The Apache Software Foundation
http://www.apache.org/ JESS—
._.--"'- : a.r

Apache Log4j 2
v. 2.0-betad
User's Guide

The Apache Software Foundation 2013-01-28

Table of Contents i

Table of Contents

Table of CoNtents i
INtrOdUCTION .o 1
ATCNIEEC UIE L 3
Log4j 1.X MIigrationoiei e 10
APl 16
Configuration

PIUGINS 40
LOOKUPS o 43
AP P N OIS e 46
LAY OULS .

OIS 20
TV X 104
Logging Separation ... 105
EXtending LOg4) ... 107

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

Table of Contents

©2013,

The Apache Software Foundation

ALL RIGHTS RESERVED.

1 Introduction 1

Ihtroduction

1.1 Welcome to Log4j 2!

1.1.1 Introduction

Almost every large application includes its own logging or tracing API. In conformance with thisrule,
the E.U. SEMPER project decided to write its own tracing API. Thiswasin early 1996. After countless
enhancements, several incarnations and much work that API has evolved to become logdj, a popular
logging package for Java. The package is distributed under the Apache Software License, afully-fledged
open source license certified by the open source initiative. The latest logdj version, including full-source
code, class files and documentation can be found at http://logging.apache.or g/log4j/2.0/index.html.

Inserting log statements into code is alow-tech method for debugging it. It may also be the only way
because debuggers are not always available or applicable. Thisis usually the case for multithreaded
applications and distributed applications at large.

Experience indicates that logging was an important component of the development cycle. It offeres
several advantages. It provides precise context about a run of the application. Once inserted into the
code, the generation of logging output requires no human intervention. Moreover, log output can be
saved in persistent medium to be studied at alater time. In addition to its use in the development cycle, a
sufficiently rich logging package can also be viewed as an auditing tool.

AsBrian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of Programming”:

As personal choice, we tend not to use debuggers beyond getting a stack trace or the value of avariable or
two. Onereason isthat it iseasy to get lost in details of complicated data structures and control flow; we
find stepping through a program less productive than thinking harder and adding output statements and
self-checking code at critical places. Clicking over statements takes longer than scanning the output of
judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to
the critical section of code, even assuming we know where that is. More important, debugging statements
stay with the program; debugging sessions are transient.

Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause scrolling
blindness. To alleviate these concerns, 10g4j is designed to bereliable, fast and extensible. Since logging
israrely the main focus of an application, the log4j API strives to be simple to understand and to use.

1.1.2 Log4j 2

Log4j 1.x has been widely adopted and used in many applications. However, through the years
development on it has slowed down. It has become more difficult to maintain due to its need to
be compliant with very old versions of Java. Its alternative, SLF4J/Logback made many needed
improvements to the framework. So why bother with Log4j 2? Here are afew of the reasons.

1. Logd4j 2 isdesigned to be usable as an audit logging framework. Both Log4j 1.x and L ogback
will lose events while reconfiguring. Log4j 2 will not. in Logback exceptions in Appenders are
never visible to the application. In Log4j 2 Appenders can be configured to alow the exception to
percolate to the application

2. Logdj 2 uses a Plugin system that makes it extremely easy to extend the framework by adding new
Appenders, Filters, Layouts, Lookups, and Pattern Converters without requiring any changes to
Logd4j.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://www.semper.org
http://www.opensource.org
http://logging.apache.org/log4j/2.0/index.html

1 Introduction 2

3. The performance of Log4j 2 issimilar to that of Logback. It is slightly slower in some tests and
faster in others.

4. Dueto the Plugin system configuration is simpler. Entries in the configuration do not require a class
name to be specified.

5. Support for Message objects. Messages allow support for interesting and complex constructs to be
passed through the logging system and be efficiently manipulated. Users are free to create their own
Message types and write custom Layouts, Filters and Lookups to manipulate them.

6. Logdj 1.x supports Filters on Appenders. Logback added TurboFiltersto allow filtering of events
before they are processed by aLogger. Logdj 2 supports Filters that can be configured to process
events before they are handled by a Logger, as they are processed by a Logger or on an Appender.

7. Many Logback Appenders do not accept a Layout and will only send dataiin afixed format. Most
Log4j 2 Appenders accept a Layout, allowing the data to be transported in any format desired.

8. Layoutsin Log4j 1.x and Logback return a String. This resulted in the problems discussed at
Logback Encoders. Log4j 2 takes the simpler approach that Layouts always return abyte array. This
has the advantage that it means they can be used in virtualy any Appender, not just the ones that
write to an OutputStream.

9. The Syslog Appender supports both TCP and UDP as well as support for the BSD syslog and the
RFC 5424 formats.

10L og4j 2 takes advantage of Java 5 concurrency support and performslocking at the lowest level
possible. Log4j 1.x has known deadlock issues. Many of these are fixed in Logback but many
Logback classes still require synchronization at afairly high level.

111t is an Apache Software Foundation project following the community and support model used by

al ASF projects. If you want to contribute or gain the right to commit changes just follow the path
outlined at Contributing

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logback.qos.ch/manual/encoders.html
http://logback.qos.ch/manual/encoders.html
http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424
http://jakarta.apache.org/site/contributing.html

2 Architecture 3

Architecture

2.1 Architecture

2.1.1 Main Components
Logd4j uses the classes shown in the diagram below.

class Logdj Classes /J

LoggerContext y 1 Configuration 1 o Filter
>
[
1
1
1 1
Str Substitutor StrLoockup
1 1 1
o.* Pt 0.
Logger LoggerConfig % Appender == Laycut
- name: Sting|g - "T - name: Sting 0. 0.=|- name: Sting|1 01
- parent: LoggerConfig

I e

Filter Filter

Applications using the Log4j 2 API will request a Logger with a specific name from the LogManager.
The LogManager will locate the appropriate L oggerContext and then obtain the Logger from it. If the
Logger must be created it will be associated with the LoggerConfig that contains either a) the same
name as the Logger, b) the name of a parent package, or c) the root L oggerConfig. LoggerConfig objects
are created from Logger declarations in the configuration. The LoggerConfig is associated with the
Appenders that actually deliver the LogEvents.

2.1.1.1 Logger Hierarchy

The first and foremost advantage of any logging APl over plain Syst em out . pri nt| n residesinits
ability to disable certain log statements while allowing others to print unhindered. This capability assumes
that the logging space, that is, the space of all possible logging statements, is categorized according to
some developer-chosen criteria.

In Log4j 1.x the Logger Hierarchy was maintained through arelationship between Loggers. In Log4j
2 this relationship no longers exists. Instead, the hierarchy is maintained in the relationship between
LoggerConfig objects.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 4

Loggers and LoggerConfigs are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule:

Named Hierar chy

A LoggerConfig is said to be an ancestor of another LoggerConfig if its name followed by a
dot is a prefix of the descendant logger name. A LoggerConfig is said to be a parent of a child
LoggerConfig if there are no ancestors between itself and the descendant L oggerConfig.

For example, the LoggerConfig named " com f 00" isa parent of the LoggerConfig named
"com f 0o. Bar". Similarly, "j ava" isaparent of "j ava. uti| " and an ancestor of
"java. util.Vector". Thisnaming scheme should be familiar to most devel opers.

Theroot LoggerConfig resides at the top of the LoggerConfig hierarchy. It is exceptional in that it ways
existsand it is part of every hierarchy. A Logger that is directly linked to the root LoggerConfig can be
obtained as follows:

Logger | ogger = LogManager. get Logger (LogManager. ROOT_LOGGER _NAME) ;

All other Loggers can be retrieved using the LogManager.getLogger static method and passing the
name of the desired Logger. Further informaiton on the Logging API can befound at Log4j 2 API.

2.1.1.2 LoggerContext

The LoggerContext acts as the anchor point for the Logging system. However, it is possible to have
multiple active LoggerContexts in an application depending on the circumstances. More details on the
LoggerContext are at Log Separation.

2.1.1.3 Configuration

Every LoggerContext has an active Configuration. The Configuration contains all the Appenders,
context-wide Filtes, LoggerConfigs and contains the reference to the StrSubstitutor. During
reconfiguration two Configuration objects will exist. Once all Loggers have been redirected to the new
Configuration, the old Configuration will be stopped and discarded.

2.1.1.4 Logger

As stated previoudly, Loggers are created by calling LogManager.getL ogger. The Logger itself performs
no direct actions. It smply has a name and is associated with a LoggerConfig. It extends AbstractlL ogger
and implements the required methods. As the configuration is modified L oggers may become associated
with adifferent LoggerConfig, thus causing their behavior to be modified.

2.Retrieving Loggers

Cadling the get Logger method with the same name will always return areference to the exact same
Logger object.

For example, in

Logger x = Logger. get Logger ("wonbat");
Logger y = Logger. get Logger ("wonbat");

x and y refer to exactly the same Logger object.

Configuration of the log4j environment is typically done at application initialization. The preferred way is
by reading a configuration file. Thisisdiscussed in Configuration.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 5

Log4j makes it easy to name Loggers by software component. This can be accomplished by instantiating
aLogger in each class, with the logger name equal to the fully qualified name of the class. Thisisa
useful and straightforward method of defining loggers. As the log output bears the name of the generating
Logger, this naming strategy makes it easy to identify the origin of alog message. However, thisis only
one possible, albeit common, strategy for naming loggers. Log4j does not restrict the possible set of
loggers. The developer is free to name the loggers as desired.

Nevertheless, naming loggers after the class where they are located seems to be the best strategy known
so far.

2.1.1.5 LoggerConfig

LoggerConfig objects are created when Loggers are declared in the logging configuration. The
LoggerConfig contains a set of Filters that must allow the LogEvent to pass before it will be passed to any
Appenders. It contains references to the set of Appenders that should be used to process the event.

2.Log Levels

LoggerConfigswill be assigned aLog Level. The set of possible levelsincludes (TRACE, DEBUG,
INFO, WARN, ERROR and FATAL). Notethat in Log4j 2, the Level is an Enum and cannot be sub-
classed. Users who desire more granularity are encouraged to use Markers instead.

Log4j 1.x and Logback both have the concept of "Level Inheritance”. In Logdj 2, Loggers and
LoggerConfigs are two different objects so this concept is implemented differently. Each Logger
references the appropriate LoggerConfig which in turn can reference its parent, thus achieving the same
effect.

Below are five tables with various assigned level values and the resulting levels that will be associated
with each Logger. Note that in all these casesif the root LoggerConfig is not configured a default Level
will be assigned to it.

root root DEBUG

X root DEBUG

XY root DEBUG

X.Y.Z root DEBUG
Example 1

In example 1 above, only the root logger is configured and hasaLog Level. All the other Loggers
reference the root LoggerConfig and use its Level.

root root DEBUG
X X ERROR
XY XY INFO
XY.Z XY.Z WARN

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch/manual/architecture.html#effectiveLevel

2 Architecture 6

Example 2
In example 2, all loggers have a configured LoggerConfig and obtain their Level fromiit.

root root DEBUG

X X ERROR

X.Y X ERROR

X.Y.Z X.Y.Z WARN
Example 3

In example 3, the loggersr oot , X and X. Y. Z each have a configured L oggerConfig with the same
name. The Logger X. Y does not have a configured L oggerConfig with a matching name so uses the
configuration of LoggerConfig X since that is the LoggerConfig whose name has the longest match to the

start of the Logger's name.

root root DEBUG

X X ERROR

X.Y X ERROR

X.Y.Z X ERROR
Example 4

In example 4, the loggersr oot and X each have a Configured L oggerConfig with the same name.
Theloggers X. Y and X. Y. Z do not have configured LoggerConfigs and so get their Level from the
L oggerConfig assigned to them, X, since it is the LoggerCofnig whose name has the longest match to the

start of the Logger's name.

root root DEBUG

X X ERROR

XY XY INFO

X.YZ X ERROR
Example 5

In example 5, the loggersr oot . X, and X. Y each have a Configured LoggerConfig with the same name.
The logger X. YZ does not have configured LoggerConfig and so getsits Level from the LoggerConfig
assigned to it, X, since it is the LoggerCofnig whose name has the longest match to the start of the
Logger's name. It is not associated with LoggerConfig X. Y since tokens after periods must match exactly.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture 7

The table below provides illustrates how Level filtering works. Im the table, the vertical header shows
the Level of the LogEvent, while the horizontal header shows the Level associated with the appopriate
LoggerConfig. The intersection identifies whether the LogEvent would be allowed to pass for further
processing (Y es) or discarded (NO).

NO NO NO NO NO NO
YES NO NO NO NO NO
YES YES NO NO NO NO
YES YES YES NO NO NO
YES YES YES YES NO NO
YES YES YES YES YES NO
YES YES YES YES YES YES
YES YES YES YES YES YES

2.1.1.6 Filter

In addition to the automatic log Level filtering that takes place as described in the previous section, Log4j
provides Filtersthat can be applied before control is passed to any LoggerConfig, after control is passed
to a LoggerConfig but before calling any Appenders, after control is passed to a LoggerConfig but before
calling a specific Appender, and on each Appender. In a manner very similar to firewall filters, each
Filter can return one of three results, Accept, Deny or Neutral. A response of Accept means that no other
Filters should be called and the event should progress. A response of Deny means the event should be
immediately ignored and control should be returned to the caller. A response of Neutral indicates the
event should be passed to other Filters. If there are no other Fitlers the event will be processed.

Although an event may be accepted by a Filter the event still might not be logged. This can happen when
the event is accepted by the pre-LoggerConfig Filter but isthen denied by a LoggerConfig filter or is
denied by all Appenders.

2.1.1.7 Appender

The ability to selectively enable or disable logging requests based on their logger is only part of the
picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output
destination is called an Appender. Currently, appenders exist for the console, files, remote socket servers,
Apache Flume, IMS, and remote UNIX Syslog daemons. More than one Appender can be attached to a
Logger.

An Appender can be added to aLogger by calling the addL oggerAppender method of the current
Configuration. If a LoggerConfig matching the name of the Logger does not exist, one will be created,
the Appender will be attached to it and then all Loggers will be notified to update their LoggerConfig
references.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

2 Architecture

Each enabled logging request for a given logger will be forwarded to all the appendersin that

L ogger's L ogger Config as well asthe Appender s of the L ogger Config's par ents. In other words,
Appenders are inherited additively from the LoggerConfig hierarchy. For example, if a console appender
is added to the root logger, then all enabled logging requests will at least print on the console. If in
addition afile appender is added to a LoggerConfig, say C, then enabled logging requests for C and
C'schildren will print in afile and on the console. It is possible to override this default behavior so

that Appender accumulation is no longer additive by setting addi ti vi t y="f al se" on the Logger

declaration in the configuration file.
The rules governing appender additivity are summarized below.

Appender Additivity

The output of alog statement of Logger L will go to all the Appendersin the LoggerConfig
associated with L and the ancestors of that LoggerConfig. Thisisthe meaning of the term
"appender additivity".

However, if an ancestor of the LoggerConfig associated with Logger L, say P, has the additivity
flag settof al se, then L's output will be directed to all the appendersin L's LoggerConfig and
it's ancestors up to and including P but not the Appenders in any of the ancestors of P.

Loggers have their additivity flag set to t r ue by default.
The table below shows an example:

root

Xy

X.y.Z

security

security.access

©2013, The Apache Software Foundation

Al

A-x1, A-x2

none

A-xyz1l

A-sec

none

not applicable

true

true

true

false

true

Al, A-x1, A-x2

Al, A-x1, A-x2

Al, A-x1, A-x2, A-

xyz1

A-sec

A-sec

ALL RIGHTS RESERVED.

The root logger
has no parent so
additivity does not
apply to it.

Appenders of "x" and
root.

Appenders of "x" and
root. It would not be
typical to configure

a Logger with no
Appenders.

Appenders in "x.y.z",
"X" and root.

No appender
accumulation since
the additivity flag is
settof al se.

Only appenders of
"security" because
the additivity flag in
"security" is set to
fal se.

2 Architecture 9

2.1.1.8 Layout

More often than not, users wish to customize not only the output destination but also the output

format. Thisis accomplished by associating a Layout with an Appender. The Layout is responsible for
formatting the LogEvent according to the user's wishes, whereas an appender takes care of sending the
formatted output to its destination. The PatternLayout, part of the standard log4j distribution, lets the user
specify the output format according to conversion patterns similar to the C language pr i nt f function.

For example, the PatternLayout with the conversion pattern "%r [%t] %-5p %c - %om%n" will output
something akin to:

176 [main] INFO org.foo.Bar - Located nearest gas station.

Thefirst field is the number of milliseconds elapsed since the start of the program. The second field is
the thread making the log request. The third field isthe level of the log statement. The fourth field isthe
name of the logger associated with the log request. The text after the '-' is the message of the statement.

Just as importantly, log4j will render the content of the log message according to user specified criteria.
For example, if you frequently need to log Or anges, an object type used in your current project, then you
can create an OrangeM essage that accepts an Orange instance and pass that to Log4J so that the Orange
object can be formatted into an appropriate byte array when required.

