".

1 2 A s y n c L o g g e r s 160

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12.1.5 Asynchronous Logging Performance

The performance results below were all derived from running the PerfTest, MTPerfTest and
PerfTestDriver classes which can be found in the Log4j 2 unit test source directory. All tests were
done using the default settings (SystemClock and SleepingWaitStrategy). The methodology used was
the same for all tests:

• First, warm up the JVM by logging 200,000 log messages of 500 characters.
• Repeat the warm-up 10 times, then wait 10 seconds for the I/O thread to catch up and buffers to

drain.
• Latency test: at less than saturation, measure how long a call to Logger.log takes. Pause for 10

microseconds * threadCount between measurements. Repeat this 5 million times, and measure
average latency, latency of 99% of observations and 99.99% of observations.

• Throughput test: measure how long it takes to execute 256 * 1024 / threadCount calls to
Logger.log and express the result in messages per second.

• Repeat the test 5 times and average the results.
The results below were obtained with log4j-2.0-beta5, disruptor-3.0.0.beta3, log4j-1.2.17 and
logback-1.0.10.

12.1.5.1 Logging Throughput

The graph below compares the throughput of synchronous loggers, asynchronous appenders and
asynchronous loggers. This is the total throughput of all threads together. In the test with 64 threads,
asynchronous loggers are 12 times faster than asynchronous appenders, and 68 times faster than
synchronous loggers.

Asynchronous loggers' throughput increases with the number of threads, whereas both synchronous
loggers and asynchronous appenders have more or less constant throughput regardless of the number
of threads that are doing the logging.

12.1.5.2 Asynchronous Throughput Comparison with Other Logging Packages

We also compared throughput of asynchronous loggers to the synchronous loggers and asynchronous
appenders available in other logging packages, specifically log4j-1.2.17 and logback-1.0.10, with
similar results. For asynchronous appenders, total logging throughput of all threads together remains

1 2 A s y n c L o g g e r s 161

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

roughly constant when adding more threads. Asynchronous loggers make more effective use of the
multiple cores available on the machine in multi-threaded scenarios.

On Solaris 10 (64bit) with JDK1.7.0_06, 4-core Xeon X5570 dual CPU @2.93Ghz with
hyperthreading switched on (16 virtual cores):

Logger 1 thread 2 threads 4 threads 8 threads
16
threads

32
threads

64
threads

Log4j 2:
Loggers all
asynchronous

2,652,412 909,119 776,993 516,365 239,246 253,791 288,997

Log4j 2:
Loggers
mixed sync/
async

2,454,358 839,394 854,578 597,913 261,003 216,863 218,937

Log4j 2:
Async
Appender

1,713,429 603,019 331,506 149,408 86,107 45,529 23,980

Log4j1:
Async
Appender

2,239,664 494,470 221,402 109,314 60,580 31,706 14,072

Logback:
Async
Appender

2,206,907 624,082 307,500 160,096 85,701 43,422 21,303

Log4j 2:
Synchronous

273,536 136,523 67,609 34,404 15,373 7,903 4,253

Log4j1:
Synchronous

326,894 105,591 57,036 30,511 13,900 7,094 3,509

Logback:
Synchronous

178,063 65,000 34,372 16,903 8,334 3,985 1,967

1 2 A s y n c L o g g e r s 162

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Throughput per thread in messages/second

On Windows 7 (64bit) with JDK1.7.0_11, 2-core Intel i5-3317u CPU @1.70Ghz with hyperthreading
switched on (4 virtual cores):

Logger 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads

Log4j 2:
Loggers all
asynchronous

1,715,344 928,951 1,045,265 1,509,109 1,708,989 773,565

Log4j 2:
Loggers
mixed sync/
async

571,099 1,204,774 1,632,204 1,368,041 462,093 908,529

Log4j 2:
Async
Appender

1,236,548 1,006,287 511,571 302,230 160,094 60,152

Log4j1: Async
Appender

1,373,195 911,657 636,899 406,405 202,777 162,964

Logback:
Async
Appender

1,979,515 783,722 582,935 289,905 172,463 133,435

Log4j 2:
Synchronous

281,250 225,731 129,015 66,590 34,401 17,347

Log4j1:
Synchronous

147,824 72,383 32,865 18,025 8,937 4,440

Logback:
Synchronous

149,811 66,301 32,341 16,962 8,431 3,610

Throughput per thread in messages/second

12.1.5.3 Throughput of Logging With Location (includeLocation="true")

On Solaris 10 (64bit) with JDK1.7.0_06, 4-core Xeon X5570 dual CPU @2.93Ghz with
hyperthreading switched off (8 virtual cores):

Logger (Log4j 2) 1 thread 2 threads 4 threads 8 threads

Loggers all
asynchronous

75,862 88,775 80,240 68,077

Loggers mixed sync/
async

61,993 66,164 55,735 52,843

Async Appender 47,033 52,426 50,882 36,905

Synchronous 31,054 33,175 29,791 23,628

Throughput in log messages/second per thread

As expected, logging location information has a large performance impact. Asynchronous loggers
are 4 - 20 times slower, while synchronous loggers are 1.3 - 5 times slower. However, if you do need
location information, asynchronous logging will still be faster than synchronous logging.

1 2 A s y n c L o g g e r s 163

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12.1.5.4 Latency

Latency tests are done by logging at less than saturation, measuring how long a call to Logger.log
takes to return. After each call to Logger.log, the test waits for 10 microseconds * threadCount before
continuing. Each thread logs 5 million messages.

All the latency measurements below are results of tests run on Solaris 10 (64bit) with JDK1.7.0_06, 4-
core Xeon X5570 dual CPU @2.93Ghz with hyperthreading switched on (16 virtual cores).