2.1.1.9 StrSubstitutor and StrLookup

The StrSubstitutor classand StrLookup interface were borrowed from Apache Commons Lang and
then modified to support evaluating LogEvents. In addition the Interpolator class was borrowed from
Apache Commons Configuration to allow the StrSubstitutor to evaluate variables that from multiple
StrLookups. It too was modified to support evaluating LogEvents. Together these provide a mechanism
to allow the configuration to reference variables coming from System Properties, the configuration file,
the ThreadContext Map, StructuredData in the LogEvent. The variables can either be resolved when the
configuration is processed or as each event is processed, if the component is capable of handling it. See
Lookups for more information.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration 10

Bog4j 1.x Migration

3.1 Migration from Log4j 1.x

3.1.1 The Log4j 1.x bridge

Perhaps the simplest way to convert to using Log4j 2 isto replace thelogdj 1.x jar file with Log4j 2's
logdj-1.2-api jar. However, to use this successfully applications must meet the following requirements:

1. They must not access methods and classes internal to the Log4j 1.x implementation such as
Appenders, LoggerRepository or Logger's call Appenders method.

2. They must not programmatically configure Log4j.
3. They must not be configuring by calling DomConfigurator or the PropertiesConfigurator.

3.1.2 Converting to the Log4j 2 API

For the most part, converting from the Log4j 1.x APl to Log4j 2.0 should be fairly simple. Many of the
log statements will require no modification. However, where necessary the following changes must be
made.

1. Callsto Logger.getLogger must be modified to LogManager.getL ogger.

2. Callsto Logger.getRootL ogger or LogManager.getRootL ogger must be replaced woth
LogManager.getL ogger("").

3. Callsto LogManager.getL ogger that accept a L oggerFactory must remove the LoggerFactory and
use one of Logdj 2's other extension mechanisms.

4. Callsto logger.setLevel or similar methods are not supported in the API. Applications should
remove these. Equivalent functionality is provided in the Log4j 2 implementation classes but may
leave the application susceptible to changesin Log4j 2 internals.

5. The Log4j 2 API methods accept String messages instead of Objects. Applications that wish to
log Objects should either wrap the Object in an ObjectM essage or create a custom Message for the
Object.

6. Where appropriate, applications should convert to use parameterized messages instead of String
concatenation.

3.1.3 Configuration

Although the Log4j 2 configuration syntax is different than that of Log4j 1.x, most, if not all, of the same
functionality is available. Below are the example configurations for Logdj 1.x and their counterpartsin
Log4j 2.

3.1.3.1 Sample 1 - Simple configuration using a Console Appender
Log4j 1.x XML configuration

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j:configuration xmns:log4j="http://jakarta.apache.org/log4j/"'>
<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<cat egory nane="org. apache.l og4j.xm ">
<priority value="info" />
</ cat egory>
<r oot >
<priority value ="debug" />
<appender-ref ref="STDOUT" />
</ root >
</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi guration>
<appender s>
<Consol e nane="STDOUT" t arget="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="org. apache.l og4j.xm" level ="info"/>
<root |evel ="debug">
<appender -ref ref="STDOUT"/ >
</ r oot >
</l ogger s>
</ confi guration>

3.1.3.2 Sample 2 - Simple configuration using a File Appender
Log4j 1.x XML configuration

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

11

3 Log4j 1.x Migration 12

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j:configuration xmns:|og4j="http://jakarta.apache.org/log4j/">
<appender nane="Al" cl ass="org. apache. | 0g4j. Fi | eAppender">
<param nane="Fi | e" val ue="Al.log" />
<par am nanme="Append" val ue="fal se" />
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p %{2} - %?m"/>
</l ayout >
</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j. Consol eAppender" >
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<cat egory nane="org. apache.l og4j.xm ">
<priority val ue="debug" />
<appender-ref ref="A1" />
</ cat egory>
<r oot >
<priority value ="debug" />
<appender -ref ref="STDOUT" />
</ root >
</l og4j : configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi guration>
<appender s>
<Fil e name="Al" fil eName="Al.|o0g" append="fal se">
<PatternLayout pattern="% %5p %{2} - %m"/>
</File>
<Consol e nane="STDOUT" t arget="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="org. apache.l og4j.xm" |evel ="debug">
<appender-ref ref="A1"/>
</l ogger >
<root |evel ="debug">
<appender -ref ref="STDOUT"/ >
</ r oot >
</l ogger s>
</ confi guration>

3.1.3.3 Sample 3 - SocketAppender

Log4j 1.x XML configuration. This example from Log4j 1.x is misleading. The SocketA ppender does not
actually use a Layout. Configuring one will have no effect.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration 13

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j:configuration xmns:|og4j="http://jakarta.apache.org/log4j/">
<appender nane="Al" cl ass="org. apache. | og4j . net. Socket Appender" >
<par am nane="Renot eHost" val ue="1ocal host"/>
<param nanme="Port" val ue="5000"/>
<param nane="Locati onl nfo" val ue="true"/>
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p %{2} - %?m"/>
</l ayout >
</ appender >
<appender nane="STDOUT" cl ass="org. apache. | og4j . Consol eAppender" >
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<cat egory nane="org. apache.l og4j.xm ">
<priority val ue="debug"/>
<appender-ref ref="Al1"/>
</ cat egory>
<r oot >
<priority val ue="debug"/>
<appender -ref ref="STDOUT"/ >
</ root >
</l og4j: configuration>

Log4j 2 XML configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi guration>
<appender s>
<Socket nane="Al" host="I|ocal Host" port="5000">
<Seri al i zedLayout />
</ Socket >
<Consol e nane="STDOUT" t arget="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="org. apache.l og4j.xm" |evel ="debug">
<appender-ref ref="A1"/>
</l ogger >
<root |evel ="debug">
<appender -ref ref="STDOUT"/ >
</ r oot >
</l ogger s>
</ confi guration>

3.1.3.4 Sample 4 - AsynchAppender
Log4j 1.x XML configuration using the AsynchA ppender.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j: configuration xmns:|og4j="http://jakarta.apache.org/log4j/" configDebug="true">
<appender nane="ASYNC' cl ass="org. apache. | og4j. AsyncAppender" >
<appender-ref ref="TEMP"/>
</ appender >
<appender nane="TEMP" cl ass="org. apache. | og4j.Fi | eAppender">
<param nane="Fi | e" val ue="tenp"/>
<l ayout cl ass="org.apache.|og4j.PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/>
</ root >
</l og4j : configuration>

Log4j 2 XML configuration.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="debug">
<appender s>
<Fil e name="TEMP" fileNane="tenp">
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</File>
<Asynch nane="ASYNC'>
<appender-ref ref="TEMP"/>
</ Asynch>
</ appender s>
<l ogger s>
<root |evel ="debug">
<appender -ref ref="ASYNC'/>
</ r oot >
</l ogger s>
</ confi guration>

3.1.3.5 Sample 5 - AsynchAppender with Console and File
Log4j 1.x XML configuration using the AsynchA ppender.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

3 Log4j 1.x Migration 15

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE | og4j : configurati on PUBLIC "-//APACHE/ / DTD LO&4J 1.2//EN' "l og4j.dtd">
<l og4j: configuration xmns:|og4j="http://jakarta.apache.org/log4j/" configDebug="true">
<appender nane="ASYNC' cl ass="org. apache. | og4j. AsyncAppender" >
<appender-ref ref="TEMP"/>
<appender -ref ref="CONSOLE"/ >
</ appender >
<appender nane="CONSOLE" cl ass="org. apache. | og4j. Consol eAppender" >
<l ayout cl ass="org.apache.|og4j.PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<appender nane="TEMP" cl ass="org. apache. | o0g4j.Fil eAppender">
<param nane="Fi | e" val ue="tenp"/>
<l ayout cl ass="org.apache.|og4j. PatternLayout">
<par am nanme="Conversi onPattern" value="% %5p [%] %2} (%: %) - %?m"/>
</l ayout >
</ appender >
<r oot >
<priority val ue="debug"/>
<appender-ref ref="ASYNC'/ >
</ root >
</l og4j : configuration>

Log4j 2 XML configuration. Note that the Asynch Appender should be configured after the appenders it
references. Thiswill allow it to shutdown properly.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="debug">
<appender s>
<Consol e nane="CONSOLE" target="SYSTEM OUT" >
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</ Consol e>
<Fil e name="TEMP" fileNane="tenp">
<PatternLayout pattern="9%d %5p [%] %2} (%:%A) - %dm"/>
</File>
<Asynch nane="ASYNC'>
<appender-ref ref="TEMP"/>
<appender -ref ref="CONSOLE"/ >
</ Asynch>
</ appender s>
<l ogger s>
<root |evel ="debug">
<appender -ref ref="ASYNC'/>
</ r oot >
</l ogger s>
</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 16

4.1 Log4j 2 AP

4.1.1 Overview

The Log4Jj 2 API provides the interface that applications should code to and provides the adapter
components required for implementers to create alogging implementation. Although Log4j 2 is broken
up between an API and an implementation, the primary purpose of doing so was not to allow multiple
implementations, although that is certainly possible, but to clearly define what classes and methods are
safeto usein "normal" application code.

4.1.1.1 Hello World!

No introduction would be compl ete without the customary Hello, World example. Hereisours. First, a
Logger with the name "HelloWorld" is obtained from the LogManager. Next, the logger is used to write
the "Hello, World!" message, however the message will be written only if the Logger is configured to
allow informational messages.

i mport org. apache. | oggi ng. | og4j . LogManager ;
i mport org.apache. | oggi ng. | og4j . Logger;

public class Hellowrld {

private static Logger |ogger = LogManager.get Logger ("Hel | oWorld");

public static void main(String[] args) {

| ogger.info("Hello, World!");

}
}
The output from the call to logger.info() will vary significantly depending on the configuration used. See
the Configuration section for more details.

4.1.1.2 Substituting Parameters

Frequently the purpose of logging isto provide information about what is happening in the system,
which requires including information about the objects being manipulated. In Log4j 1.x this could be
accomplished by doing:
if (logger.isDebugEnabl ed()) {

| ogger. debug("Logging in user " + user.getNane() + " with birthday " + user.getBirthdayCal endar());
}
Doing this repeatedly has the effect of making the code feel like it is more about logging than the
actual task at hand. In addition, it resultsin the logging level being checked twice; once on the call to
isDebugEnabled and once on the debug method. A better alternative would be:

| ogger . debug("Logging in user {} with birthday {}", user.getNane(), user.getBirthdayCal endar());

With the code above the logging level will only be checked once and the String construction will only
occur when debug logging is enabled.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

4 API 17

4.1.1.3 Formatting Parameters

Substituting parameters leaves formatting up to you if t oSt ri ng() isnot what you want. To facilitate
formatting, you can use the same format strings as Java's Formatter. For example:

public static Logger |ogger = LogManager. get FormatterLogger (" Foo");

| ogger . debug("Logging in user % wth birthday %", user.getNane(), user.getBirthdayCal endar());

| ogger . debug("Loggi ng in user %$s with birthday %2%tm %2$te, %2$tY', user.getName(), user.getBirthdayCal endar());
| ogger . debug(" | nteger. MAX_VALUE = %d", |nteger. MVAX_VALUE);

| ogger . debug("Long. MAX_VALUE = %d", Long. MVAX_VALUE);

To use aformatter Logger, you must call one of the LogManager getFormatterL ogger method. The
output for this example shows that Calendar toString() is verbose compared to custom formatting:

2012-12-12 11:56: 19,633 [nmain] DEBUG User John Smith with birthday java.util.GegorianCal endar[ti nme=?, areFi el ds¢
2012-12-12 11:56: 19,643 [nain] DEBUG User John Smith with birthday 05 23, 1995

2012-12-12 11:56: 19, 643 [main] DEBUG | nteger. MAX VALUE = 2, 147, 483, 647

2012-12-12 11:56: 19, 643 [mai n] DEBUG Long. MAX VALUE = 9, 223, 372, 036, 854, 775, 807

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Formatter.html#syntax

5 Configuration 18

Eonfiguration

5.1 Configuration

Inserting log requests into the application code requires afair amount of planning and effort. Observation
shows that approximately 4 percent of code is dedicated to logging. Consequently, even moderately sized
applications will have thousands of 1ogging statements embedded within their code. Given their number,
it becomes imperative to manage these log statements without the need to modify them manually.

Configuration of Log4j 2 can be accomplished in 1 of 4 ways.

1. Through a configuration file written in XML or JSON.
2. Programmatically, by creating a ConfigurationFactory and Configuration implementation.

3. Programmatically, by calling the APIs exposed in the Configuration interface to add components to
the default configuration.

4, Programmatically, by calling methods on the internal Logger class.

This page focuses primarily on configuring Log4j through a configuration file. Information on
programmatically configuring Log4j can be found at Extending Log4j 2.

Note that unlike Logd4j 1.x, the public Log4j 2 API does not expose methods to add, modify or remove
appenders and filters or manipulate the configuration in any way.

5.1.1 Automatic Configuration

Logd4j has the ability to automatically configure itself during initialization. When Log4j starts it will
locate al the ConfigurationFactory plugins and arrange then in weighted order from highest to lowest. As
delivered, Logd4j contains two ConfigurationFactory implementations, one for JSON and one for XML.

1. Logd4j will inspect the "logdj.configurationFil€" system property and, if set, will attempt to load the
configuration using the Conf i gur at i onFact or y that matches the file extension.

2. If no system property is set the JSON ConfigurationFactory will ook for log4j2-test.json or logdj 2-
test.jsn in the classpath.

. If no such fileis found the XML ConfigurationFactory will look for log4j2-test.xml in the classpath.

4. If atest file cannot be located the JSON ConfigurationFactory will ook for log4j2.json or log4j2.jsn
on the classpath.

5. If aJSON file cannot be located the XML ConfigurationFactory will try to locate log4j2.xml on the
classpath.

6. If no configuration file could be located the Def aul t Conf i gur at i on will be used. Thiswill cause
logging output to go to the console.

An example application named My App that uses log4j can be used to illustrate how thisis done.

w

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 19

i mport com foo. Bar;

/1 lnmport |og4j classes.
i mport org.apache. | oggi ng. | o0g4j. Logger;

public class MyApp {

/1 Define a static |ogger variable so that it references the
/1 Logger instance nanmed "M/App".
Logger | ogger = LogManager. get Logger (M/App. cl ass. get Nane());

public static void main(String[] args) {
/1 Set up a sinple configuration that |ogs on the console.

| ogger.trace("Entering application.");
Bar bar = new Bar();
if (!bar.dolt() {
logger.error("Didn't do it.");
}
| ogger.trace("Exiting application."); }
}

My App begins by importing log4j related classes. It then defines a static logger variable with the name
My App which happens to be the fully qualified name of the class.

My App usesthe Bar class defined in the package com f oo.

package com foo;
i mport org.apache. | oggi ng. | og4j . Logger;

public class Bar {
static Logger |ogger = LogManager. getLogger (Bar.cl ass. getNane());

public bool ean dolt() {
| ogger.entry();
logger.error("Did it again!");
return | ogger.exit(false);
}
}

If no configuration files are present logback will default to the DefaultConfiguration which will set
up aminimal logging environment consisting of a ConsoleAppender attached to the root logger. The
output will be formatted using a PatternL ayout set to the pattern "%d{ HH:mm:ss.SSS} [%t] %-5level
%logger{ 36} - Y%omsg%n".

Note that by default, the root logger is assigned to Level . ERROR.
The output of MyApp would be similar to:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 20

17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13:01.540 [main] ERROR MyApp - Didn't do it.

Aswas described previously, Log4j will first attempt to configure itself from configuration files. A
configuration equivalent to the default would look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="OFF">
<appender s>
<Consol e nane="Consol e" target="SYSTEM QUT" >
<Patt ernLayout pattern="%{HH nm ss.SSS} [%] %5l evel % ogger{36} - %sg%"/>
</ Consol e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="Console"/>
</ root >
</l ogger s>
</ confi guration>
Oncethefile aboveis placed into the classpath as log4j2.xml you will get resultsidentical to those listed
above. Changing theroot level to trace will result in results similar to:

17:13: 01. 540 [main] TRACE MyApp - Entering application.
17:13: 01.540 [main] TRACE com foo.Bar - entry
17:13:01.540 [main] ERROR comfoo.Bar - Did it again!
17:13: 01. 540 [main] TRACE comfoo.Bar - exit with (false)
17:13:01.540 [main] ERROR MyApp - Didn't do it.

17:13: 01. 540 [main] TRACE MyApp - Exiting application.

Note that status logging is disabled when the default configuration is used.

Perhapsit isdesired to eliminate all the TRACE output from everything except com f oo. Bar . Simply
changing the log level would not accomplish the task. Instead, the solution is to add a new logger
definition to the configuration:

<l ogger nane="com foo. Bar" |evel =" TRACE"/ >
<root |evel ="ERROR"'>

<appender-ref ref="STDOUT" >
</ root >

With this configuration all log events from com f oo. Bar will be recorded while only error events will
be recorded from all other components.

5.1.2 Additivity

In the previous example al the events from com f oo. Bar were still written to the Console. Thisis
because the logger for com f oo. Bar did not have any appenders configured while its parent did. In fact,
the following configuration

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 21

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="OFF">
<appender s>
<Consol e nane="Consol e" target="SYSTEM QUT" >
<Patt ernLayout pattern="%l{HH nm ss.SSS} [%] %5l evel % ogger{36} - %sg%"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="com foo.Bar" |evel ="trace">
<appender-ref ref="Console"/>
</ | ogger >
<root |level="error">
<appender-ref ref="Console"/>
</ root >
</l ogger s>
</ confi guration>

would result in

17:13:01.540 [main] TRACE com foo.Bar - entry
17:13:01.540 [main] TRACE com foo.Bar - entry
17:13:01.540 [rmain] ERROR comfoo.Bar - Did it again!
17:13:01.540 [main] TRACE com foo.Bar - exit (false)
17:13:01.540 [main] TRACE com foo.Bar - exit (false)
17:13:01.540 [main] ERROR MyApp - Didn't do it.