Note that this is log-scale, not linear. The above graph compares the latency distributions of an
asynchronous logger and a Log4j 1.2.17 Async Appender. This shows the latency of one thread
during a test where 64 threads are logging in parallel. The test was run once for the async logger and
once for the async appender.

Average
latency

99%
observations
less than

99.99%
observations
less than

1 thread 64 threads 1 thread 64 threads 1 thread 64 threads

Log4j 2:
Loggers all
async

677 4,135 1,638 4,096 8,192 16,128

Log4j 2:
Loggers
mixed sync/
async

648 4,873 1,228 4,096 8,192 16,384

Log4j 2:
Async
Appender

2,423 2,117,722 4,096 67,108,864 16,384 268,435,456

1 2 A s y n c L o g g e r s 164

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Log4j1: Async
Appender

1,562 1,781,404 4,096 109,051,904 16,384 268,435,456

Logback:
Async
Appender

2,123 2,079,020 3,276 67,108,864 14,745 268,435,456

Latency of a call to Logger.log() in nanoseconds

The latency comparison graph below is also log-scale, and shows the average latency of asynchronous
loggers and ArrayBlockingQueue-based asynchronous appenders in scenarios with more and more
threads running in parallel. Up to 8 threads asynchronous appenders have comparable average
latency, two or three times that of asynchronous loggers. With more threads, the average latency of
asynchronous appenders is orders of magnitude larger than asynchronous loggers.

Applications interested in low latency often care not only about average latency, but also about worst-
case latency. The graph below shows that asynchronous loggers also do better when comparing
the maximum latency of 99.99% of observations with other logging methods. When increasing the
number of threads the vast majority of latency measurements for asynchronous loggers stay in the
10-20 microseconds range where Asynchronous Appenders start experiencing many latency spikes in
the 100 millisecond range, a difference of four orders of magnitude.

1 2 A s y n c L o g g e r s 165

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12.1.5.5 FileAppender vs. RandomAccessFileAppender

The appender comparison below was done with synchronous loggers.

On Windows 7 (64bit) with JDK1.7.0_11, 2-core Intel i5-3317u CPU @1.70Ghz with hyperthreading
switched on (4 virtual cores):

Appender 1 thread 2 threads 4 threads 8 threads

RandomAccessFileAppender 250,438 169,939 109,074 58,845

FileAppender 186,695 118,587 57,012 28,846

RollingRandomAccessFileAppender278,369 213,176 125,300 63,103

RollingFileAppender 182,518 114,690 55,147 28,153

Throughput per thread in messages/second

On Solaris 10 (64bit) with JDK1.7.0_06, 4-core dual Xeon X5570 CPU @2.93GHz with
hyperthreading switched off (8 virtual cores):

Appender 1 thread 2 threads 4 threads 8 threads

RandomAccessFileAppender 240,760 128,713 66,555 30,544

FileAppender 172,517 106,587 55,885 25,675

RollingRandomAccessFileAppender228,491 135,355 69,277 32,484

RollingFileAppender 186,422 97,737 55,766 25,097

Throughput per thread in messages/second

1 2 A s y n c L o g g e r s 166

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12.1.6 Under The Hood

Asynchronous Loggers are implemented using the LMAX Disruptor inter-thread messaging library.
From the LMAX web site:

... using queues to pass data between stages of the system was introducing latency, so we focused
on optimising this area. The Disruptor is the result of our research and testing. We found that cache
misses at the CPU-level, and locks requiring kernel arbitration are both extremely costly, so we
created a framework which has "mechanical sympathy" for the hardware it's running on, and that's
lock-free.

LMAX Disruptor internal performance comparisons with
java.util.concurrent.ArrayBlockingQueue can be found here.

http://lmax-exchange.github.com/disruptor/
https://github.com/LMAX-Exchange/disruptor/wiki/Performance-Results

1 3 J M X 167

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13 JMX
...

13.1 JMX
Log4j 2 has built-in support for JMX. The StatusLogger, ContextSelector, and all LoggerContexts,
LoggerConfigs and Appenders are instrumented with MBeans and can be remotely monitored and
controlled.

Also included is a simple client GUI that can be used to monitor the StatusLogger output, as well as
to remotely reconfigure Log4j with a different configuration file, or to edit the current configuration
directly.

13.2 Enabling JMX

JMX support is enabled by default. When Log4j initializes, the StatusLogger, ContextSelector,
and all LoggerContexts, LoggerConfigs and Appenders are instrumented with MBeans. To
disable JMX completely, and prevent these MBeans from being created, specify system property
log4j2.disable.jmx=true when you start the Java VM.

13.2.1 Local Monitoring and Management

To perform local monitoring you don't need to specify any system properties. The JConsole tool
that is included in the Java JDK can be used to monitor your application. Start JConsole by typing
$JAVA_HOME/bin/jconsole in a command shell. For more details, see Oracle's documentation on
how to use JConsole.

13.2.2 Remote Monitoring and Management

To enable monitoring and management from remote systems, set the following system property when
starting the Java VM.

com.sun.management.jmxremote.port=portNum

In the property above, portNum is the port number through which you want to enable JMX RMI
connections.

For more details, see Oracle's documentation on Remote Monitoring and Management.

13.3 Log4j Instrumented Components

The best way to find out which methods and attributes of the various Log4j components are accessible
via JMX is to look at the Javadoc or by exploring directly in JConsole.

The screenshot below shows the Log4j MBeans in JConsole.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdenl

1 3 J M X 168

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13.4 Client GUI

Log4j includes a basic client GUI that can be used to monitor the StatusLogger output and to remotely
modify the Log4j configuration. The client GUI can be run as a stand-alone application or as a
JConsole plug-in.