Notice that the trace messages from com f oo. Bar appear twice. Thisis because the appender associated
with logger com f oo. Bar isfirst used, which writes the first instance to the Console. Next, the parent

of com f 0o. Bar, which in this caseis the root logger, is referenced. The event is then passed to

its appender, which is also writes to the Console, resulting in the second instance. Thisis known as
additivity. While additivity can be quite a convenient feature (as in the first previous example where no
appender reference needed to be configured), in many cases this behavior is considered undesirable and
soitispossible to disable it by setting the additivity attribute on the logger to false:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="OFF">
<appender s>
<Consol e nane="Consol e" target="SYSTEM QUT" >
<Patt ernLayout pattern="%l{HH nm ss.SSS} [%] %5l evel % ogger{36} - %sg%"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="com foo.Bar" |evel ="trace" additivity="fal se">
<appender-ref ref="Console"/>
</ | ogger >
<root |level="error">
<appender-ref ref="Console"/>
</ root >
</l ogger s>
</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 22

Once an event reaches alogger with its additivity set to false the event will not be passed to any of its
parent loggers, regardless of their additivity setting.

5.1.3 Automatic Reconfiguration

When configured from a File, Log4j has the ability to automatically detect changes to the configuration
file and reconfigure itself. If the monitorinterval attribute is specified on the configuration element and is
set to a non-zero value then the file will be checked the next time alog event is evaluated and/or logged
and the monitorinterval has elapsed since the last check. The example below shows how to configure

the attribute so that the configuration file will be checked for changes only after at least 30 seconds have
elapsed. The minimum interval is5 seconds.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration nonitorlnterval ="30">

</ configuration>

5.1.4 Configuration Syntax

As the previous examples have shown as well as those to follow, Log4j alows you to easily redefine
logging behavior without needing to modify your application. It is possible to disable logging for certain
parts of the application, log only when specific criteria are met such as the action being performed

for a specific user, route output to Flume or alog reporting system, etc. Being able to do this requires
understanding the syntax of the configuration files.

5.1.4.1 Configuration with XML
The configuration element in the XML file accetps several attributes:

dest Either "err", which will send output to stderr, or a file path
or URL.

monitorinterval The minimum amount of time, in seconds, that must
elapse before the file configuration is checked for
changes.

name The name of the configuration.

packages A comma separated list of package names to search for

plugins. Plugins are only loaded once per classloader
so changing this value may not have any effect upon
reconfiguration.

schema Identifies the location for the classloader to located
the XML Schema to use to validate the configuration.
Only valid when strict is set to true. If not set no schema
validation will take place.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 23

status The level of internal Log4j events that should be logged
to the console.
strict Enables the use of the strict XML format. Not supported

in JSON configurations.

verbose Enables diagnostic information while loading plugins.

Log4j can be configured using two XML flavors; concise and strict. The concise format makes
configuration very easy as the element names match the components they represent however it cannot be
validated with an XML schema. For example, the ConsoleA ppender is configured by declaring an XML
element named Console under its parent appenders el ement. However, element and attribute names are
are not case sensitive. In addition, attributes can either be specified as an XML attribute or asan XML
element that has no attributes and has atext value. So

<patternLayout pattern="%dn"/>
and

<Patt er nLayout >
<patter n>%Pm</ pattern>
</ Patt er nLayout >

are equivalent.

The file below represents the structure of an XML configuration, but note that the elementsin italics
bel ow represent the concise element names that would appear in their place.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 24

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration>
<properties>
<property nane="nanel">val ue</property>
<property nane="nane2" val ue="val ue2"/>
</ properties>
<
filter ... />
<appender s>
<

appender ... >
<
filter ... />
</
appender >

</ appender s>
<l ogger s>
<l ogger nane="nanel">
<

filter ... />
</ | ogger >
<root |evel="1evel ">
<appender-ref ref="name"/>
</ root >
</l ogger s>

</ confi guration>

See the many examples on this page for sample appender, filter and logger declarations.

5.Strict XML

In addition to the concise XML format above, Logd4j allows configurations to be specified in amore
"normal" XML manner that can be validated using an XML Schema. Thisis accomplished by replacing
the friendly element names above with their object type as shown below. For example, instead of the
ConsoleA ppender being configuerd using an element named Console it isinstead configured as an
appender element with a type attribute containing "Console".

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration>
<properties>

<property nane="nanel">val ue</property>

<property nane="nane2" val ue="val ue2"/>

</ properties>
<filter type="type" ... />
<appender s>
<appender type="type" nane="nane">
<filter type="type" ... />
</ appender >

</ appender s>

<l ogger s>
<l ogger nane="nanel">
<filter type="type" ... />
</ | ogger >
<root |evel ="level">
<appender-ref ref="name"/>
</ root >
</l ogger s>

</ confi guration>
Below is a sample configuration using the strict format.

©2013,

The Apache Software Foundation

« ALL RIGHTS RESERVED.

25

5 Configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="debug" strict="true" name="XM.ConfigTest"
packages="org. apache. | oggi ng. | og4j . test">
<properties>
<property nane="fil enane">target/test.| og</property>
</ properties>
<filter type="ThresholdFilter" |evel ="trace"/>

<appender s>
<appender type="Consol e" nanme="STDOUT" >
<l ayout type="PatternLayout" pattern="%n MDCYX%"/ >
<filters>
<filter type="MarkerFilter" marker="FLON onMatch="DENY" onM smat ch="NEUTRAL"/ >
<filter type="MarkerFilter" marker="EXCEPTI ON' onMat ch="DENY" onM smat ch="ACCEPT"/ >
</filters>
</ appender >
<appender type="Consol e" nanme="FLOW >
<l ayout type="PatternLayout" pattern="%{1}.%M %n %ex%"/ >
<filters>
<filter type="MarkerFilter" marker="FLON onMatch="ACCEPT" onM snat ch="NEUTRAL"/ >
<filter type="MarkerFilter" marker="EXCEPTI ON' oniMat ch="ACCEPT" onM snat ch="DENY"/>
</filters>
</ appender >
<appender type="File" nane="File" fileName="${fil ename}">
<l ayout type="PatternLayout">
<pattern>%d % %C{1.} [%] %P%</pattern>
</l ayout >
</ appender >
<appender type="List" name="List">
</ appender >
</ appender s>

<l ogger s>
<l ogger nane="org. apache. | oggi ng. 1 o0g4j.test1l" |evel ="debug" additivity="fal se">
<filter type="ThreadContextMapFilter">
<KeyVal uePair key="test" val ue="123"/>
</filter>
<appender-ref ref="STDOUT"/>
</ | ogger >>

<l ogger nane="org. apache. | oggi ng. |1 0g4j.test2" |evel ="debug" additivity="fal se">
<appender-ref ref="File"/>
</ | ogger >>

<root |level="trace">
<appender-ref ref="List"/>
</root >

</l ogger s>

</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

26

5 Configuration 27

5.1.4.2 Configuration with JSON

In addition to XML, Logd4j can be configured using JSON. The JSON format is very similar to the
concise XML format. Each key represents the name of a plugin and the key/value pairs associated with it
areits attributes. Where a key contains more than asimple value it itself will be a subordinate plugin. In
the example below, ThresholdFilter, Console, and PatternLayout are all plugins while the Console plugin
will be assigned avalue of STDOUT for its name attribute and the Threshol dFilter will be assigned a
level of debug.

{ "configuration": { "status": "error", "name": "RoutingTest",
"packages": "org.apache.logging.log4j.test",
"properties": {

"property": { "name": "fil enane",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
3
"Threshol dFilter": { "level": "debug" },

"appenders": {
"Consol e": { "name": "STDOUT",
"PatternLayout": { "pattern": "%mm" }

}

List": { "nane": "List",
"Threshol dFilter": { "level": "debug" }
}

"Routing": { "nane": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"Rol lingFile": {
"nane": "Rolling-${sd:type}", "fileNane": "${filenane}",
"filePattern": "target/rollingl/testl-${sd:type}.%.log.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] %Pa"},
" Si zeBasedTriggeringPolicy": { "size": "500" }

}
H
{ "appender-ref": "STDOUT", "key": "Audit"},
{ "appender-ref": "List", "key": "Service"}
]
}
}
H
"l oggers": {
"l ogger": { "nane": "EventLogger", "level": "info", "additivity": "false",
"appender-ref": { "ref": "Routing" }},
"root": { "level": "error", "appender-ref": { "ref": "STDOUT" }}
}

}
}

Note that in the RoutingAppender the Route element has been declared as an array. Thisisvalid because
each array element will be a Route component. Thiswon't work for elements such as appenders and

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration

28

filters, where each element has a different name in the concise format. Appenders and filters can be
defined as array elementsif each appender or filter declares an attribute named "type" that contains the

type of the appender. The following example illustrates this as well as how to declare multiple loggers as
an array.

{ "configuration": { "status": "debug", "name": "RoutingTest",
"packages": "org.apache.logging.log4j.test",
"properties": {
"property": { "name": "fil enane",
"value" : "target/rollingl/rollingtest-$${sd:type}.log" }
H
"ThresholdFilter": { "level": "debug" },
"appenders": {
"appender": [
{ "type": "Console", "name": "STDOUT", "PatternLayout": { "pattern": "%m®m" }},
{ "type": "List", "nane": "List", "ThresholdFilter": { "level": "debug" }},
{ "type": "Routing", "name": "Routing",
"Routes": { "pattern": "$${sd:type}",
"Route": [
{
"Rol lingFile": {
"nanme": "Rolling-${sd:type}", "fileNanme": "${fil enanme}",
"filePattern": "target/rollingl/testl-${sd:type}.% .| o0g.gz",
"PatternLayout": {"pattern": "% % %{1.} [%] Y%it@"},
" Si zeBasedTri ggeringPolicy": { "size": "500" }
}
H
{ "appender-ref": "STDOUT", "key": "Audit"},
{ "appender-ref": "List", "key": "Service"}
]
}
}
]
H
"l oggers": {
"l ogger": [
{ "name": "EventlLogger", "level": "info", "additivity": "fal se",
"appender-ref": { "ref": "Routing" }},
{ "name": "comfoo.bar", "level": "error", "additivity": "false",
"appender-ref": { "ref": "Console" }}
1.
"root": { "level": "error", "appender-ref": { "ref": "STDOUT" }}
}

}

The JSON support uses Jackson to parse the JSON files. These dependencies must be added to a project
that wants to use JSON for configuration:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 29

<dependency>
<gr oupl d>or g. codehaus. j ackson</ gr oupl d>
<artifactld>j ackson-core-asl </artifactld>
<version>1.9. 2</versi on>

</ dependency>

<dependency>
<gr oupl d>or g. codehaus. j ackson</ gr oupl d>
<artifactld>j ackson- mapper-asl </artifactld>
<version>1.9. 2</versi on>

</ dependency>

5.1.4.3 Configuring loggers

An understanding of how loggerswork in Logdj is critical before trying to configure them. Please
referencethe Log4j architecture if more information is required. Trying to configure Log4j without
understanding those concepts will lead to frustration.

A LoggerConfig is configured using the | ogger element. Thel ogger eleemnt must have a name
attribute specified, will usually have alevel attribute specified and may aso have an additivity attribute
specified. The level may be configured with one of TRACE, DEBUG, INFO, WARN, ERROR, ALL or
OFF. If no level is specified it will default to ERROR. The additivity attribute may be assigned a value of
true or false. If the attribute is omitted the default value of false will be used.

A LoggerConfig (including the root LoggerConfig) can be configured with properties that will be

added to the properties copied from the ThreadContextM ap. These properties can be referenced from
Appenders, Filters, Layouts, etc just asif they were part of the ThreadContext Map. The properties can
contain variables that will be resolved either when the configuration is parsed or dynamically when each
event islogged. See Property Substitution for more information on using variables.

The LoggerConfig may also be configured with one or more appender-ref elements. Each appender
referenced will become associated with the specified LoggerConfig. If multiple appenders are configured
on the LoggerConfig each of them be called when processing logging events.

Every configuration must have aroot logger. If oneis not configured the default root L oggerConfig,
which has alevel of ERROR but with no appenders attached, will be used. The main differences between
the root logger and other loggers are

1. Theroot logger does not have a name attribute.
2. The root logger does not support the additivity attribute since it has no parent.

5.1.4.4 Configuring Appenders

An appender is configured either using the specific appender plugin's name or with an appender element
and the type attibute containing the appender plugin's name. In addition each appender must have a name
attribute specified with avalue that is unique within the set of appenders. The name will be used by
loggers to reference the appender as described in the previous section.

Most appenders also support alayout to be configured (which again may be specified either using the
specific Layout plugin's name as the eleemnt or with "layout” as the element name aong with atype
attribute that contains the layout plugin's name. The various appenders will contain other attributes or
elements that are required for them to function properly.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 30

5.1.4.5 Configuring Filters
Logd4j allows afilter to be specified in any of 4 places:

1. At the same level asthe appenders, loggers and properties elements. These filters can accept or reject
events before they have been passed to a LoggerConfig.

2. In alogger element. These filters can accept or reject events for specific loggers.

3. In an appender element. These filters can prevent or cause eventsto be processed by the appender.

4. In an appender reference element. These filters are used to determine if a Logger should route the
event to an appender.

Although only asinglefi | t er element can be configured, that element may bethefil t er s element
which represents the CompositeFilter. Thefi | t er s element alows any number of fi | t er elements
to be configured within it. The following example shows how multiple filters can be configured on the
ConsoleA ppender.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 31

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="debug" name="XM.ConfigTest" packages="org.apache.logging.log4j.test">
<properties>
<property nane="fil enane">target/test.| og</property>
</ properties>
<Threshol dFilter |evel ="trace"/>

<appender s>
<Consol e nane="STDOUT" >
<Pat t er nLayout pattern="%n MDCYX%"/ >
</ Consol e>
<Consol e nane="FLOW >
<PatternLayout pattern="%{1}.%M %n %ex%"/ >
<filters>
<Marker Fi |l ter marker="FLOW onMatch="ACCEPT" onM snat ch="NEUTRAL"/ >
<Mar ker Fi | ter mar ker =" EXCEPTI ON' onMat ch="ACCEPT" onM snat ch="DENY"/ >
</filters>
</ Consol e>
<File name="File" fileNane="${filenane}">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %P%</pattern>
</ Patt ernLayout >
</File>
<Li st name="List">
</ Li st>
</ appender s>

<l ogger s>
<l ogger nane="org. apache. | oggi ng. 1 o0g4j.test1" |evel ="debug" additivity="fal se">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
<appender-ref ref="STDOUT"/>
</ | ogger >>

<l ogger nane="org. apache. | oggi ng. 1 o0g4j.test2" |evel ="debug" additivity="fal se">
<property nane="user">${sys: user. nane} </ property>
<appender-ref ref="File">
<Thr eadCont ext MapFi | t er >
<KeyVal uePair key="test" val ue="123"/>
</ Thr eadCont ext MapFi | t er >
</ appender -r ef >
<appender-ref ref="STDOUT" |evel ="error"/>
</ | ogger >>

<root |level="trace">
<appender-ref ref="List"/>
</root >

</l ogger s>

</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 32

5.1.5 Property Substitution

Log4j 2 supports the ability to specify tokens in the configuration as references to properties defined
elsewhere. Some of these properties will be resolved when the configuration file is interpreted while
others may be passed to components where they will be evaluated at runtime. To accomplish this, Log4j
uses variations of Apache Commons Lang's StrSubstitutor and StrLookup classes. In a manner similar to
Ant or Maven, this allows variables declared as ${ nane} to be resolved using properties declared in the
configuration itself. For example, the following example shows the filename for the rolling file appender
being declared as a property.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 33

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="debug" nanme="RoutingTest" packages="org. apache. | oggi ng.| og4j.test">
<properties>
<property nanme="fil enane">target/rollingl/rollingtest-$${sd:type}.|og</property>
</ properties>
<Threshol dFilter |evel ="debug"/>

<appender s>
<Consol e nane="STDOUT" >
<Pat t er nLayout pattern="%%n"/>
</ Consol e>
<Li st name="List">
<Threshol dFil ter |evel ="debug"/>
</ List>
<Rout i ng nane="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol I'i ngFi | e nane="Rol | i ng- ${sd: type}" fileNane="${fil enane}"
filePattern="target/rollingl/test1l-${sd:type}.% .l o0g.gz">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %P%</pattern>
</ Patt ernLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol l'i ngFi | e>
</ Rout e>
<Rout e appender -ref="STDOUT" key="Audit"/>
<Rout e appender-ref="List" key="Service"/>
</ Rout es>
</ Rout i ng>
</ appender s>

<l ogger s>
<l ogger nane="Event Logger" |evel ="info" additivity="fal se">
<appender-ref ref="Routing"/>
</ | ogger >

<root |level="error">
<appender-ref ref="STDOUT"/>
</ root >
</l ogger s>

</ confi guration>

While thisis useful, there are many more places properties can originate from. To accommodate this,
Log4j also supports the syntax ${ pr ef i x: name} where the prefix identifiestells Log4j that variable
name should be evaluated in a specific context. The contexts that are built in to Logj4 are:

ctx Thread Context Map (MDC)

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 34

date Inserts the current date and/or time using the specified
format

env System environment variables

map A value from a MapMessage

sd A value from a StructuredDataMessage. The key "id"

will return the name of the StructuredDatald without
the enterprise number. The key "type" will return the
message type. Other keys will retrieve individual
elements from the Map.

sys System properties

A default property map can be declared in the configuration file. If the value cannot be located in the
specified lookup the value in the default property map will be used. The default map is pre-popul ated
with avalue for "hostName" that is the current system's host name or ip address and the "contextName"
with isthe value of the current logging context.

Aninteresting feature of StrLookup processing is that when a variable reference is declared with multiple
leading '$' characters each time the variable is resolved the leading '$ is simply removed. In the previous
example the "Routes" element is capable of resolving the variable at runtime. To allow this the prefix
valueis specified as a variable with two leading '$' characters. When the configuration file isfirst
processed the first variable is simply removed. Thus, when the Routes element is evaluated at runtimeit is
the variable declaration "${ sd:type} " which causes the event to be inspected for a StructuredDataM essage
and if oneis present the value of its type attribute to be used as the routing key. Not all elements support
resolving variables at runtime. Components that do will specifically call that out in their documentation.

If no value isfound for the key in the Lookup associated with the prefix then the value associated with
the key in the properties declaration in the configuration file will be used. If no value is found the variable
declaration will be returned as the value. Default values may be declared in the configuration by doing:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<confi guration>
<properties>
<property nanme="type" >Audit </ property>
</ properties>

</ confi guration>
As a footnote, it is worth pointing out that the variables in the RollingFile appender declaration will also

not be evaluated when the configuration is processed. Thisis simply because the resolution of the whole
RollingFile element is deferred until a match occurs. See RoutingAppender for more information.

5.1.6 Status Messages

Just asit is desirable to be able to diagnose problems in applications, it is frequently necessary to be able
to diagnose problems in the logging configuration or in the configured components. Since logging has
not been configured, "normal" logging cannot be used during initialization. In addition, normal logging
within appenders could create infinite recursion which Log4j will detect and cause the recursive events to

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 35

be ignored. To accomodate this need, the Log4j 2 APl includesa Statusl ogger. Components declare an
instance of the Statusl ogger similar to:

protected final static Logger |ogger = StatusLogger.getlLogger();

Since StatuslL ogger implements the Log4j 2 API's Logger interface, all the normal Logger methods may
be used.

When configuring Log4j it is sometimes necessary to view the generated status events. This can be
accomplished by adding the status attribute to the configuration element. The following configuration has
the status attribute set to debug.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 36

<?xm version="1.0" encodi ng="UTF- 8" ?>;
<configuration status="debug" nane="RoutingTest"
packages="org. apache. | oggi ng. | og4j . test">
<properties>
<property nane="fil enane">target/rollingl/rollingtest-$${sd:type}.| og</property>
</ properties>
<Threshol dFilter |evel ="debug"/>

<appender s>
<Consol e nane="STDOUT" >
<Pat t er nLayout pattern="%%n"/>
</ Consol e>
<Li st name="List">
<Threshol dFil ter |evel ="debug"/>
</ List>
<Rout i ng nane="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol I'i ngFi | e nane="Rol | i ng- ${sd: type}" fileNane="${fil enane}"
filePattern="target/rollingl/test1l-${sd:type}.% .l o0g.gz">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %P%</pattern>
</ Patt ernLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol l'i ngFi | e>
</ Rout e>
<Rout e appender -ref="STDOUT" key="Audit"/>
<Rout e appender-ref="List" key="Service"/>
</ Rout es>
</ Routi ng>
</ appender s>

<l ogger s>
<l ogger nane="Event Logger" |evel ="info" additivity="fal se">
<appender-ref ref="Routing"/>
</ | ogger >

<root |level="error">
<appender-ref ref="STDOUT"/>
</ root >
</l ogger s>

</ confi guration>
During startup this configuration produces:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 37

2011-11-23 17:08: 00, 769 DEBUG Generated plugins in 0.003374000 seconds

2011-11-23 17:08: 00, 789 DEBUG Cal I i ng createProperty on class org. apache. | oggi ng. | og4j. core.
config.Property for elenent property with parans(name="fil enane",
value="target/rollingl/rollingtest-${sd:type}.log")

2011-11-23 17:08: 00, 792 DEBUG Cal | i ng configureSubstitutor on class org.apache. | oggi ng. | o0g4j.
core.config.plugins. PropertiesPlugin for el ement properties with
parans(properties={fil enane=target/rollingl/rollingtest-${sd:type}.log})

2011-11-23 17:08: 00, 794 DEBUG Generated plugins in 0.001362000 seconds

2011-11-23 17:08: 00, 797 DEBUG Cal ling createFilter on class org.apache. | ogging. | og4j.core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMat ch="nul|", onM smatch="nul|")

2011-11-23 17:08: 00,800 DEBUG Cal I i ng createlLayout on class org.apache. | oggi ng. | og4j.core.
| ayout . PatternLayout for element PatternLayout w th parans(pattern="%"®%n",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00, 802 DEBUG Generated plugins in 0.001349000 seconds

2011-11-23 17:08: 00, 804 DEBUG Cal I i ng createAppender on class org. apache. | oggi ng. | og4j. core.
appender . Consol eAppender for el ement Console w th parans(PatternLayout (%), null,
target="null", name="STDOUT", suppressExceptions="null")

2011-11-23 17:08: 00,804 DEBUG Cal ling createFilter on class org.apache. | ogging. | og4j.core.
filter.ThresholdFilter for el ement Threshol dFilter with parans(level ="debug",
onMatch="null", onM smatch="nul|")

2011-11-23 17:08: 00,806 DEBUG Cal I i ng createAppender on class org. apache. | oggi ng. | og4j.test.
appender. Li st Appender for elenent List with parans(nane="List", entryPerNewLi ne="null",

raw="nul ", null, Threshol dFilter (DEBUG))
2011-11-23 17:08: 00,813 DEBUG Cal ling createRoute on cl ass org. apache. | oggi ng. | 0g4j . core. appender.
routing. Route for elenment Route with parans(appender-ref="null", key="null", Node=Route)

2011-11-23 17:08: 00, 823 DEBUG Cal I i ng createRoute on cl ass org. apache. | oggi ng. | 0g4j . core. appender.
routing. Route for el ement Route with parans(appender-ref="STDOUT", key="Audit", Node=Route)
2011-11-23 17:08: 00, 824 DEBUG Cal I i ng createRoute on cl ass org. apache. | oggi ng. | 0g4j . core. appender.
routing. Route for el ement Route with parans(appender-ref="List", key="Service", Node=Route)

2011-11-23 17:08: 00, 825 DEBUG Cal I i ng createRoutes on cl ass org. apache. | oggi ng. | og4j . core. appender.
routing. Routes for elenent Routes with parans(pattern="${sd:type}",
rout es={ Rout e(type=dynami c default), Route(type=static Reference=STDOUT key='Audit'),

Rout e(type=static Reference=List key='Service')})

2011-11-23 17:08: 00, 827 DEBUG Cal I i ng creat eAppender on class org. apache. | oggi ng. | og4j . core. appender.
routing. Routi ngAppender for el enent Routing with parans(nane="Routing",
suppressExceptions="nul | ", Routes({Route(type=dynam c default), Route(type=static
Ref er ence=STDOUT key='Audit'),

Rout e(type=stati c Reference=List key='Service')}), Configuration(RoutingTest), null, null)

2011-11-23 17:08: 00, 827 DEBUG Cal | i ng creat eAppenders on cl ass org. apache. | oggi ng. | 0g4j . core. config.
pl ugi ns. Appender sPlugin for el enent appenders w th parans(appenders={ STDOUT, List, Routing})

2011-11-23 17:08: 00, 828 DEBUG Cal I i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
confi g. pl ugi ns. Appender Ref Pl ugi n for el enent appender-ref w th parans(ref="Routing")

2011-11-23 17:08: 00,829 DEBUG Cal I i ng createlLogger on class org.apache. | oggi ng.|o0g4j.core.config.
LoggerConfig for elenent |ogger with parans(additivity="false", |level="info", nane="EventlLogger",
appender -ref ={Routi ng}, null)

2011-11-23 17:08: 00,830 DEBUG Cal I i ng creat eAppender Ref on cl ass org. apache. | oggi ng. | og4j . core.
config. plugi ns. Appender Ref Pl ugi n for el enent appender-ref w th parans(ref="STDOUT")

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 38

2011-11-23 17:08: 00,831 DEBUG Cal Ii ng createlLogger on class org. apache. | oggi ng. | o0g4j.core.config.
Logger Confi g$Root Logger for element root with params(additivity="null", level="error",
appender -r ef ={ STDOUT}, null)

2011-11-23 17:08: 00, 833 DEBUG Cal li ng createlLoggers on class org. apache. | oggi ng. | og4j. core.
confi g. plugi ns. LoggersPlugin for elenent |oggers w th parans(loggers={EventLogger, root})

2011-11-23 17:08: 00, 834 DEBUG Reconfigurati on conpl et ed

2011-11-23 17:08: 00, 846 DEBUG Cal I i ng createlLayout on cl ass org. apache. | oggi ng. | og4j.core.
| ayout . PatternLayout for element PatternLayout with parans(pattern="% % %C{1.} [%] %P&a",
Configuration(RoutingTest), null, charset="null")

2011-11-23 17:08: 00,849 DEBUG Cal ling createPolicy on class org.apache. | ogging. | og4j.core.
appender.rolling. Si zeBasedTri ggeringPolicy for el enment SizeBasedTriggeringPolicy with
par ans(si ze="500")

2011-11-23 17:08: 00, 851 DEBUG Cal Ii ng createAppender on class org. apache. | oggi ng. | og4j. core.
appender. Rol | i ngFi | eAppender for elenent RollingFile with
parans(fil eName="target/rollingl/rollingtest-Unknown.l og",
filePattern="target/rollingl/test1l-Unknown. % .| og.gz", append="null", nane="Rolling-Unknown",
bufferedl O="nul ", inmmediateFlush="null",

Si zeBasedTri ggeri ngPol i cy(Si zeBasedTri ggeri ngPol i cy(si ze=500)), null,
PatternLayout (% % %{1.} [%] % ®%), null, suppressExceptions="null")

2011-11-23 17:08: 00, 858 DEBUG Generated plugins in 0.002014000 seconds

2011-11-23 17:08: 00, 889 DEBUG Reconfiguration started for context sun.m sc.
Launcher $Appd assLoader @7b90b39

2011-11-23 17:08: 00, 890 DEBUG Generated plugins in 0.001355000 seconds

2011-11-23 17:08: 00, 959 DEBUG Generated plugins in 0.001239000 seconds

2011-11-23 17:08: 00, 961 DEBUG Generated plugins in 0.001197000 seconds

2011-11-23 17:08: 00, 965 WARN No Loggers were configured, using default

2011-11-23 17:08: 00,976 DEBUG Reconfigurati on conpl et ed

If the status attribute is set to error than only error messages will be written to the console. This makes
troubleshooting configuration errors possible. As an example, if the configuration above is changed to
have the status set to error and the logger declaration is:

<l ogger nane="Event Logger" |evel ="info" additivity="fal se">
<appender-ref ref="Routng"/>
</ | ogger >

the following error message will be produced.

2011-11-24 23:21:25,517 ERROR Unable to | ocate appender Routng for |ogger EventLogger

Applications may wish to direct the status output to some other destination. This can be accomplished
by setting the dest attribute to either "err" to send the output to stderr or to afile location or URL. This
can also be done by insuring the configured status is set to OFF and then configuring the application
programmatically such as:

St at usConsol eLi stener |istener = new StatusConsol eLi st ener (Level . ERROR) ;
((StatusLogger) |ogger).registerListener(listener);

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

5 Configuration 39

5.1.7 Testing in Maven

Maven can run unit and functional tests during the build cycle. By default, any files placed in sr ¢/
test/resour ces are automatically copied to target/test-classes and are included in the classpath during
execution of any tests. As such, placing alogdj2-test.xml into this directory will causeit to be used
instead of alog4j2.xml or log4j2.json that might be present. Thus a different log configuration can be
used during testing than what is used in production.

A second approach, which is extensively used by Log4j 2, is to set the log4j.configurationFile property in
the method annotated with @BeforeClass in the junit test class. Thiswill alow an arbitrarily named file
to be used during the test.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Plugins 40

Blugins

6.1 Plugins

6.1.1 Introduction

Log4j 1.x allowed for extension by requiring class attributes on most of the configuration declarations.
In the case of some elements, notably the PatternLayout, the only way to add new pattern converters was
to extend the PatternLayout class and add them via code. One of goals of Log4j 2 isto make extending it
extremely easy through the use of plugins.

InLog4j 2 apluginis declared by adding a Plugin annotation to the class declaration. During
initialization the Configuration will invoke the PluginManager to locate all the Log4j pluginsthat are
located in the declared packages. As the configuration is processed the appropriate plugins will be
automatically configured and initialized. Log4j 2 utilizes afew different types of plugins which are
described in the follownig sections.

6.1.2 Core

Core plugins are those that are directly represented by an element in a configuration file, such as an
Appender, Logger or Filter. Custom plugins that conform to the rules laid out in the next paragraph may
simply be referenced in the configuration, provided they are appropriate configured to be loaded by the
PluginManager.

Every Core plugin must declare a static method that is marked with a PluginFactory annotation. To allow
the Configuration to pass the correct parameters to the method, every parameter to the method must be
annotated as one of the following attribute types. Each attribute or element annotation must include the
name that must be present in the configuration in order to match the configuration item to its respective
parameter.

6.1.2.1 Attribute Types
PluginAttr

The parameter must resolve to a String, although it can be the String representation of a
boolean. numeric value, or any other Object that can be created from a String value.

PluginElement

The parameter may represent a complex object that itself has parameters that can be configured.
PluginConfiguration

The current Configuration object will be passed to the plugin as a parameter.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Plugins 41

6.1.3 Converters

Converters are used by PatternLayout to render the elements identified by the conversion pattern.

Every converter must specify its type as "Converter" on the Plugin attribute, have a static newlnstance
method that accepts an array of Strings asits only parameter and returns an instance of the Converter,
and must have a ConverterK eys annotation present that contains the array of converter patterns that

will cause the Converter to be selected. Converters that are meant to handle LogEvents must extend the
LogEventPatternConverter class and must implement aformat method that accepts a LogEvent and a
StringBuilder as arguments. The Converter should append the result of its operation to the StringBuilder.

A second type of Converter isthe FileConverter - which must have "FileConverter" specified in the
type attribute of the Plugin annotation. While similar to a L ogEventPatternConverter, instead of asingle
format method these Converters will have two variations; one that takes an Object and one that takes an
array of Objectsinstead of the LogEvent. Both append to the provided StringBuilder in the same fashion
as a LogEventPatternConverter. These Converters are typically used by the RollingFileAppender to
construct the name of the file to log to.

6.1.4 Lookups

L ookups are perhaps the simplest plugins of all. They must declare their type as "L ookup” on the plugin
annotation and must implement the StrLookup interface. They will have two methods; a lookup method
that accepts a String key and returns a String value and a second lookup method that accepts both a
LogEvent and a String key and returns a String. Lookups may be referenced by specifying ${ name:key}
where name is the name specified in the Plugin annotation and key is the name of the item to locate.

6.1.5 Plugin Preloading

Scanning for annotated classes dynamically takes a bit of time during application initialization. Log4j
avoids this by scanning its classes during the build. In the Maven build, the PluginManager isinvoked as
shown below and then the resulting Map is stored in afilein the jar being constructed. Log4j will locate
all thefiles created this way and and preload them, which shortens startup time considerably. Adding the
following plugin definition to your project's pom.xml will cause the plugin manager to be called during
the build. It will store the resulting file in the correct location under the directory specified in the first
argument after scanning all the components located under the package specified in the second argument.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

6 Plugins

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactl|d>exec-maven-plugin</artifactld>
<version>1. 2. 1</ versi on>
<executions>
<execution>
<phase>process- cl asses</ phase>
<goal s>
<goal >j ava</ goal >
</ goal s>
</ execution>
</ executions>
<configuration>
<mai nCl ass>or g. apache. | oggi ng. | 0g4j . core. confi g. pl ugi ns. Pl ugi nManager </ mai nCl ass>
<ar gunent s>
<ar gunent >${ proj ect . bui | d. out put Di rect ory} </ ar gunent >
<ar gunent >or g. myor g. mypr oj ect . | og4j </ ar gunent >
</ ar gunent s>
</ confi guration>
</ pl ugi n>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

42

7 Lookups 43

Zookups

7.1 Lookups

L ookups provide away to add valuesto the Logdj configuration at arbitrary places. They are a particular
type of Plugin that implementsthe StrLookup interface. Information on how to use Lookupsin
configuration files can be found in the Property Substitution section of the Configuration page.

7.1.1 ContextMapLookup

The ContextMapL ookup allows applications to store datain the Log4j ThreadContext Map and then
retrieve the valuesin the Logd4j configuration. In the example below, the application would store the
current user'slogin id in the ThreadContext Map with the key "loginld". During initial configuration
processing the first '$' will be removed. The PatternLayout supports interpolation with Lookups and will
then resolve the variable for each event. Note that the pattern "%X{loginld}" would achieve the same
resullt.