13.4.1 Running the Client GUI as a JConsole Plug-in

To run the Log4j JMX Client GUI as a JConsole Plug-in, start JConsole with the following command:

$JAVA_HOME/bin/jconsole -pluginpath /path/to/log4j-api-
${Log4jReleaseVersion}.jar:/path/to/log4j-core-${Log4jReleaseVersion}.jar:/
path/to/log4j-jmx-gui-${Log4jReleaseVersion}.jar

or on Windows:

%JAVA_HOME%\bin\jconsole -pluginpath \path\to\log4j-api-
${Log4jReleaseVersion}.jar;\path\to\log4j-core-${Log4jReleaseVersion}.jar;
\path\to\log4j-jmx-gui-${Log4jReleaseVersion}.jar

If you execute the above command and connect to your application, you will see an extra "Log4j 2"
tab in the JConsole window. This tab contains the client GUI, with the StatusLogger selected. The
screenshot below shows the StatusLogger panel in JConsole.

1 3 J M X 169

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13.4.2 Remotely Editing the Log4j Configuration

The client GUI also contains a simple editor that can be used to remotely change the Log4j
configuration.

The screenshot below shows the configuration edit panel in JConsole.

1 3 J M X 170

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The configuration edit panel provides two ways to modify the Log4j configuration: specifying a
different configuration location URI, or modifying the configuration XML directly in the editor panel.

If you specify a different configuration location URI and click the "Reconfigure from Location"
button, the specified file or resource must exist and be readable by the application, or an error will
occur and the configuration will not change. If an error occurred while processing the contents of
the specified resource, Log4j will keep its original configuration, but the editor panel will show the
contents of the file you specified.

The text area showing the contents of the configuration file is editable, and you can directly modify
the configuration in this editor panel. Clicking the "Reconfigure with XML below" button will send
the configuration text to the remote application where it will be used to reconfigure Log4j on the fly.
This will not overwrite any configuration file. Reconfiguring with text from the editor happens in
memory only and the text is not permanently stored anywhere.

13.4.3 Running the Client GUI as a Stand-alone Application

To run the Log4j JMX Client GUI as a stand-alone application, run the following command:

1 3 J M X 171

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

$JAVA_HOME/bin/java -cp /path/to/log4j-api-${Log4jReleaseVersion}.jar:/
path/to/log4j-core-${Log4jReleaseVersion}.jar:/path/to/log4j-jmx-gui-
${Log4jReleaseVersion}.jar org.apache.logging.log4j.jmx.gui.ClientGui
<options>

or on Windows:

%JAVA_HOME%\bin\java -cp \path\to\log4j-api-${Log4jReleaseVersion}.jar;
\path\to\log4j-core-${Log4jReleaseVersion}.jar;\path\to\log4j-jmx-gui-
${Log4jReleaseVersion}.jar org.apache.logging.log4j.jmx.gui.ClientGui
<options>

Where options are one of the following:

• <host>:<port>

• service:jmx:rmi:///jndi/rmi://<host>:<port>/jmxrmi

• service:jmx:rmi://<host>:<port>/jndi/rmi://<host>:<port>/jmxrmi

The port number must be the same as the portNum specified when you started the application you
want to monitor.

For example, if you started your application with these options:

com.sun.management.jmxremote.port=33445

com.sun.management.jmxremote.authenticate=false

com.sun.management.jmxremote.ssl=false

(Note that this disables all security so this is not recommended for production environments.
Oracle's documentation on Remote Monitoring and Management provides details on how to
configure JMX more securely with password authentication and SSL.)

Then you can run the client with this command:

$JAVA_HOME/bin/java -cp /path/to/log4j-api-${Log4jReleaseVersion}.jar:/
path/to/log4j-core-${Log4jReleaseVersion}.jar:/path/to/log4j-jmx-gui-
${Log4jReleaseVersion}.jar org.apache.logging.log4j.jmx.gui.ClientGui
localhost:33445

or on Windows:

%JAVA_HOME%\bin\java -cp \path\to\log4j-api-${Log4jReleaseVersion}.jar;
\path\to\log4j-core-${Log4jReleaseVersion}.jar;\path\to\log4j-jmx-gui-
${Log4jReleaseVersion}.jar org.apache.logging.log4j.jmx.gui.ClientGui
localhost:33445

The screenshot below shows the StatusLogger panel of the client GUI when running as a stand-alone
application.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html#gdenl

1 3 J M X 172

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

The screenshot below shows the configuration editor panel of the client GUI when running as a stand-
alone application.

1 3 J M X 173

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1 4 L o g g i n g S e p a r a t i o n 174

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

14 Logging Separation
...

14.1 Logging Separation
There are many well known use cases where applications may share an environment with other
applications and each has a need to have its own, separate logging environment. This purpose of this
section is to discuss some of these cases and ways to accomplish this.

14.1.1 Use Cases

This section describes some of the use cases where Log4j could be used and what its desired behavior
might be.

14.1.1.1 Standalone Application

Standalone applications are usually relatively simple. They typically have one bundled executable that
requires only a single logging configuration.

14.1.1.2 Web Applications

A typical web application will be packaged as a WAR file and will include all of its dependencies in
WEB-INF/lib and will have its configuration file located in the class path or in a location configured
in the web.xml. Be sure to follow the instructions to initialize Log4j 2 in a web application.

14.1.1.3 Java EE Applications

A Java EE application will consist of one or more WAR files and possible some EJBs, typically all
packaged in an EAR file. Usually, it is desirable to have a single configuration that applies to all the
components in the EAR. The logging classes will generally be placed in a location shared across all
the components and the configuration needs to also be shareable. Be sure to follow the instructions to
initialize Log4j 2 in a web application.

14.1.1.4 "Shared" Web Applications and REST Service Containers

In this scenario there are multiple WAR files deployed into a single container. Each of the
applications should use the same logging configuration and share the same logging implementation
across each of the web applications. When writing to files and streams each of the applications should
share them to avoid the issues that can occur when multiple components try to write to the same
file(s) through different File objects, channels, etc.