<Fil e name="Application" fil eNanme="application.|og">
<Pat t er nLayout >
<pattern>%l % %C{1.} [%] $${ctx:|oginld} %Pn</pattern>
</ Patt ernLayout >
</File>

7.1.2 DateLookup

The Datelookup is somewhat unusual from the other lookups as it doesn't use the key to locate an item.
Instead, the key can be used to specify a date format string that isvalid for SimpleDateFormat. The
current date, or the date associated with the current log event will be formatted as specified.

<Rol | i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${filename}" filePattern="target/rollingl/testl-$${date: M} dd-}
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol lingFile>

7.1.3 EnvironmentLookup

The EnvironmentL ookup allows systems to configure environment variables, either in global files such
as/etc/profile or in the startup scripts for applications, and then retrieve those variables from within
the logging configuration. The example below includes the name of the currently logged in user in the
application log.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

7 Lookups 44

<Fil e name="Application" fil eNane="application.|og">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] $${env: USER} %dn</pattern>
</ Patt ernLayout >
</File>

7.1.4 MapLookup
The MapL ookup serves two purposes.

1. Provide the base for Properties declared in the configuration file.
2. Retrieve values from MapMessages in LogEvents.

The first item simply means that the MapL ookup is used to substitute properties that are defined in the
configuration file. These variables are specified without a prefix - e.g. ${ nane} . The second usage allows
avalue from the current MapMessage, if oneis part of the current log event, to be substituted. In the
example below the RoutingAppender will use a different RollingFileAppender for each unique value of
the key named "type" in the MapM essage. Note that when used this way avalue for "type" should be
declared in the properties declaration to provide a default value in case the message is not a MapM essage
or the MapM essage does not contain the key. See the Property Substitution section of the Configuration
page for information on how to set the default values.

<Rout i ng nane="Routi ng">
<Rout es pattern="$${map: type}">
<Rout e>
<Rol | i ngFi | e nane="Rol | i ng- ${ map: type}" fileName="${fil ename}"
filePattern="target/rollingl/test1-${map:type}.% .l og.gz">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt ernnLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>
</ Rout e>
</ Rout es>
</ Rout i ng>

7.1.5 StructuredDatalLookup

The StructuredDatalookup is very similar to the MapLookup in that it will retrieve values from
StructuredDataM essages. In addition to the Map values it will also return the name portion of theid (not
including the enterprise number) and the type field. The main difference between the example below and

the example for MapMessage is that the "type" is an attribute of the StructuredDataM essage while "type
would have to be an item in the Map in aMapMessage.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

7 Lookups 45

<Rout i ng nane="Routing">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol l'i ngFi | e nane="Rol | i ng- ${sd: type}" fileNane="${fil enane}"
filePattern="target/rollingl/test1l-${sd:type}.% .l og.gz">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</ Rol l'i ngFi | e>
</ Rout e>
</ Rout es>
</ Routi ng>

7.1.6 SystemPropertiesLookup

Asit is quite common to define values inside and outside the application by using System Properties, it is
only natural that they should be accessible viaa Lookup. As system properties are often defined outside
the application it would be quite common to see something like:

<appender s>
<Fil e name="ApplicationLog" fil eNane="${sys: | ogPath}/app.log"/>
</ appender s>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 46

Bppenders

8.1 Appenders

Appenders are responsible for delivering LogEvents to their destination. Every Appender must implement
the Appender interface. Most Appenders will extend AbstractAppender which adds Lifecycle and
Filterable support. Lifecycle allows components to finish initialization after configuration has completed
and to perform cleanup during shutdown. Filterable allows the component to have Filters attached to it
which are evaluated during event processing.

Appenders usually are only responsible for writing the event data to the target destination. In most cases
they delegate responsibility for formatting the event to a layout. Some appenders wrap other appenders
so that they can modify the LogEvent, handle afailure in an Appender, route the event to a subordinate
Appender based on advanced Filter criteriaor provide similar functionality that does not directly format
the event for viewing.

Appenders always have a name so that they can be referenced from Loggers.

8.1.1 AsynchAppender

The AsynchAppender accepts references to other Appenders and causes L ogEvents to be written to them
on a separate Thread. Note that exceptions while writing to those Appenders will be hidden from the
application. The AsynchAppender should be configured after the appendersit referencesto alow it to
shut down properly.

appender-ref String The name of the Appenders to
invoke asynchronously. Multiple
appender-ref elements can be
configured.

blocking boolean If true, the appender will wait until
there are free slots in the queue. If
false, the event will be written to the
error appender if the queue is full.

bufferSize integer Specifies the maximum number of
events that can be queued. The
default is 128.

error-ref String The name of the Appender to invoke
if none of the appenders can be
called, either due to errors in the
appenders or because the queue is
full. If not specified then errors will be
ignored.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

47

name String The name of the Appender.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

AsynchAppender Parameters
A typical AsynchAppender configuration might look like:

<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>
<File name="MFile" fileName="1ogs/app.|og">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
</File>
<Asynch nanme="Asynch">
<appender-ref ref="MyFile"/>
</ Asynch>
</ appender s>
<l ogger s>
<root level ="error">
<appender-ref ref="Asynch"/>
</root >
</ | ogger s>
</ configuration>

8.1.2 ConsoleAppender

As one might expect, the ConsoleAppender writes its output to either System.err or System.out with
System.err being the default target. A Layout must be provided to format the LogEvent.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

layout Layout The Layout to use to format the
LogEvent. If no layout is supplied the
default pattern layout of "%m%n" will
be used.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 48

follow boolean Identifies whether the appender
honors reassignments of System.out
or System.err via System.setOut
or System.setErr made after
configuration. Note that the follow
attribute cannot be used with Jansi

on Windows.
name String The name of the Appender.
suppressExceptions boolean The default is true, causing

exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

ConsoleA ppender Parameters
A typical Console configuration might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>
<Consol e nane="STDOUT" t ar get="SYSTEM QUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="STDOUT"/>
</ r oot >
</l ogger s>
</ confi guration>

8.1.3 FailoverAppender

The FailoverAppender wraps a set of appenders. If the primary Appender fails the secondary appenders
will betried in order until one succeeds or there are no more secondariesto try.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

primary String The name of the primary Appender
to use.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

failovers String(]
name String
retrylnterval integer
suppressExceptions boolean
target String

FailoverAppender Parameters

A Failover configuration might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<configuration status="warn"
<appender s>

name=" M App"

packages="">

<Rol l'ingFile name="Rol | ingFi |l e" fil eName="1| ogs/ app. | og"
filePattern="I|ogs/ app-%{ M} dd-yyyy}. | og.gz">

<Patt er nLayout >
<pattern>%d % %C{1.} [%]
</ Patt er nLayout >
<Ti neBasedTri ggeringPolicy />
</Rol I i ngFi | e>

%</ pattern>

<Consol e nane="STDOUT" t ar get="SYSTEM QUT" >

<Pat t er nLayout pattern="%®n"/>

</ Consol e>

<Fai | over nane="Fail over"
<Fai | over s>

<appender - r ef

</ Fai | over s>

</ Fai | over >

</ appender s>

ref =" Consol e"/ >

<l ogger s>
<root |level="error">
<appender-ref ref="Failover"/>
</ root >
</l ogger s>

</ confi guration>

©2013,

primary="Rol | i ngFil e"

The Apache Software Foundation -«

ALL RIGHTS RESERVED.

49

The names of the secondary
Appenders to use.

The name of the Appender.

The number of seconds that should
pass before retrying the primary
Appender. The default is 60.

The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

suppr essExcepti ons="f al se" >

8 Appenders 50

8.1.4 FileAppender

The FileAppender is an OutputStreamA ppender that writes to the File named in the fileName parameter.
The FileAppender uses a FileManager (which extends OutputStreamManager) to actually perform the file
I/0. While FileAppenders from different Configurations cannot be shared, the FileManagers can be if the
Manager is accessible. For example, two webapps in a servlet container can have their own configuration
and safely write to the samefile if Log4Jisin a ClassL oader that is common to both of them.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new reocrds are
written.

bufferedlO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if inmediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedlO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

fileName String The name of the file to write to. If the
file, or any of its parent directories,
do not exist, they will be created.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

layout Layout The Layout to use to format the
LogEvent
locking boolean When set to true, 1/0O operations will

occur only while the file lock is held
allowing FileAppenders in multiple
JVMs and potentially multiple

hosts to write to the same file
simultaneously. This will significantly
impact performance so should

be used carefully. Furthermore,

on many systems the file lock

is "advisory" meaning that other
applications can perform operations
on the file without acquiring a lock.
The default value is false.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 51

name String The name of the Appender.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

FileAppender Parameters

Here is a sample File configuration:
<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>
<File name="MFile" fileName="1ogs/app.|og">
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
</File>
</ appender s>
<l ogger s>
<root level ="error">
<appender-ref ref="MyFile"/>
</root >
</ | ogger s>
</ configuration>

8.1.5 FlumeAppender
Thisisan optional component supplied in a separate jar.

Apache Flume is adistributed, reliable, and available system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sourcesto a centralized data store. The
FlumeAppender takes LogEvents and sends them to a Flume agent as serialized Avro events for
consumption.

The Flume Appender supports two modes of operation.

1. It can act as aremote Flume client which sends Flume events via Avro to a Flume Agent configured

with an Avro Source.

2. It can act as an embedded Flume Agent where Flume events pass directly into Flume for processing.
Usage as an embedded agent will cause the messages to be directly passed to the Flume Channel and
then control will be immediately returned to the application. All interaction with remote agents will occur
asynchronously. Setting the "embedded” attribute to "true" will force the use of the embedded agent. In
addition, configuring agent propertiesin the appender configuration will also cause the embedded agent
to be used.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://flume.apache.org/index.html

8 Appenders

agents

agentRetries

batchSize

compress

dataDir

embedded

filter

eventPrefix

flumeEventFactory

layout

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

Agent(]

integer

integer

boolean

String

boolean

Filter

String

FlumeEventFactory

Layout

52

An array of Agents to which the
logging events should be sent. If
more than one agent is specified the
first Agent will be the primary and
subsequent Agents will be used in
the order specified as secondaries
should the primary Agent fail. Each
Agent definition supplies the Agents
host and port. The specification of
agents and properties are mutually
exclusive. If both are configured an
error will result.

The number of times the agent
should be retried before failing to a
secondary.

Specifies the number of events
that should be sent as a batch. The
default is 1. This parameter only
applies to the Flume NG Appender.

When set to true the message body
will be compressed using gzip

Directory where the Flume write
ahead log should be written. Valid
only when embedded is set to
true and Agent elements are used
instead of Property elements.

When set to true the embedded
Flume agent will be used. When
Agent elements are used the events
will be sent to a file channel and then
routed to a FailoverSinkProcessor
which will use each configured agent
in the order they are declared.

A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

The character string to prepend
to each event attribute in order to
distinguish it from MDC attributes.
The default is an empty string.

Factory that generates the
Flume events from Log4j
events. The default factory is the
FlumeAvroAppender itself.

The Layout to use to format the
LogEvent. If no layout is specified
RFC5424Layout will be used.

8 Appenders 53

mdcExcludes String A comma separated list of mdc
keys that should be excluded from
the FlumeEvent. This is mutually
exclusive with the mdcincludes
attribute.

mdcincludes String A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive with
the mdcExcludes attribute.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.

mdcPrefix String A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:".

name String The name of the Appender.

properties Property([] One or more Property elements that
are used to configure the Flume
Agent. The properties must be
configured without the agent name
(the appender name is used for this)
and no sources can be configured.
All other Flume configuration
properties are allowed. Specifying
both Agent and Property elements
will result in an error.

reconnectionDelay integer The number of milliseconds the
application should wait before trying
again to connect to the agent.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

FlumeAvroAppender Parameters

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, and formats the body using the RFC5424L ayout:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 54

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Fl une nanme="event Logger" suppressExcepti ons="fal se" conpress="true">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpri seNunber="18060" incl udeMDC="true" appNane="M/App"/>
</ Fl ume>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="eventLogger"/>
</ root >
</l ogger s>
</ confi guration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using RFC5424L ayout and passes the events to an embedded
Flume Agent.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Fl une nanme="event Logger" suppressExcepti ons="fal se" conpress="true" enbedded="true">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpri seNunber="18060" incl udeMDC="true" appNane="M/App"/>
</ Fl ume>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="% [%] % %?0"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="Event Logger" |evel ="info">
<appender-ref ref="eventLogger"/>
</ | ogger >
<root |evel ="warn">
<appender-ref ref="STDOUT"/>
</ root >
</l ogger s>
</ confi guration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent using
Flume configuration properties, compresses the body, formats the body using RFC5424L ayout and passes
the events to an embedded Flume Agent.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 55

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="error" name="MApp" packages="">
<appender s>
<Fl une nanme="event Logger" suppressExcepti ons="fal se" conpress="true" enbedded="true">
<Property nanme="channel s">fil e</ Property>
<Property nanme="channels.file.type">file</Property>
<Property nane="channel s.file.checkpointDir">target/fil e-channel/checkpoi nt</Property>
<Property nane="channels.file.databD rs">target/fil e-channel / data</ Property>
<Property nane="si nks">agent1l agent 2</ Property>
<Property nane="si nks. agent 1. channel ">fil e</ Property>
<Property nane="si nks. agent 1. type">avro</ Property>
<Property nane="si nks. agent 1. host nane">192. 168. 10. 101</ Property>
<Property nane="si nks. agent 1. port">8800</ Property>
<Property nane="si nks. agent 1. bat ch-si ze" >100</ Pr operty>
<Property nane="si nks. agent 2. channel ">fil e</ Property>
<Property nane="si nks. agent 2. type" >avr o</ Property>
<Property nane="si nks. agent 2. host nane">192. 168. 10. 102</ Property>
<Property nane="si nks. agent 2. port" >8800</ Property>
<Property nane="si nks. agent 2. bat ch-si ze" >100</ Pr operty>
<Property nane="si nkgroups" >groupl</ Property>
<Property nane="si nkgroups. groupl. si nks">agent1 agent 2</ Property>
<Property nane="si nkgroups. groupl. processor.type">fail over</Property>
<Property nane="si nkgroups. groupl. processor.priority.agent1">10</Property>
<Property nane="si nkgroups. groupl. processor.priority.agent2">5</Property>
<RFC5424Layout enterpri seNunber="18060" incl udeMDC="true" appNane="M/App"/>
</ Fl ume>
<Consol e nanme="STDOUT" >
<PatternLayout pattern="% [%] % %?0"/>
</ Consol e>
</ appender s>
<l ogger s>
<l ogger nane="Event Logger" |evel ="info">
<appender-ref ref="eventLogger"/>
</ | ogger >
<root |evel ="warn">
<appender-ref ref="STDOUT"/>
</ root >
</l ogger s>
</ confi guration>

8.1.6 IMSQueueAppender
The IM SQueueA ppender sends the formatted log event to a JM S Queue.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

factoryBindingName String
factoryName String
filter Filter
layout Layout
name String
password String
providerURL String
gueueBindingName String
securityPrincipalName String
securityCredentials String
suppressExceptions boolean
urlPkgPrefixes String

©2013,

The Apache Software Foundation -«

ALL RIGHTS RESERVED.

56

The name to locate in the
Context that provides the
QueueConnectionFactory.

The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.

If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without a
providerURL a warning message will
be logged as this is likely to cause
problems.

A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

The Layout to use to format the
LogEvent. If no layout is specified
SerializedLayout will be used.

The name of the Appender.

The password to use to create the
queue connection.

The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

The name to use to locate the
Queue.

The name of the identity of

the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

A colon-separated list of package
prefixes for the class name of

the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Queue.html
http://download.oracle.com/javaee/5/api/javax/jms/Queue.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES

8 Appenders

userName String

JM SQueueA ppender Parameters

Here is a sample JM SQueueA ppender configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<configuration status="warn" name="MApp" packages="">

<appender s>

<JMSQueue nane="j nsQueue"” queueBi ndi ngName=" M Queue"
fact or yBi ndi ngNanme="M/QueueConnecti onFactory"/>

</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="jmsQueue"/>
</ r oot >
</l ogger s>
</ confi guration>

8.1.7 JMSTopicAppender

The JM STopicAppender sends the formatted log event to aJM S Topic.

factoryBindingName String
factoryName String
filter Filter
layout Layout
name String

©2013, The Apache Software Foundation

ALL RIGHTS RESERVED.

57

The user id used to create the queue
connection.

The name to locate in the
Context that provides the
TopicConnectionFactory.

The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.

If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without a
providerURL a warning message will
be logged as this is likely to cause
problems.

A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

The Layout to use to format the
LogEvent. If no layout is specified
SerializedLayout will be used.

The name of the Appender.

http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY

8 Appenders

password String
providerURL String
topicBindingName String
securityPrincipalName String
securityCredentials String
suppressExceptions boolean
urlPkgPrefixes String
userName String
JM STopicAppender Parameters

Here is a sample JM STopicAppender configuration:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp"
<appender s>
<JMsTopi ¢ nanme="j nsTopi c" topi cBi ndi ngNane=" M/ Topi c"
fact or yBi ndi ngNanme="M/Topi cConnecti onFactory"/>
</ appender s>

packages="">

<l ogger s>
<root level="error">
<appender-ref ref="jmsQueue"/>
</ root >
</l ogger s>

</ configuration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

58

The password to use to create the
gueue connection.

The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

The name to use to locate the
Topic.