14.1.1.5 OSGi Applications

An OSGi container physically separates each JAR into its own ClassLoader, thus enforcing
modularity of JARs as well as providing standardized ways for JARs to share code based on version
numbers. Suffice to say, the OSGi framework is beyond the scope of this manual. There are some
differences when using Log4j in an OSGi container. By default, each JAR bundle is scanned for its
own Log4j configuration file. Similar to the web application paradigm, every bundle has its own
LoggerContext. As this may be undesirable when a global Log4j configuration is wanted, then the
ContextSelector should be overridden with BasicContextSelector or JndiContextSelector.

14.1.2 Approaches

1 4 L o g g i n g S e p a r a t i o n 175

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

14.1.2.1 The Simple Approach

The simplest approach for separating logging within applications is to package each application
with its own copy of Log4j and to use the BasicContextSelector. While this works for standalone
applications and may work for web applications and possibly Java EE applications, it does not work
at all in the last case. However, when this approach does work it should be used as it is ultimately the
simplest and most straightforward way of implementing logging.

14.1.2.2 Using Context Selectors

There are a few patterns for achieving the desired state of logging separation using ContextSelectors:

1. Place the logging jars in the container's classpath and set the system property
"Log4jContextSelector" to "org.apache.logging.log4j.core.selector.BasicContextSelector". This
will create a single LoggerContext using a single configuration that will be shared across all
applications.

2. Place the logging jars in the container's classpath and use the default
ClassLoaderContextSelector. Follow the instructions to initialize Log4j 2 in a web application.
Each application can be configured to share the same configuration used at the container or can
be individually configured. If status logging is set to debug in the configuration there will be
output from when logging is initialized in the container and then again in each web application.

3. Follow the instructions to initialize Log4j 2 in a web application and set the
system property or servlet context parameter Log4jContextSelector to
org.apache.logging.log4j.core.selector.JndiContextSelector. This will cause the
container to use JNDI to locate each web application's LoggerContext. Be sure to
set the isLog4jContextSelectorNamed context parameter to true and also set the
log4jContextName and log4jConfiguration context parameters.

The exact method for setting system properties depends on the container. For Tomcat, edit
$CATALINA_HOME/conf/catalina.properties. Consult the documentation for other web
containers.

1 5 E x t e n d i n g L o g 4 j 176

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

15 Extending Log4j
...

15.1 Extending Log4j
Log4j 2 provides numerous ways that it can be manipulated and extended. This section includes an
overview of the various ways that are directly supported by the Log4j 2 implementation.

15.1.1 LoggerContextFactory

The LoggerContextFactory binds the Log4j API to its implementation. The Log4j
LogManager locates a LoggerContextFactory by locating all instances of META-INF/log4j-
provider.properties, a standard java.util.Properties file, and then inspecting each
to verify that it specifies a value for the Log4jAPIVersion property that conforms to the version
required by the LogManager. If more than one valid implementation is located the value for
FactoryPriority will be used to identify the factory with the highest priority. Finally, the value of the
LoggerContextFactory property will be used to locate the LoggerContextFactory. In Log4j 2 this
is provided by Log4jContextFactory.

Applications may change the LoggerContextFactory that will be used by

1. Implementing a new LoggerContextFactory and creating a log4j-
provider.properties to reference it making sure that it has the highest priority.

2. Create a new log4j-provider.xml and configure it with the desired
LoggerContextFactory making sure that it has the highest priority.

3. Setting the system property log4j2.loggerContextFactory to the name of the
LoggerContextFactory class to use.

4. Setting the property "log4j2.loggerContextFactory" in a properties file named
"log4j2.LogManager.properties" to the name of the LoggerContextFactory class to use. The
properties file must be on the classpath.

15.1.2 ContextSelector

ContextSelectors are called by the Log4j LoggerContext factory. They perform the actual
work of locating or creating a LoggerContext, which is the anchor for Loggers and their
configuration. ContextSelectors are free to implement any mechanism they desire to manage
LoggerContexts. The default Log4jContextFactory checks for the presence of a System Property
named "Log4jContextSelector". If found, the property is expected to contain the name of the Class
that implements the ContextSelector to be used.

Log4j provides five ContextSelectors:

BasicContextSelector

Uses either a LoggerContext that has been stored in a ThreadLocal or a common
LoggerContext.

ClassLoaderContextSelector

Associates LoggerContexts with the ClassLoader that created the caller of the getLogger
call. This is the default ContextSelector.

JndiContextSelector

Locates the LoggerContext by querying JNDI.

AsyncLoggerContextSelector

1 5 E x t e n d i n g L o g 4 j 177

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Creates a LoggerContext that ensures that all loggers are AsyncLoggers.

BundleContextSelector

Associates LoggerContexts with the ClassLoader of the bundle that created the caller of the
getLogger call. This is enabled by default in OSGi environments.

15.1.3 ConfigurationFactory

Modifying the way in which logging can be configured is usually one of the areas with the most
interest. The primary method for doing that is by implementing or extending a ConfigurationFactory.
Log4j provides two ways of adding new ConfigurationFactories. The first is by defining the system
property named "log4j.configurationFactory" to the name of the class that should be searched first for
a configuration. The second method is by defining the ConfigurationFactory as a Plugin.

All the ConfigurationFactories are then processed in order. Each factory is called on its
getSupportedTypes method to determine the file extensions it supports. If a configuration file is
located with one of the specified file extensions then control is passed to that ConfigurationFactory to
load the configuration and create the Configuration object.

Most Configuration extend the BaseConfiguration class. This class expects that the subclass will
process the configuration file and create a hierarchy of Node objects. Each Node is fairly simple
in that it consists of the name of the node, the name/value pairs associated with the node, The
PluginType of the node and a List of all of its child Nodes. BaseConfiguration will then be passed the
Node tree and instantiate the configuration objects from that.

@Plugin(name = "XMLConfigurationFactory", category = "ConfigurationFactory")

@Order(5)

public class XMLConfigurationFactory extends ConfigurationFactory {

 /**

 * Valid file extensions for XML files.

 */

 public static final String[] SUFFIXES = new String[] {".xml", "*"};

 /**

 * Return the Configuration.

 * @param source The InputSource.

 * @return The Configuration.

 */

 public Configuration getConfiguration(InputSource source) {

 return new XMLConfiguration(source, configFile);

 }

 /**

 * Returns the file suffixes for XML files.

 * @return An array of File extensions.

 */

 public String[] getSupportedTypes() {

 return SUFFIXES;

 }

}

1 5 E x t e n d i n g L o g 4 j 178

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

15.1.4 LoggerConfig

LoggerConfig objects are where Loggers created by applications tie into the configuration. The
Log4j implementation requires that all LoggerConfigs be based on the LoggerConfig class, so
applications wishing to make changes must do so by extending the LoggerConfig class. To declare
the new LoggerConfig, declare it as a Plugin of type "Core" and providing the name that applications
should specify as the element name in the configuration. The LoggerConfig should also define a
PluginFactory that will create an instance of the LoggerConfig.

The following example shows how the root LoggerConfig simply extends a generic LoggerConfig.

@Plugin(name = "root", category = "Core", printObject = true)

public static class RootLogger extends LoggerConfig {

 @PluginFactory

 public static LoggerConfig createLogger(@PluginAttribute(value = "additivity", defaultBooleanValue = true) boolean additivity,

 @PluginAttribute(value = "level", defaultStringValue = "ERROR") Level level,

 @PluginElement("AppenderRef") AppenderRef[] refs,

 @PluginElement("Filters") Filter filter) {

 List<AppenderRef> appenderRefs = Arrays.asList(refs);

 return new LoggerConfig(LogManager.ROOT_LOGGER_NAME, appenderRefs, filter, level, additivity);

 }

}

15.1.5 LogEventFactory

A LogEventFactory is used to generate LogEvents. Applications may replace the standard
LogEventFactory by setting the value of the system property Log4jLogEventFactory to the name of
the custom LogEventFactory class.

15.1.6 Lookups

Lookups are the means in which parameter substitution is performed. During Configuration
initialization an "Interpolator" is created that locates all the Lookups and registers them for use when
a variable needs to be resolved. The interpolator matches the "prefix" portion of the variable name to a
registered Lookup and passes control to it to resolve the variable.

A Lookup must be declared using a Plugin annotation with a type of "Lookup". The name specified
on the Plugin annotation will be used to match the prefix. Unlike other Plugins, Lookups do not use
a PluginFactory. Instead, they are required to provide a constructor that accepts no arguments. The
example below shows a Lookup that will return the value of a System Property.

The provided Lookups are documented here: Lookups

1 5 E x t e n d i n g L o g 4 j 179

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

@Plugin(name = "sys", category = "Lookup")

public class SystemPropertiesLookup implements StrLookup {

 /**

 * Lookup the value for the key.

 * @param key the key to be looked up, may be null

 * @return The value for the key.

 */

 public String lookup(String key) {

 return System.getProperty(key);

 }

 /**

 * Lookup the value for the key using the data in the LogEvent.

 * @param event The current LogEvent.

 * @param key the key to be looked up, may be null

 * @return The value associated with the key.

 */

 public String lookup(LogEvent event, String key) {

 return System.getProperty(key);

 }

}

15.1.7 Filters

As might be expected, Filters are the used to reject or accept log events as they pass through the
logging system. A Filter is declared using a Plugin annotation of type "Core" and an elementType of
"filter". The name attribute on the Plugin annotation is used to specify the name of the element users
should use to enable the Filter. Specifying the printObject attribute with a value of "true" indicates
that a call to toString will format the arguments to the filter as the configuration is being processed.
The Filter must also specify a PluginFactory method that will be called to create the Filter.

The example below shows a Filter used to reject LogEvents based upon their logging level. Notice the
typical pattern where all the filter methods resolve to a single filter method.

1 5 E x t e n d i n g L o g 4 j 180

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

@Plugin(name = "ThresholdFilter", category = "Core", elementType = "filter", printObject = true)

public final class ThresholdFilter extends AbstractFilter {

 private final Level level;

 private ThresholdFilter(Level level, Result onMatch, Result onMismatch) {

 super(onMatch, onMismatch);

 this.level = level;

 }

 public Result filter(Logger logger, Level level, Marker marker, String msg, Object[] params) {

 return filter(level);

 }

 public Result filter(Logger logger, Level level, Marker marker, Object msg, Throwable t) {

 return filter(level);

 }

 public Result filter(Logger logger, Level level, Marker marker, Message msg, Throwable t) {

 return filter(level);

 }

 @Override

 public Result filter(LogEvent event) {

 return filter(event.getLevel());

 }

 private Result filter(Level level) {

 return level.isAtLeastAsSpecificAs(this.level) ? onMatch : onMismatch;

 }

 @Override

 public String toString() {

 return level.toString();

 }

 /**

 * Create a ThresholdFilter.

 * @param loggerLevel The log Level.

 * @param match The action to take on a match.

 * @param mismatch The action to take on a mismatch.

 * @return The created ThresholdFilter.

 */

 @PluginFactory

 public static ThresholdFilter createFilter(@PluginAttribute(value = "level", defaultStringValue = "ERROR") Level level,

 @PluginAttribute(value = "onMatch", defaultStringValue = "NEUTRAL") Result onMatch,

 @PluginAttribute(value = "onMismatch", defaultStringValue = "DENY") Result onMismatch) {

 return new ThresholdFilter(level, onMatch, onMismatch);

 }

}

1 5 E x t e n d i n g L o g 4 j 181

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

15.1.8 Appenders

Appenders are passed an event, (usually) invoke a Layout to format the event, and then "publish"
the event in whatever manner is desired. Appenders are declared as Plugins with a type of "Core"
and an elementType of "appender". The name attribute on the Plugin annotation specifies the name
of the element users must provide in their configuration to use the Appender. Appenders should
specify printObject as "true" if the toString method renders the values of the attributes passed to the
Appender.