The name of the identity of

the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

A colon-separated list of package
prefixes for the class name of

the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

The user id used to create the queue
connection.

http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Topic.html
http://download.oracle.com/javaee/5/api/javax/jms/Topic.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES

8 Appenders 59

8.1.8 OutputStreamAppender

The OutputStreamA ppender provides the base for many of the other Appenders such as the File and
Socket appenders that write the event to an Output Stream. It cannot be directly configured. Support for
immediateFlush and buffering is provided by the OutputStreamA ppender. The OutputStreamA ppender
uses an OutputStreamM anager to handle the actua 1/0, allowing the stream to be shared by Appendersin
multiple configurations.

8.1.9 RewriteAppender

The RewriteAppender allows the LogEvent to manipulated before it is processed by another Appender.
This can be used to mask sensitive information such as passwords or to inject information into each
event. The RewriteAppender must be configured with a RewritePolicy. The RewriteAppender should be
configured after any Appendersit references to allow it to shut down properly.

appender-ref String The name of the Appenders to
call after the LogEvent has been
manipulated. Multiple appender-ref
elements can be configured.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolciy The RewritePolicy that will
manipulate the LogEvent.

suppressExceptions boolean The default is true, causing

exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

RewriteAppender Parameters

8.1.9.1 RewritePolicy

RewritePolicy is an interface that allows implementations to inspect and possibly modify LogEvents
before they are passed to Appender. RewritePolicy declares a single method named rewrite that must be
implemented. The method is passed the LogEvent and can return the same event or create a new one.
8.MapRewritePolicy

MapRewritePolicy will evaluate LogEvents that contain a MapM essage and will add or update elements
of the Map.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

60

mode String "Add" or "Update"

keyValuePair KeyValuePair[] An array of keys and their values.

The following configuration shows a RewriteA ppender configured to add a product key and its value to
the MapMessage.

<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>
<Consol e nanme="STDOUT" t arget =" SYSTEM OQUT" >
<PatternLayout pattern="%dn"/>
</ Consol e>
<Rewrite name="rewite">
<appender-ref ref="STDOUT"/>
<MapRewr it ePol i cy npde="Add">
<KeyVal uePai r key="product" val ue="Test Product"/>
</ MapRewr i t ePol i cy>
</Rewrite>
</ appender s>
<l ogger s>
<root level ="error">
<appender-ref ref="Rewite"/>
</root >
</ | ogger s>
</ configuration>

8.PropertiesRewritePolicy

PropertiesRewritePolicy will add properties configured on the policy to the ThreadContext Map being
logged. The properties will not be added to the actual ThreadContext Map. The property values may

contain variables that will be evaluated when the configuration is processed as well as when the event is
logged.

properties Property([] One of more Property elements to
define the keys and values to be
added to the ThreadContext Map.

The following configuration shows a RewriteA ppender configured to add a product key and its value to
the MapMessage.:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 61

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Consol e nane="STDOUT" t ar get="SYSTEM QUT" >
<Pat t er nLayout pattern="%®n"/>
</ Consol e>
<Rewrite name="rewite">
<appender-ref ref="STDOUT"/>
<PropertiesRewitePolicy>
<Property key="user">${sys: user. nane}</ Property>
<Property key="env">${sys: environnment}</Property>
</ PropertiesRewitePolicy>
</Rewrite>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="Rewite"/>
</ root >
</l ogger s>
</ confi guration>

8.1.10 RollingFileAppender

The RollingFileAppender is an OutputStreamA ppender that writes to the File named in the
fileName parameter and rolls the file over according the TriggeringPolicy and the RolloverPolicy.
The RollingFileAppender uses a RollingFileManager (which extends OutputStreamM anager) to
actually perform the file 1/0 and perform the rollover. While RolloverFileAppenders from different
Configurations cannot be shared, the RollingFileManagers can be if the Manager is accessible. For
example, two webapps in a servlet container can have their own configuration and safely write to the
samefileif Log4Jisin a ClassLoader that is common to both of them.

A RollingFileAppender requiresa TriggeringPolicy and a RolloverStrategy. The triggering
policy determinesif arollover should be performed while the RolloverStrategy defines how the
rollover should be done. If no RolloverStrategy is configured, RollingFileAppender will use the
DefaultRolloverStrategy.

File locking is not supported by the RollingFileAppender.

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new reocrds are
written.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

bufferedlO

filter

fileName

filePattern

immediateFlush

layout

name

policy
strategy

suppressExceptions

©2013, The Apache Software Foundation

boolean

Filter

String

String

boolean

Layout

String
TriggeringPolicy

RolloverStrategy

boolean

RollingFileAppender Parameters

ALL RIGHTS RESERVED.

62

When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if inmediateFlush

is set, when the record is written.
File locking cannot be used with
bufferedlO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

The name of the file to write to. If the
file, or any of its parent directories,
do not exist, they will be created.

The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on the
RolloverPolicy that is used. The
DefaultRolloverPolicy will accept
both a date/time pattern compatible
with SimpleDateFormat and and/
or a %i which represents an integer
counter. The pattern also supports
interpolation at runtime so any of the
Lookups (such as the DateLookup
can be included in the pattern.

When set to true, each write will

be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

The Layout to use to format the
LogEvent

The name of the Appender.

The policy to use to determine if a
rollover should occur.

The strategy to use to determine the
name and location of the archive file.

The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

8 Appenders 63

8.1.10.1 Triggering Policies

8.Composite Triggering Policy

The CompositeTriggeringPolicy combines multiple triggering policies and returns true if any of the
configured policies return true. The CompositeTriggeringPolicy is configured simply by wrapping other
policiesin a"Policies' element.

8.0nStartup Triggering Policy

The OnStartup policy takes no parameters and causes arollover if thelog fileis older than the current
VM's start time.

8.SizeBased Triggering Policy

Causes arollover once the file has reached the specified size. The size can be specified in bytes, KB, MB
or GB.

8.TimeBased Triggering Policy

Causes arollover once the date/time pattern no longer applies to the active file. This policy accepts an
"increment” attribute which indicates how frequently the rollover should occur based on the time pattern
and a"modulate” boolean attribute.

interval integer How often a rollover should occur
based on the most specific time unit
in the date pattern. For example,
with a date pattern with hours as
the most specific item and and
increment of 4 rollovers would occur
every 4 hours. The default value is 1.

modulate boolean Indicates whether the interval
should be adjusted to cause the
next rollover to occur on the interval
boundary. For example, if the item is
hours, the current hour is 3 am and
the interval is 4 then then the first
rollover will occur at 4 am and then
next ones will occur at 8 am, noon,
4pm, etc.

TimeBasedTriggeringPolicy Parameters

8.1.10.2 Rollover Strategies

8.Default Rollover Strategy

The default rollover strategy accepts both a date/time pattern and an integer from the filePattern attribute
specified on the RollingFileAppender itself. If the date/time pattern is present it will be replaced with the
current date and time values. If the pattern contains an integer it will be incremented on each rollover. If

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 64

the pattern contains both a date/time and integer in the pattern the integer will be incremented until the
result of the date/time pattern changes. If the file pattern ends with ".gz" or ".zip" the resulting archive
will be compressed using the compression scheme that matches the suffix. The pattern may aso contain
lookup references that can be resolved at runtime such as is shown in the example below.

The default rollover strategy supports two variations for incrementing the counter. Thefirst is the "fixed
window" strategy. To illustrate how it works, suppose that the min attribute is set to 1, the max attributeis
set to 3, thefile nameis "foo.log", and the file name pattern is "foo-%i.log".

0 foo.log - All logging is going to the
initial file.
1 foo.log foo-1.log During the first rollover

foo.log is renamed to
foo-1.log. A new foo.log file
is created and starts being
written to.

2 foo.log foo-1.log, foo-2.log During the second rollover
foo-1.log is renamed to
foo-2.log and foo.log is
renamed to foo-1.log. A
new foo.log file is created
and starts being written to.

3 foo.log foo-1.log, foo-2.log, During the third rollover
foo-3.log foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log file
is created and starts being

written to.
4 foo.log foo-1.log, foo-2.log, In the fourth and
foo-3.log subsequent rollovers,

foo-3.log is deleted,
foo-2.log is renamed to
foo-3.log, foo-1.log is
renamed to foo-2.log and
foo.log is renamed to
foo-1.log. A new foo.log file
is created and starts being
written to.

By way of contrast, when the the filelndex attribute is set to "max" but all the other settings are the same
the following actions will be performed.

0 foo.log - All logging is going to the
initial file.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

fileIndex

min

max

foo.log

foo.log

foo.log

foo.log

String

integer

integer

foo-1.log

foo-1.log, foo-2.log

foo-1.log, foo-2.log,
foo-3.log

foo-1.log, foo-2.log,
foo-3.log

65

During the first rollover
foo.log is renamed to
foo-1.log. A new foo.log file
is created and starts being
written to.

During the second rollover
foo.log is renamed to
foo-2.log. A new foo.log file
is created and starts being
written to.

During the third rollover
foo.log is renamed to
foo-3.log. A new foo.log file
is created and starts being
written to.

In the fourth and
subsequent rollovers,
foo-1.log is deleted,
foo-2.log is renamed to
foo-1.log, foo-3.log is
renamed to foo-2.log and
foo.log is renamed to
foo-3.log. A new foo.log file
is created and starts being
written to.

If set to "max" (the default), files with
a higher index will be newer than
files with a smaller index. If set to
"min", file renaming and the counter
will follow the Fixed Window strategy
described above.

The minimum value of the counter.
The default value is 1.

The maximum value of the counter.
Once this values is reached

older archives will be deleted on
subsequent rollovers.

DefaultRolloverStrategy Parameters

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory based
on the current year and month, and will compress each archive using gzip:

©2013, The Apache Software Foundation

ALL RIGHTS RESERVED.

8 Appenders 66

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFil e name="Rol | ingFile" fil eName="I ogs/ app. | o0g"
filePattern="Ilogs/ $${date: yyyy- M}/ app- ¥d{ Mt dd- yyyy}-% . | og. gz" >
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Pol i ci es>
<Ti neBasedTri ggeri ngPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

This second example shows arollover strategy that will keep up to 20 files before removing them.
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFile name="Rol | ingFile" fil eNanme="1 ogs/ app. | og"
filePattern="Ilogs/ $${date: yyyy- M}/ app- ¥d{ Mt dd- yyyy}-% . | og. gz" >
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Pol i ci es>
<Ti meBasedTri ggeri ngPolicy />
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
<Def aul t Rol | over Strat egy nmax="20"/>
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

Below is asample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory based
on the current year and month, and will compress each archive using gzip and will roll every 6 hours
when the hour is divisible by 6:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 67

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFil e name="Rol | ingFile" fil eName="I ogs/ app. | o0g"
filePattern="Ilogs/$${date: yyyy- M}/ app- ¥d{yyyy- Mt dd- HH} - % . | og. gz" >
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Pol i ci es>
<Ti meBasedTri ggeringPolicy interval ="6" nodul ate="true"/>
<Si zeBasedTri ggeri ngPol i cy size="250 MB"/>
</ Policies>
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

8.1.11 RoutingAppender

The RoutingA ppender evaluates L ogEvents and then routes them to a subordinate Appender. The target
Appender may be an appender previously configured and may be referenced by its name or the Appender
can be dynamically created as needed. The RoutingAppender should be configured after any Appendersit
referencesto alow it to shut down properly.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolciy The RewritePolicy that will
manipulate the LogEvent.

routes Routes Contains one or more Route
declarations to identify the criteria for
choosing Appenders.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

RoutingA ppender Parameters

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 68

8.1.11.1 Routes

The Routes element accepts asingle, required attribute named "pattern”. The pattern is evaluated against
all the registered Lookups and the result is used to select a Route. Each Route may be configured with a
key. If the key matches the result of evaluating the pattern then that Route will be selected. If no key is
specified on a Route then that Route is the default. Only one Route can be configured as the defauilt.

Each Route must reference an Appender. If the Route contains an appender-ref attribute then the Route
will reference an Appender that was defined in the configuration. If the Route contains an Appender
definition then an Appender will be created within the context of the RoutingAppender and will be reused
each time amatching Appender name is referenced through a Route.

Below is asample configuration that uses a RoutingAppender to route all Audit eventsto a
FlumeAppender and al other events will be routed to a RollingFileA ppender that captures only the
specific event type. Note that the AuditAppender was predefined while the RollingFileAppenders are
created as needed.
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" name="MApp" packages="">
<appender s>
<Fl une name="Audit Logger" suppressExcepti ons="fal se" conpress="true">
<Agent host="192.168. 10. 101" port="8800"/>
<Agent host="192.168. 10. 102" port="8800"/>
<RFC5424Layout enterpriseNunber="18060" incl udeMDC="true" appNane="M/App"/>
</ Fl ume>
<Rout i ng nane="Routi ng">
<Rout es pattern="$${sd: type}">
<Rout e>
<Rol I i ngFi | e nane="Rol | i ng- ${sd: type}" fil eName="${sd:type}.|og"
filePattern="${sd:type}.% .l og.gz">
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Si zeBasedTri ggeri ngPol i cy size="500" />
</Rol l'i ngFi | e>
</ Rout e>
<Rout e appender-ref="AuditLogger" key="Audit"/>
</ Rout es>
</ Rout i ng>
</ appender s>
<l ogger s>
<root |evel="error">
<appender -ref ref="Routing"/>
</ r oot >
</l ogger s>
</ confi guration>

8.1.12 SMTPAppender
Sends an e-mail when a specific logging event occurs, typically on errors or fatal errors.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 69

The number of logging events delivered in this e-mail depend on the value of Buffer Size option. The
SMTPAppender keepsonly thelast Buf f er Si ze logging eventsin its cyclic buffer. This keeps memory
requirements at a reasonable level while still delivering useful application context.

The default behavior isto trigger sending an email whenever an ERROR or higher severity event is
logged and to format it as HTML. The circumstances on when the email is sent can be controlled by
setting one or more filters on the Appender. As with other Appenders, the formatting can be controlled by
specifying a Layout for the Appender.

bcc String The comma-separated list of BCC
email addresses.

cc String The comma-separated list of CC
email addresses.

bufferSize integer The maximum number of log events
to be buffered for inclusion in the
message. Defaults to 512.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

from String The email address of the sender.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

name String The name of the Appender.

replyTo String The comma-separated list of reply-to
email addresses.

smtpDebug boolean When set to true enables session
debugging on STDOUT. Defaults to
false.

smtpHost String The SMTP hostname to send to.
This parameter is required.

smtpPassword String The password required to
authenticate against the SMTP
server.

smtpPort integer The SMTP port to send to.

smtpProtocol String The SMTP transport protocol (such
as "smtps", defaults to "smtp").

smtpUsername String The username required to
authenticate against the SMTP
server.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 70

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

to String The comma-separated list of
recipient email addresses.

SMTPAppender Parameters

<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>

<SMIP nane="Mai | " suppressExceptions="fal se" subject="Error Log" to="errors@ oggi ng. apache. or g"
frone"t est @oggi ng. apache. org" sntpHost="I| ocal host" sntpPort="25" bufferSize="50">
</ SMrP>
</ appender s>
<l ogger s>

<root level ="error">
<appender-ref ref="Mail"/>
</root >
</ | ogger s>
</ configuration>

8.1.13 SocketAppender

The SocketAppender is an OutputStreamA ppender that writes its output to a remote destination specified
by a host and port. The data can be sent over either TCP or UDP and can be sent in any format. The
default format isto send a Serialized LogEvent. Logdj 2 contains a SocketServer which is capable of
receiving serialized L ogEvents and routing them through the logging system on the server.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

host String The name or address of the system
that is listening for log events. This
parameter is required.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

name String The name of the Appender.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders 71

port integer The port on the host that is listening
for log events. This parameter must
be specified.

protocol String "TCP" or "UDP". This parameter is
required.

reconnectionDelay integer If set to a value greater than 0, after

an error the SocketManager will
attempt to reconnect to the server
after waiting the specified number
of milliseconds. If the reconnect
fails then an exception will be
thrown (which can be caught by the
application if suppressExceptions is
set to false).

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

SocketAppender Parameters

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nanme="MApp" packages="">
<appender s>
<Socket nane="socket" host="1|ocal host" port="9500">
<Seri al i zedLayout />
</ Socket >
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="socket"/>
</ root >
</l ogger s>
</ confi guration>

8.1.14 SyslogAppender

The SyslogAppender is a SocketAppender that writes its output to a remote destination specified by a
host and port in aformat that conforms with either the BSD Syslog format or the RFC 5424 format. The
data can be sent over either TCP or UDP.

appName String The value to use as the APP-NAME
in the RFC 5424 syslog record.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

8 Appenders

charset

enterpriseNumber

filter

facility

format

host

immediateFlush

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

String

integer

Filter

String

String

String

String

boolean

72

The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

The IANA enterprise number as
described in RFC 5424

A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALO", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCAL7". These
values may be specified as upper or
lower case characters.

If set to "RFC5424" the data will be
formatted in accordance with RFC
5424. Otherwise, it will be formatted
as a BSD Syslog record. Note that
although BSD Syslog records are
required to be 1024 bytes or shorter
the SyslogLayout does not truncate
them. The RFC5424Layout also
does not truncate records since the
receiver must accept records of up to
2048 bytes and may accept records
that are longer.

The name or address of the system
that is listening for log events. This
parameter is required.