Appenders must also declare a PluginFactory method that will create the appender. The example
below shows an Appender named "Stub" that can be used as an initial template.

Most Appenders use Managers. A manager actually "owns" the resources, such as an OutputStream
or socket. When a reconfiguration occurs a new Appender will be created. However, if nothing
significant in the previous Manager has changed, the new Appender will simply reference it instead
of creating a new one. This insures that events are not lost while a reconfiguration is taking place
without requiring that logging pause while the reconfiguration takes place.

@Plugin(name = "Stub", category = "Core", elementType = "appender", printObject = true)

public final class StubAppender extends OutputStreamAppender {

 private StubAppender(String name, Layout layout, Filter filter, StubManager manager,

 boolean ignoreExceptions) {

 }

 @PluginFactory

 public static StubAppender createAppender(@PluginAttribute("name") String name,

 @PluginAttribute("ignoreExceptions") boolean ignoreExceptions,

 @PluginElement("Layout") Layout layout,

 @PluginElement("Filters") Filter filter) {

 if (name == null) {

 LOGGER.error("No name provided for StubAppender");

 return null;

 }

 StubManager manager = StubManager.getStubManager(name);

 if (manager == null) {

 return null;

 }

 if (layout == null) {

 layout = PatternLayout.createDefaultLayout();

 }

 return new StubAppender(name, layout, filter, manager, ignoreExceptions);

 }

}

15.1.9 Layouts

Layouts perform the formatting of events into the printable text that is written by Appenders to some
destination. All Layouts must implement the Layout interface. Layouts that format the event into a
String should extend AbstractStringLayout, which will take care of converting the String into the
required byte array.

1 5 E x t e n d i n g L o g 4 j 182

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Every Layout must declare itself as a plugin using the Plugin annotation. The type must be "Core",
and the elementType must be "Layout". printObject should be set to true if the plugin's toString
method will provide a representation of the object and its parameters. The name of the plugin must
match the value users should use to specify it as an element in their Appender configuration. The
plugin also must provide a static method annotated as a PluginFactory and with each of the methods
parameters annotated with PluginAttr or PluginElement as appropriate.

@Plugin(name = "SampleLayout", category = "Core", elementType = "layout", printObject = true)

public class SampleLayout extends AbstractStringLayout {

 protected SampleLayout(boolean locationInfo, boolean properties, boolean complete,

 Charset charset) {

 }

 @PluginFactory

 public static SampleLayout createLayout(@PluginAttribute("locationInfo") boolean locationInfo,

 @PluginAttribute("properties") boolean properties,

 @PluginAttribute("complete") boolean complete,

 @PluginAttribute(value = "charset", defaultStringValue = "UTF-8") Charset charset) {

 return new SampleLayout(locationInfo, properties, complete, charset);

 }

}

15.1.10 PatternConverters

PatternConverters are used by the PatternLayout to format the log event into a printable String. Each
Converter is responsible for a single kind of manipulation, however Converters are free to format the
event in complex ways. For example, there are several converters that manipulate Throwables and
format them in various ways.

A PatternConverter must first declare itself as a Plugin using the standard Plugin annotation but must
specify value of "Converter" on the type attribute. Furthermore, the Converter must also specify the
ConverterKeys attribute to define the tokens that can be specified in the pattern (preceded by a '%'
character) to identify the Converter.

Unlike most other Plugins, Converters do not use a PluginFactory. Instead, each Converter is required
to provide a static newInstance method that accepts an array of Strings as the only parameter. The
String array are the values that are specified within the curly braces that can follow the converter key.

The following shows the skeleton of a Converter plugin.

@Plugin(name = "query", category = "Converter")

@ConverterKeys({"q", "query"})

public final class QueryConverter extends LogEventPatternConverter {

 public QueryConverter(String[] options) {

 }

 public static QueryConverter newInstance(final String[] options) {

 return new QueryConverter(options);

 }

}

1 5 E x t e n d i n g L o g 4 j 183

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

15.1.11 Custom Plugins

See the Plugins section of the manual.

1 6 E x t e n d i n g L o g 4 j C o n f i g u r a t i o n 184

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

16 Extending Log4j Configuration
...

16.1 Custom Configurations
Log4j 2 provides a few ways for applications to create their own custom configurations.

16.1.1 Add a New Configuration via ConfigurationFactory

The easiest way to create a custom Configuration is to extend one of the standard Configuration
classes (XMLConfiguration, JSONConfiguration) and then create a new ConfigurationFactory for the
extended class. After the standard configuration completes the custom configuration can be added to
it.

The example below shows how to extend XMLConfiguration to manually add an Appender and a
LoggerConfig to the configuration.

1 6 E x t e n d i n g L o g 4 j C o n f i g u r a t i o n 185

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

@Plugin(name = "MyXMLConfigurationFactory", category = "ConfigurationFactory")

@Order(10)

public class MyXMLConfigurationFactory extends ConfigurationFactory {

 /**

 * Valid file extensions for XML files.

 */

 public static final String[] SUFFIXES = new String[] {".xml", "*"};

 /**

 * Return the Configuration.

 * @param source The InputSource.

 * @return The Configuration.

 */

 public Configuration getConfiguration(InputSource source) {

 return new MyXMLConfiguration(source, configFile);

 }

 /**

 * Returns the file suffixes for XML files.

 * @return An array of File extensions.