The default structured data id to use
when formatting according to RFC
5424. If the LogEvent contains a
StructuredDataMessage the id from
the Message will be used instead of
this value.

When set to true, each write will

be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

8 Appenders

includeMDC

mdcExcludes

mdclIncludes

mdcRequired

mdcPrefix

messageld

name

newLine

port

protocol

boolean

String

String

String

String

String

String

boolean

integer

String

©2013, The Apache Software Foundation

ALL RIGHTS RESERVED.

73

Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

A comma separated list of mdc keys
that should be excluded from the
LogEvent. This is mutually exclusive
with the mdclincludes attribute. This
attribute only applies to RFC 5424
syslog records.

A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive
with the mdcExcludes attribute. This
attribute only applies to RFC 5424
syslog records.

A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:". This attribute only
applies to RFC 5424 syslog records.

The default value to be used in the
MSGID field of RFC 5424 syslog
records.

The name of the Appender.

If true, a newline will be appended
to the end of the syslog record. The
default is false.

The port on the host that is listening
for log events. This parameter must
be specified.

"TCP" or "UDP". This parameter is
required.

8 Appenders 74

reconnectionDelay integer If set to a value greater than 0, after
an error the SocketManager will
attempt to reconnect to the server
after waiting the specified number
of milliseconds. If the reconnect
fails then an exception will be
thrown (which can be caught by the
application if suppressExceptions is
set to false).

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

SyslogAppender Parameters

A sample syslogAppender configuration that is configured with two SyslogAppenders, one using the
BSD format and one using RFC 5424,
<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" nanme="M/App" packages="">
<appender s>
<Sysl og nanme="bsd" host="1|ocal host" port="514" protocol ="TCP"/>
<Sysl og nane="RFC5424" format =" RFC5424" host ="| ocal host" port="8514"
prot ocol =" TCP" appNane="M/App" i ncl udeMDC="tr ue"
facility="LOCALO" enterpriseNunber="18060" newLi ne="true"
nmessagel d="Audi t" id="App"/>
</ appender s>
<l ogger s>
<l ogger nane="com nycorp" |evel ="error">
<appender-ref ref="RFC5424"/>
</l ogger >
<root level ="error">
<appender-ref ref="bsd"/>
</root >
</ | ogger s>
</ configuration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Layouts 75

Bayouts

9.1 Layouts

An Appender uses aLayout to format a LogEvent into aform that meets the needs of whatever will be
consuming the log event. In Log4j 1.x and Logback Layouts were expected to transform an event into a
String. In Logdj 2 Layouts return a byte array. This alows the result of the Layout to be useful in many
more types of Appenders. However, this means you need to configure most Layouts with a Charset to
insure the byte array contains correct values.

9.1.1 HTMLLayout
The HTMLLayout generates an HTML page and adds each LogEvent to arow in atable.

charset String The character set to use when
converting the HTML String to a byte
array. The value must be a valid
Charset. If not specified, the default
system Charset will be used.

contentType String The value to assign to the Content-
Type header. The default is "text/
html".

locationInfo boolean If true, the filename and line number

will be included in the HTML output.
The default value is false.

title String A String that will appear as the
HTML title.

HTML Layout Parameters

9.1.2 PatternLayout

A flexible layout configurable with pattern string. The goal of this classisto format a LogEvent and
return the results. The format of the result depends on the conversion pattern.

The conversion pattern is closely related to the conversion pattern of the printf functionin C. A
conversion pattern is composed of literal text and format control expressions called conversion specifiers.

Note that any literal text may be included in the conversion pattern.

Each conversion specifier starts with a percent sign (%) and is followed by optional format modifiers and
aconversion character. The conversion character specifies the type of data, e.g. category, priority, date,
thread name. The format modifiers control such things as field width, padding, left and right justification.
Thefollowing is asimple example.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 Layouts 76

L et the conversion pattern be " %-5p [%t]: %m%n" and assume that the log4j environment was set to
use a PatternL ayout. Then the statements

Logger | ogger = LogManager. get Logger (" MyLogger");

| ogger . debug(" Message 1");

| ogger. warn(" Message 2");

would yield the output

DEBUG [nai n] : Message 1

WARN [nmin]: Message 2

Note that there is no explicit separator between text and conversion specifiers. The pattern parser knows
when it has reached the end of a conversion specifier when it reads a conversion character. In the example
above the conversion specifier % -5p means the priority of the logging event should be left justified to a
width of five characters.

If the pattern string does not contain a specifier to handle a Throwable being logged, parsing of the
pattern will act asif the "%xEX" specifier had be added to the end of the string. To suppress formatting of
the Throwable completely simply add "%ex{ 0} " as a specifier in the pattern string.

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

pattern String

replace RegexReplacement Allows portions of the resulting String
to be replaced. If configured, the
replace element must specify the
regular expression to match and the
substitution. This performs a function
similar to the RegexReplacement
converter but applies to the whole
message while the converter only
applies to the String its pattern
generates.

Pattern Layout Parameters

9.1.2.1 Patterns
The conversions that are provided with Log4j are:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 Layouts

©2013, The Apache Software Foundation

c{precision}
logger{precision}

C{precision}
class{precision}

77

Outputs the name of the logger that published the
logging event. The logger conversion specifier
can be optionally followed by precision specifier,
which consists of adecimal integer, or a pattern
starting with a decimal integer.

If aprecision specifier isgiven and it is an integer
value, then only the corresponding number of

right most components of the logger name will be
printed. If the precision contains other non-integer
characters then the name will be abbreviated based
on the pattern. If the precision integer isless than
one the right-most token will still be printed in full.
By default the logger name is printed in full.

%c{1} org.apache. Foo
commons.Foo

%c{2} org.apache. commons.Foo
commons.Foo

%¢c{1.} org.apache. o.a.c.Foo
commons.Foo

%c{1.1.~.~} org.apache. o.a.~.~.Foo
commons.test.
Foo

%c{.} org.apache.Foo
commons.test.
Foo

Outputs the fully qualified class name of the
caller issuing the logging request. This conversion
specifier can be optionally followed by precision
specifier, that follows the same rules as the logger
name converter.

ALL RIGHTS RESERVED.

9 Layouts

©2013,

d{pattern}
date{pattern}

ex{["'none"|"short"|"full"|depth]}
exception{["none"|"short"|"full"|depth]}
throwable{["none"|"short"|"full"|depth]}

file

The Apache Software Foundation -«

78

Outputs the date of the logging event. The date
conversion specifier may be followed by a set of
braces containing a date and time pattern string per
SimpleDateFormat.

The predefined formats are ABSOLUTE, COVPACT,
DATE, | S08601, and | SC8601_BASI C.

Y ou can also use a set of braces containing atime
zoneid per java.util.TimeZone.getTimeZone.

If no date format specifier is given then 1SO8601
format is assumed.

%d{ISO8601} 2012-11-02 14:34:02,781

%d{ISO8601_BASIC} 20121102 143402,781

%d{ABSOLUTE} 14:34:02,781

%d{DATE} 02 Nov 2012
14:34:02,781

%d{COMPACT} 20121102143402781

%d{HH:mm:ss,SSS} 14:34:02,781

%d{dd MMM yyyy 02 Nov 2012

HH:mm:ss,SSS} 14:34:02,781

%d{HH:mm:ss{GMT+0} 18:34:02,781

Outputs the Throwabl e trace that has been bound
to the LoggingEvent, by default thiswill output
the full trace as one would normally find by
acall to Throwable.printStackTrace(). The
throwable conversion word can be followed

by an option in the form % thr owable{short}
which will only output the first line of the
Throwable or % throwable{n} where the first n
lines of the stacktrace will be printed. Specifying
% thr owable{none} or % throwable{0} will
suppress printing of the exception.

Outputs the file name where the logging request was
issued.

ALL RIGHTS RESERVED.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)

9 Layouts 79

highlight{pattern}{style} Adds ANSI colorsto the result of the enclosed
pattern based on the current event's logging level.

The default colors for each level are:

FATAL Bright red

ERROR Bright red

WARN Yellow

INFO Green

DEBUG Cyan

TRACE Black (looks dark grey)

The color names are ANSI names defined in the
AnsiEscape class.

The color and attribute names and are standard, but
the exact shade, hue, or value.

Black Red Greer Yellov Blue Mage Cyan White

Black Red Greer Yellov Blue Mage Cyan White

Color table

Y ou can use the default colors with:
%ighlight{% [%] % 5level: %sg%% hr owabl e}

Y ou can override the default colorsin the optional
{style} option. For example:
%ighlight{% [%] % 5level: %Bsg%% hr owabl e}
{FATAL=whi t e, ERROR=red, WARN=bl ue, | NFO=bl ack,
DEBUG=gr een, TRACE=bl ue}

Y ou can highlight only the a portion of the log
event:
%l [%] %ighlight{% 5level: %sg%% hr owabl e}

Y ou can style one part of the message and

highlight the rest the log event:

%style{% [%]}{bl ack} %i ghlight{% 5l evel :
%rsg%n% hr owabl e}

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Layouts

K{key}
map{key}
MAP{key}

I
location

L
line

m
msg
message

M
method

©2013, The Apache Software Foundation

80

You can also usethe STYLE key to usea

predefined group of colors:

o%ighlight{% [%] %5l evel: % sg% % hr owabl e}
{ STYLE=Logback}

The STY LE vaue can be one of:
Default See above
Logback

FATAL Blinking

bright red
ERROR Bright red
WARN Red
INFO Blue

DEBUG Normal
TRACE Normal

Outputs the entriesin a MapMessage, if oneis
present in the event. The K conversion character
can be followed by the key for the map placed
between braces, asin % K{clientNumber} where
cl i ent Nunber isthe key. The valuein the Map
corresponding to the key will be output. If no
additional sub-option is specified, then the entire
contents of the Map key value pair set is output
using aformat {{key1,val1} {key2val2}}

Outputs location information of the caller which
generated the logging event.

The location information depends on the VM
implementation but usually consists of the fully
qualified name of the calling method followed by
the callers source the file name and line number
between parentheses.

Outputs the line number from where the logging request
was issued.

Outputs the application supplied message associated
with the logging event.

Outputs the method name where the logging request
was issued.

ALL RIGHTS RESERVED.

9 Layouts

marker

p{level name mapping}
level{level name mapping}

-
relative

replace{pattern}{regex}{substitution}

rEx["none”|"short"|"full"|depth],[filters(packages)}
rException["none”|"short”|"full”|depth],[filters(packages)}
rThrowable["'none"|"short”|"full”|
depth],[filters(packages)}

sn
sequenceNumber

©2013, The Apache Software Foundation

81

The name of the marker, if one is present.

Outputs the platform dependent line separator
character or characters.

This conversion character offers practically the
same performance as using non-portable line
separator strings such as"\n", or "\r\n". Thus, itis
the preferred way of specifying aline separator.
Outputs the level of the logging event. A level name
mapping map be provided in the form "level=value,
level=value" where level is the name of the Level and

value is the value that should be displayed instead of the
name of the Level.

Outputs the number of milliseconds elapsed since the
JVM was started until the creation of the logging event.

Replaces occurrences of 'regex’, aregular
expression, with its replacement 'substitution’ in
the string resulting from evaluation of the pattern.
For example, "%replace(Yomsg} {\s}{}" will
remove all spaces contained in the event message.

The pattern can be arbitrarily complex and

in particular can contain multiple conversion
keywords. For instance, "%replace{ %ol ogger
%msg}{\.}{/}" will replace all dotsin the logger
or the message of the event with aforward slash.

The same as the %throwable conversion word
but the stack trace is printed starting with the
first exception that was thrown followed by each
subsequent wrapping exception.

The throwable conversion word can be followed
by an option in the form %rEx{short} which

will only output the first line of the Throwable or
%rEx{n} where thefirst n lines of the stacktrace
will be printed. The conversion word can aso be
followed by "filters(packages)" where packagesis
alist of package namesthat should be suppressed
from stack traces. Specifying %rEx{none} or

% rEx{0} will suppress printing of the exception.

Includes a sequence number that will be incremented
in every event. The counter is a static variable so will
only be unique within applications that share the same
converter Class object.

ALL RIGHTS RESERVED.

9 Layouts

style{pattern{ANSI style}

82

Uses ANSI escape sequences to style the result
of the enclosed pattern. The style can consist of
acomma separated list of style names from the
following table.

Normal
Bright

Dim

Underline

Blink

Reverse

Hidden

Black or FG_Black

Red or FG_Red

Green or FG_Green

Yellow or FG_Yellow

Blue or FG_Blue

Magenta or FG_Magenta

Cyan or FG_Cyan

White or FG_White

Default or FG_Default

BG_Black

BG_Red

BG_Green

BG_Yellow

BG_Blue

BG_Magenta

BG_Cyan

BG_White

For example:

Normal display
Bold

Dimmed or faint
characters

Underlined characters
Blinking characters

Reverse video

Set foreground color to
black

Set foreground color to
red

Set foreground color to
green

Set foreground color to
yellow

Set foreground color to
blue

Set foreground color to
magenta

Set foreground color to
cyan
Set foreground color to
white

Set foreground color to
default (white)

Set background color to
black

Set background color to
red

Set background color to
green

Set background color to
yellow

Set background color to
blue

Set background color to
magenta

Set background color to
cyan

Set background color to
white

9 Layouts

t
thread

X
NDC

X{key}
mdc{key}
MDC{key}

u{"RANDOM" | "TIME"}
uuid

XEx{"none"|"short"|"full"|depth],[filters(packages)}
xException["'none"|"short"|"full”|
depth],[filters(packages)}
xThrowable['none"|"short"|"full”|
depth],[filters(packages)}

83

Outputs the name of the thread that generated the
logging event.

Outputs the Thread Context Stack (also known as the
Nested Diagnostic Context or NDC) associated with the
thread that generated the logging event.

Outputs the Thread Context Map (also known

as the Mapped Diagnostic Context or MDC)
associated with the thread that generated the
logging event. The X conversion character

can be followed by the key for the map placed
between braces, asin % X{clientNumber} where
cl i ent Nunber isthe key. The valueinthe MDC
corresponding to the key will be output. If no
additional sub-option is specified, then the entire
contents of the MDC key value pair set is output
using aformat {{ keyl,vall} {key2,val2}}

See the ThreadContext class for more details.

Includes either a random or a time-based UUID. The
time-based UUID is a Type 1 UUID that can generate up
to 10,000 unique ids per millisecond, will use the MAC
address of each host, and to try to insure uniqueness
across multiple JVMs and/or ClassLoaders on the same
host a random number between 0 and 16,384 will be
associated with each instance of the UUID generator
Class and included in each time-based UUID generated.
Because time-based UUIDs contain the MAC address
and timestamp they should be used with care as they
can cause a security vulnerability.

The same as the %throwable conversion word but
a so includes class packaging information.

At the end of each stack element of the exception,
astring containing the name of the jar file that
contains the class or the directory the classis
located in and the "Implementation-Version"
asfound in that jar's manifest will be added.

If the information is uncertain, then the class
packaging datawill be preceded by atilde, i.e. the
'~' character.

The throwable conversion word can be followed
by an option in the form % XxEx{short} which

will only output the first line of the Throwable or
% XEx{n} where the first n lines of the stacktrace
will be printed. The conversion word can also be
followed by "filters(packages)" where packagesis
alist of package namesthat should be suppressed
from stack traces. Specifying % XEx{none} or

% XEx{0} will suppress printing of the exception.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Layouts 84

% The sequence %% outputs a single percent sign.

By default the relevant information is output asis. However, with the aid of format modifiersit is
possible to change the minimum field width, the maximum field width and justification.

The optional format modifier is placed between the percent sign and the conversion character.

Thefirst optional format modifier isthe left justification flag which isjust the minus (-) character. Then
comes the optional minimum field width modifier. Thisis a decimal constant that represents the minimum
number of characters to output. If the dataitem requires fewer characters, it is padded on either the left

or the right until the minimum width is reached. The default isto pad on the left (right justify) but you
can specify right padding with the left justification flag. The padding character is space. If the dataitem
is larger than the minimum field width, the field is expanded to accommodate the data. The valueis never
truncated.

This behavior can be changed using the maximum field width modifier which is designated by a period
followed by adecimal constant. If the dataitem islonger than the maximum field, then the extra
characters are removed from the beginning of the data item and not from the end. For example, it the
maximum field width is eight and the dataitem is ten characters long, then the first two characters of the
dataitem are dropped. This behavior deviates from the printf function in C where truncation is done from
the end.

Below are various format modifier examples for the category conversion specifier.

%20c false 20 none Left pad with spaces
if the category nhame
is less than 20
characters long.

%-20c true 20 none Right pad with
spaces if the
category name
is less than 20
characters long.

%.30c NA none 30 Truncate from the
beginning if the
category name
is longer than 30
characters.

%20.30c false 20 30 Left pad with spaces
if the category nhame
is shorter than 20
characters. However,
if category name
is longer than 30
characters, then
truncate from the
beginning.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

9 Layouts 85

%-20.30c true 20 30 Right pad with
spaces if the
category name is
shorter than 20
characters. However,
if category name
is longer than 30
characters, then
truncate from the
beginning.

Pattern Converters

9.1.2.2 ANSI Styling on Windows

ANSI escape sequences are supported natively on many platforms but are not by default on Windows. To
enable ANSI support smply add the Jansi jar to your application and Logd4j will automatically make use
of it when writing to the console.

9.1.2.3 Example Patterns

9.Filtered Throwables
This example shows how to filter out classes from unimportant packagesin stack traces.