 */

 public String[] getSupportedTypes() {

 return SUFFIXES;

 }

}

public class MyXMLConfiguration extends XMLConfiguration {

 public MyXMLConfiguration(final ConfigurationFactory.ConfigurationSource configSource) {

 super(configSource);

 }

 @Override

 protected void doConfigure() {

 super.doConfigure();

 final LoggerContext ctx = (LoggerContext) LogManager.getContext(false);

 final Layout layout = PatternLayout.createLayout(PatternLayout.SIMPLE_CONVERSION_PATTERN, config, null,

 null,null, null);

 final Appender appender = FileAppender.createAppender("target/test.log", "false", "false", "File", "true",

 "false", "false", "4000", layout, null, "false", null, config);

 appender.start();

 addAppender(appender);

 LoggerConfig loggerConfig = LoggerConfig.createLogger("false", "info", "org.apache.logging.log4j",

 "true", refs, null, config, null);

 loggerConfig.addAppender(appender, null, null);

 addLogger("org.apache.logging.log4j", loggerConfig);

 }

}

1 6 E x t e n d i n g L o g 4 j C o n f i g u r a t i o n 186

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

16.1.2 Programatically Adding to the Current Configuration

Applications sometimes have the need to customize logging separate from the actual configuration.
Log4j allows this although it suffers from a few limitations:

1. If the configuration file is changed the configuration will be reloaded and the manual changes
will be lost.

2. Modification to the running configuration requires that all the methods being called
(addAppender and addLogger) be synchronized.

As such, the recommended approach for customizing a configuration is to extend one of the standard
Configuration classes, override the setup method to first do super.setup() and then add the custom
Appenders, Filters and LoggerConfigs to the configuration before it is registered for use.

The following example adds an Appender and a new LoggerConfig using that Appender to the current
configuration.

 final LoggerContext ctx = (LoggerContext) LogManager.getContext(false);

 final Configuration config = ctx.getConfiguration();

 Layout layout = PatternLayout.createLayout(PatternLayout.SIMPLE_CONVERSION_PATTERN, config, null,

 null,null, null);

 Appender appender = FileAppender.createAppender("target/test.log", "false", "false", "File", "true",

 "false", "false", "4000", layout, null, "false", null, config);

 appender.start();

 config.addAppender(appender);

 AppenderRef ref = AppenderRef.createAppenderRef("File", null, null);

 AppenderRef[] refs = new AppenderRef[] {ref};

 LoggerConfig loggerConfig = LoggerConfig.createLogger("false", "info", "org.apache.logging.log4j",

 "true", refs, null, config, null);

 loggerConfig.addAppender(appender, null, null);

 config.addLogger("org.apache.logging.log4j", loggerConfig);

 ctx.updateLoggers();

}

1 7 C u s t o m L o g L e v e l s 187

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

17 Custom Log Levels
...

17.1 Custom Log Levels

17.1.1 Defining Custom Log Levels in Code

Log4J 2 supports custom log levels. Custom log levels can be defined in code or in configuration. To
define a custom log level in code, use the Level.forName() method. This method creates a new
level for the specified name. After a log level is defined you can log messages at this level by calling
the Logger.log() method and passing the custom log level:

// This creates the "VERBOSE" level if it does not exist yet.

final Level VERBOSE = Level.forName("VERBOSE", 550);

final Logger logger = LogManager.getLogger();

logger.log(VERBOSE, "a verbose message"); // use the custom VERBOSE level

// Create and use a new custom level "DIAG".

logger.log(Level.forName("DIAG", 350), "a diagnostic message");

// Use (don't create) the "DIAG" custom level.

// Only do this *after* the custom level is created!

logger.log(Level.getLevel("DIAG"), "another diagnostic message");

// Using an undefined level results in an error: Level.getLevel() returns null,

// and logger.log(null, "message") throws an exception.

logger.log(Level.getLevel("FORGOT_TO_DEFINE"), "some message"); // throws exception!

When defining a custom log level, the intLevel parameter (550 and 350 in the example above)
determines where the custom level exists in relation to the standard levels built-in to Log4J 2. For
reference, the table below shows the intLevel of the built-in log levels.

Standard Level intLevel

OFF 0

FATAL 100

ERROR 200

WARN 300

INFO 400

DEBUG 500

TRACE 600

ALL Integer.MAX_VALUE

Standard log levels built-in to Log4J

1 7 C u s t o m L o g L e v e l s 188

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

17.1.2 Defining Custom Log Levels in Configuration

Custom log levels can also be defined in configuration. This is convenient for using a custom level
in a logger filter or an appender filter. Similar to defining log levels in code, a custom level must be
defined first, before it can be used. If a logger or appender is configured with an undefined level, that
logger or appender will be invalid and will not process any log events.

The CustomLevel configuration element creates a custom level. Internally it calls the same
Level.forName() method discussed above.

Parameter Name Type Description

name String The name of the custom level. Note
that level names are case sensitive.
The convention is to use all upper-
case names.

intLevel integer Determines where the custom level
exists in relation to the standard
levels built-in to Log4J 2 (see the
table above).

CustomLevel Parameters

The following example shows a configuration that defines some custom log levels and uses a custom
log level to filter log events sent to the console.

<?xml version="1.0" encoding="UTF-8"?>

<Configuration status="WARN">

 <!-- Define custom levels before using them for filtering below. -->

 <CustomLevels>

 <CustomLevel name="DIAG" intLevel="350" />

 <CustomLevel name="NOTICE" intLevel="450" />

 <CustomLevel name="VERBOSE" intLevel="550" />

 </CustomLevels>

 <Appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-7level %logger{36} - %msg%n"/>

 </Console>

 <File name="MyFile" fileName="logs/app.log">

 <PatternLayout pattern="%d %-7level %logger{36} - %msg%n"/>

 </File>

 </Appenders>

 <Loggers>

 <Root level="trace">

 <!-- Only events at DIAG level or more specific are sent to the console. -->

 <AppenderRef ref="Console" level="diag" />

 <AppenderRef ref="MyFile" level="trace" />

 </Root>

 </Loggers>

</Configuration>

1 7 C u s t o m L o g L e v e l s 189

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

17.1.3 Convenience Methods for the Built-in Log Levels

The built-in log levels have a set of convenience methods on the Logger interface that makes them
easier to use. For example, the Logger interface has fourteen debug() methods that support the
DEBUG level:

// convenience methods for the built-in DEBUG level

debug(Marker, Message)

debug(Marker, Message, Throwable)

debug(Marker, Object)

debug(Marker, Object, Throwable)

debug(Marker, String)

debug(Marker, String, Object...)

debug(Marker, String, Throwable)

debug(Message)

debug(Message, Throwable)

debug(Object)

debug(Object, Throwable)

debug(String)

debug(String, Object...)

debug(String, Throwable)

Similar methods exist for the other built-in levels. Custom levels, in contrast, need to pass in the log
level as an extra parameter.

// need to pass the custom level as a parameter

logger.log(VERBOSE, "a verbose message");

logger.log(Level.forName("DIAG", 350), "another message");

It would be nice to have the same ease of use with custom levels, so that after declaring the custom
VERBOSE/DIAG levels, we could use code like this:

// nice to have: descriptive methods and no need to pass the level as a parameter

logger.verbose("a verbose message");

logger.diag("another message");

The standard Logger interface cannot provide convenience methods for custom levels, but the next
few sections introduce a code generation tool to create loggers that aim to make custom levels as easy
to use as built-in levels.

17.1.4 Adding or Replacing Log Levels

We assume that most users want to add custom level methods to the Logger interface, in addition to
the existing trace(), debug(), info(), ... methods for the built-in log levels.

There is another use case, Domain Specific Language loggers, where we want to replace the existing
trace(), debug(), info(), ... methods with all-custom methods.

For example, for medical devices we could have only critical(), warning(), and advisory()
methods. Another example could be a game that has only defcon1(), defcon2(), and defcon3()
levels.

If it were possible to hide existing log levels, users could customize the Logger interface to match
their requirements. Some people may not want to have a FATAL or a TRACE level, for example.

1 7 C u s t o m L o g L e v e l s 190

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

They would like to be able to create a custom Logger that only has debug(), info(), warn() and error()
methods.

17.1.5 Generating Source Code for a Custom Logger Wrapper

Common Log4J usage is to get an instance of the Logger interface from the LogManager and call
the methods on this interface. However, the custom log Levels are not known in advance, so Log4J
cannot provide an interface with convenience methods for these custom log Levels.

To solve this, Log4J ships with a tool that generates source code for a Logger wrapper. The generated
wrapper class has convenience methods for each custom log level, making custom levels just as easy
to use as the built-in levels.

There are two flavors of wrappers: ones that extend the Logger API (adding methods to the built-in
levels) and ones that customize the Logger API (replacing the built-in methods).

When generating the source code for a wrapper class, you need to specify:

• the fully qualified name of the class to generate
• the list of custom levels to support and their intLevel relative strength
• whether to extend Logger (and keep the existing built-in methods) or have only methods for the

custom log levels
You would then include the generated source code in the project where you want to use custom log
levels.

17.1.6 Example Usage of a Generated Logger Wrapper

Here is an example of how one would use a generated logger wrapper with custom levels DIAG,
NOTICE and VERBOSE:

// ExtLogger is a generated logger wrapper

import com.mycompany.myproject.ExtLogger;

public class MyService {

 // instead of Logger logger = LogManager.getLogger(MyService.class):

 private static final ExtLogger logger = ExtLogger.create(MyService.class);

 public void someMethod() {

 // ...

 logger.trace("the built-in TRACE level");

 logger.verbose("a custom level: a VERBOSE message");

 logger.debug("the built-in DEBUG level");

 logger.notice("a custom level: a NOTICE message");

 logger.info("the built-in INFO level");

 logger.diag("a custom level: a DIAG message");

 logger.warn("the built-in WARN level");

 logger.error("the built-in ERROR level");

 logger.fatal("the built-in FATAL level");

 // ...

 }

 ...

}

1 7 C u s t o m L o g L e v e l s 191

© 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

17.1.7 Generating Extended Loggers

Use the following command to generate a logger wrapper that adds methods to the built-in ones:

java -cp log4j-core-${Log4jReleaseVersion}.jar org.apache.logging.log4j.core.tools.Generate$ExtendedLogger} \

 com.mycomp.ExtLogger DIAG=350 NOTICE=450 VERBOSE=550 > com/mycomp/ExtLogger.java

This will generate source code for a logger wrapper that has the convenience methods for the built-in
levels as well as the specified custom levels. The tool prints the generated source code to the console.
By appending " > filename" the output can be redirected to a file.

17.1.8 Generating Custom Loggers

Use the following command to generate a logger wrapper that hides the built-in levels and has only
custom levels:

java -cp log4j-core-${Log4jReleaseVersion}.jar org.apache.logging.log4j.core.tools.Generate$CustomLogger \

 com.mycomp.MyLogger DEFCON1=350 DEFCON2=450 DEFCON3=550 > com/mycomp/MyLogger.java

This will generate source code for a logger wrapper that only has convenience methods for the
specified custom levels, not for the built-in levels. The tool prints the generated source code to the
console. By appending " > filename" the output can be redirected to a file.

	Table of Contents
	Introduction
	Architecture
	Log4j 1.x Migration
	API
	Configuration
	Web Applications and JSPs
	Plugins
	Lookups
	Appenders
	Layouts
	Filters
	Async Loggers
	JMX
	Logging Separation
	Extending Log4j
	Extending Log4j Configuration
	Custom Log Levels