<properties>
<property nane="filters">org.junit, org.apache. maven, sun.refl ect,java.lang.refl ect</property>
</ properties>

<PatternLayout pattern="%®&Ex{filters(${filters})}wmn"/>
The result printed to the console will appear similar to:

Exception java.lang. ||| egal Argunent Exception: 111 egal Argunent

at org. apache. | oggi ng. | 0g4j . core. pattern. Ext endedThr owabl eTest .
t est Excepti on(Ext endedThr owabl eTest . j ava: 72) [test-cl asses/:?]
suppressed 26 |ines

at $Proxy0. i nvoke(Unknown Source)} [?:7?]
suppressed 3 |lines

Caused by: java.lang. Nul | Poi nter Exception: null pointer

at org. apache. | oggi ng. | 0g4j . core. pattern. Ext endedThr owabl eTest .
t est Excepti on(Ext endedThr owabl eTest . java: 71) ~[test-cl asses/: ?]
30 nore

9.ANS| Styled
Thelog level will be highlighted according to the event'slog level. All the content that follows the level
will be bright green.
<Patt er nLayout >

<pattern>% %i ghlight{%} %tyle{%{1.} [%] % {bold, green}dm</pattern>
</ Patt er nLayout >

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://jansi.fusesource.org/

9 Layouts

9.1.3 RFC5424Layout

86

Asthe name implies, the RFC5424L ayout formats L ogEvents in accordance with RFC 5424, the
enhanced Syslog specification. Although the specification is primarily directed at sending messages
via Syslog, this format is quite useful for other purposes since items are passed in the message as self-

describing key/value pairs.

appName

charset

enterpriseNumber

exceptionPattern

facility

©2013, The Apache Software Foundation

String

String

integer

String

String

ALL RIGHTS RESERVED.

The value to use as the APP-NAME
in the RFC 5424 syslog record.

The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

The IANA enterprise number as
described in RFC 5424

One of the conversion specifiers
from PatternLayout that defines
which ThrowablePatternConverter
to use to format exceptions. Any

of the options that are valid for
those specifiers may be included.
The default is to not include the
Throwable from the event, if any, in
the output.

The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALOQ", "LOCAL1", "LOCALZ2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCALT". These
values may be specified as upper or
lower case characters.

http://tools.ietf.org/html/rfc5424
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

9 Layouts

format

immediateFlush

includeMDC

mdcExcludes

mdclIncludes

mdcRequired

mdcPrefix

©2013,

String

String

String

String

String

String

The Apache Software Foundation -«

boolean

boolean

ALL RIGHTS RESERVED.

87

If set to "RFC5424" the data will be
formatted in accordance with RFC
5424. Otherwise, it will be formatted
as a BSD Syslog record. Note that
although BSD Syslog records are
required to be 1024 bytes or shorter
the SyslogLayout does not truncate
them. The RFC5424Layout also
does not truncate records since the
receiver must accept records of up to
2048 bytes and may accept records
that are longer.

The default structured data id to use
when formatting according to RFC
5424. If the LogEvent contains a
StructuredDataMessage the id from
the Message will be used instead of
this value.

When set to true, each write will

be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

A comma separated list of mdc keys
that should be excluded from the
LogEvent. This is mutually exclusive
with the mdclincludes attribute. This
attribute only applies to RFC 5424
syslog records.

A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive
with the mdcExcludes attribute. This
attribute only applies to RFC 5424
syslog records.

A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:". This attribute only
applies to RFC 5424 syslog records.

9 Layouts 88

messageld String The default value to be used in the
MSGID field of RFC 5424 syslog
records.

newLine boolean If true, a newline will be appended

to the end of the syslog record. The
default is false.

newLineEscape String String that should be used to replace
newlines within the message text.

RFC5424L ayout Parameters

9.1.4 SerializedLayout

The SerializedLayout simply serializes the LogEvent into a byte array. Thisis useful when sending
messages viaJM S or viaa Socket connection. The SerializedL ayout accepts no parameters.

9.1.5 SyslogLayout

The SyslogLayout formats the LogEvent as BSD Syslog records matching the same format used by Log4j
1.2.

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCALO", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCALG", or "LOCAL7". These
values may be specified as upper or
lower case characters.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 Layouts 89

newLineEscape String String that should be used to replace
newlines within the message text.

SyslogL ayout Parameters

9.1.6 XMLLayout

The output of the XML Layout consists of a series of log4j:event elements as defined in the log4j.dtd. If
configured to do so it will output a complete well-formed XML file. The output is designed to be included
as an external entity in a separate file to form a correct XML file.

For example, if abc isthe name of the file where the XML Layout ouput goes, then awell-formed XML
filewould be:

<?xm version="1.0" ?>

<! DOCTYPE | 0g4j : event Set SYSTEM "l og4j.dtd" [<!ENTITY data SYSTEM "abc">] >

<l 0og4j : event Set version="2.0" xm ns:|og4j="http://]oggi ng. apache. org/l og4j/">

</l og4j : event Set >

This approach enforces the independence of the XML Layout and the appender where it is embedded.

Thever si on attribute hel ps components to correctly intrepret output generated by XMLLayout. The
value of this attribute should be "2.0".

Appenders using this layout should have their encoding set to UTF-8 or UTF-16, otherwise events
containing non ASCII characters could result in corrupted log files.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 90

1Bilters

10.1 Filters

Filtersalow Log Eventsto be evaluated to determine if or how they should be published. A Filter will
be called on one if itsfilter methods and will return a Result, which is an Enum that has one of 3 values -
ACCEPT, DENY or NEUTRAL.

Filters may be configured in one of four locations;

1. Context-wide Filters are configured directly in the configuration. Events that are rejected by these
filters will not be passed to loggers for further processing. Once an event has been accepted by a
Context-wide filter it will not be evaluated by any other Context-wide Filters nor will the Logger's
Level be used to filter the event. The event will be evaluated by Logger and Appender Filters
however.

2. Logger Filters are configured on a specified Logger. These are evaluated after the Context-wide
Filters and the Log Level for the Logger. Events that are rejected by these filters will be discarded
and the event will not be passed to a parent Logger regardless of the additivity setting.

3. Appender Filters are used to determine if a specific Appender should handle the formatting and
publication of the event.

4. Appender Reference Filters are used to determine if a Logger should route the event to an appender.

10.1.1 BurstFilter

The BurstFilter provides a mechanism to control the rate at which LogEvents are processed by silently
discarding events after the maximum limit has been reached.

level String Level of messages to be filtered.
Anything at or below this level will be
filtered out if maxBur st has been
exceeded. The default is WARN
meaning any messages that are
higher than warn will be logged
regardless of the size of a burst.

rate float The average number of events per
second to allow.

maxBurst integer The maximum number of events that
can occur before events are filtered
for exceeding the average rate. The
default is 10 times the rate.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 91

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Burst Filter Parameters

A configuration containing the BurstFilter might look like:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" name="MApp" packages="">
<appender s>
<Rol l'ingFil e name="Rol | i ngFi | e" fil eName="1 ogs/ app. | og"
filePattern="I|ogs/app-%{ M\ dd-yyyy}. | og.gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %dm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="RollingFile"/>
</ r oot >
</l ogger s>
</ confi guration>

10.1.2 CompositeFilter

The CompositeFilter provides away to specify more than one filter. It is added to the configuration as a
filters element and contains other filtersto be evaluated. The filters element accepts no parameters.

A configuration containing the CompositeFilter might ook like:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 92

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<filters>
<Mar ker mar ker =" EVENT" onMat ch=" ACCEPT" onM snat ch="NETURAL"/ >
<Dynam cThreshol dFi |l ter key="logi nl d" defaul t Thr eshol d=" ERROR"
onMat ch="ACCEPT" onM smat ch="NEUTRAL" >
<KeyVal uePai r key="User1" val ue="DEBUG'/ >
</ Dynami cThreshol dFi | ter >
</filters>
<appender s>
<File name="Audit" fileNane="|ogs/audit.log">
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
</File>
<Rol l'ingFile name="Rol | ingFile" fil eName="I ogs/ app. | og"
filePattern="Ilogs/app-%{ M} dd-yyyy}. Il og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeri ngPolicy />
</ Rol li ngFi | e>
</ appender s>

<l ogger s>
<l ogger nane="Event Logger" |evel ="info">
<appender-ref ref="Audit"/>
</ | ogger >

<root |evel="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

10.1.3 DynamicThresholdFilter

The DynamicThresholdFilter allows filtering by log level based on specific attributes. For example, if the
user'sloginid is being captured in the ThreadContext Map then it is possible to enable debug logging for
only that user.

defaultThreshold String Level of messages to be filtered. If
there is no matching key in the key/
value pairs then this level will be
compared against the event's level.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters

keyValuePair KeyValuePair(] One or more KeyValuePair elements
that define the matching value for the
key and the Level to evaluate when
the key matches.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is

DENY.

Dynamic Threshold Filter Parameters

Here is a sample configuration containing the DynamicThresholdFilter:
<?xm version="1.0" encodi ng="UTF-8"?>
<configuration status="warn" name="M/App" packages="">
<Dynami cThreshol dFi |l ter key="logi nld" defaul t Thr eshol d=" ERROR"
onMat ch="ACCEPT" onM smat ch="NEUTRAL" >
<KeyVal uePai r key="User1" val ue="DEBUG'/ >
</ Dynami cThreshol dFi | ter >
<appender s>
<Rol l'ingFi |l e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="| ogs/app- %d{ M\ dd- yyyy}. | og. gz">
<BurstFilter level ="INFO' rate="16" naxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %{1.} [%] %Pm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol lingFil e>
</ appender s>
<l ogger s>
<root level ="error">
<appender-ref ref="RollingFile"/>
</root >
</ | ogger s>
</ configuration>

10.1.4 MapFilter
The MapFilter allows filtering against data elements that arein a MapMessage.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 94

keyValuePair KeyValuePair(] One or more KeyValuePair elements
that define the key in the map and
the value to match on. If the same
key is specified more than once
then the check for that key will
automatically be an "or" since a Map
can only contain a single value.

operator String If the operator is "or" then a match by
any one of the key/value pairs will be
considered to be a match, otherwise
all the key/value pairs must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Map Filter Parameters

Asin this configuration, the MapFilter can be used to log particular events:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nanme="MApp" packages="">
<MapFi | ter onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePair key="eventld" val ue="Login"/>
<KeyVal uePari key="eventld" val ue="Logout"/>
</ MapFi l ter>
<appender s>
<Rol l'ingFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
fil ePattern="I|ogs/app- %d{ M\ dd-yyyy}. | og. gz">
<BurstFilter |level ="INFO' rate="16" maxBurst="100"/>
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Ti neBasedTri ggeri ngPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

This sample configuration will exhibit the same behavior as the preceding example since the only logger
configured is the raot.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 95

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFil e name="Rol | ingFile" fil eName="I ogs/ app. | o0g"
filePattern="Ilogs/app-%{ M} dd-yyyy}. | og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<MapFi | ter onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="event|d" val ue="Login"/>
<KeyVal uePari key="eventld" val ue="Logout"/>
</ MapFi | ter>
<appender-ref ref="RollingFile">
</ appender -r ef >
</ root >
</l ogger s>
</ confi guration>

This third sample configuration will exhibit the same behavior as the preceding examples since the only
logger configured is the root and the root is only configured with a single appender reference.
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'i ngFi | e nane="Rol | i ngFi | e" fil eNane="1| ogs/ app. | og"
filePattern="Ilogs/app-%{ M\ dd-yyyy}. Il og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %P%</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile">
<MapFi | ter onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="eventld" val ue="Logi n"/>
<KeyVal uePari key="eventld" val ue="Logout"/>

</ MapFi | ter>

</ appender -r ef >
</ root >
</l ogger s>

</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters

96

10.1.5 MarkerFilter

The MarkerFilter compares the configured Marker value against the Marker that isincluded in the
LogEvent. A match occurs when the Marker name matches either the Log Event's Marker or one of its
parents.

marker String The name of the Marker to compare.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Marker Filter Parameters

A sample configuration that only allows the event to be written by the appender if the Marker matches:
<?xm version="1.0" encodi ng="UTF- 8" ?>

<configuration status="warn" nane="M/App" packages="">
<appender s>
<Rol I'i ngFi | e nanme="Rol | i ngFi | e" fil eNane="1ogs/ app. | og"
filePattern="I|ogs/app- %{ M} dd-yyyy}. | og. gz">
<Mar ker Fi | ter marker="FLOW onMat ch="ACCEPT" onM smat ch="DENY"/>
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %dw</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="RollingFile"/>
</ r oot >
</ | ogger s>
</ configuration>

10.1.6 RegexFilter

The RegexFilter allows the formatted or unformatted message to be compared against aregular
expression.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 97

regex String The regular expression.

useRawMsg boolean If true the unformatted message will
be used, otherwise the formatted
message will be used. The default
value is false.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Regex Filter Parameters

A sample configuration that only allows the event to be written by the appender if it contains the word
"test":
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="M/App" packages="">
<appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="1 ogs/ app. | 0g"
filePattern="I|ogs/app- %{ M\ dd-yyyy}. | og. gz">
<RegexFilter regex=".* test .*" onMatch="ACCEPT" onM smat ch="DENY"/>
<Pat t er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ configuration>

10.1.7 StructuredDataFilter
The StructuredDataFilter is a MapFilter that also alows filtering on the event id, type and message.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters

keyValuePair

operator

onMatch

onMismatch

KeyValuePair[]

String

String

String

StructuredData Filter Parameters

98

One or more KeyValuePair elements
that define the key in the map

and the value to match on. "id",
"id.name", "type", and "message"
should be used to match on the
StructuredDatald, the name portion
of the StructuredDatald, the

type, and the formatted message
respectively. If the same key is
specified more than once then the
check for that key will automatically
be an "or" since a Map can only
contain a single value.

If the operator is "or" then a match by
any one of the key/value pairs will be
considered to be a match, otherwise
all the key/value pairs must match.

Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Asin this configuration, the StructuredDataFilter can be used to log particular events:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 99

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<StructuredDat aFi | ter onMat ch="ACCEPT" onM snat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="id" val ue="Login"/>
<KeyVal uePari key="id" val ue="Logout"/>
</ StructuredDataFilter>
<appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="1 ogs/ app. | o0g"
filePattern="Ilogs/app-%{ M} dd-yyyy}. | og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeri ngPolicy />
</ Rol li ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

10.1.8 ThreadContextMapFilter
The ThreadContextM apFilter alows filtering against data elements that are in the ThreadContext Map.

keyValuePair KeyValuePair[] One or more KeyValuePair elements
that define the key in the map and
the value to match on. If the same
key is specified more than once
then the check for that key will
automatically be an "or" since a Map
can only contain a single value.

operator String If the operator is "or" then a match by
any one of the key/value pairs will be
considered to be a match, otherwise
all the key/value pairs must match.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters

100

onMismatch String Action to take when the filter does

not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

ThreadContext Map Filter Parameters
A configuration containing the ThreadContextM apFilter might look like:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" name="MApp" packages="">
<Thr eadCont ext MapFi | t er onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="User 1" val ue="DEBUG'/ >
<KeyVal uePai r key="User2" val ue="WARN'/>
</ Thr eadCont ext MapFi | t er >
<appender s>
<Rol l'ingFil e name="Rol | i ngFi | e" fil eName="1 ogs/ app. | og"
filePattern="I|ogs/app-%{ M\ dd-yyyy}. | og.gz">
<BurstFilter |evel ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt er nLayout >
<Ti meBasedTri ggeri ngPolicy />
</Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |evel="error">
<appender-ref ref="RollingFile"/>
</ r oot >
</l ogger s>
</ confi guration>

The ThreadContextMapFilter can also be applied to alogger for filtering:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters 101

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFile name="Rol | ingFile" fil eName="I ogs/ app. | og"
filePattern="Ilogs/app-%{ M} dd-yyyy}. | og.gz">
<BurstFilter level ="INFO' rate="16" maxBurst="100"/>
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %Pm</pattern>
</ Patt ernLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
<Thr eadCont ext MapFi | t er onMat ch="ACCEPT" onM smat ch="NEUTRAL" operator="or">
<KeyVal uePai r key="foo0" val ue="bar"/>
<KeyVal uePai r key="User2" val ue="WARN'/ >
</ Thr eadCont ext MapFi | t er >
</ root >
</l ogger s>
</ confi guration>

10.1.9 ThresholdFilter

Thisfilter returns the onMatch result if the level in the LogEvent is the same or more specific than the
configured level and the onMismatch value otherwise. For example, if the ThresholdFilter is configured
with Level ERROR and the LogEvent contains Level DEBUG then the onMismatch value will be
returned since ERROR events are more specific than DEBUG.

level String A valid Level name to match on.

onMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

onMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.
Threshold Filter Parameters

A sample configuration that only allows the event to be written by the appender if the level matches:

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

10 Filters

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp"

<appender s>

<Rol l'ingFil e name="Rol | ingFile" fil eName="I ogs/ app. | o0g"
filePattern="Ilogs/app-%{ M} dd-yyyy}. | og.gz">
<Threshol dFil ter |evel ="TRACE" onMat ch="ACCEPT"

<Patt er nLayout >

<pattern>%d % %C{1.} [%] %Pm</pattern>

</ Patt ernLayout >
<Ti meBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">

<appender-ref ref="RollingFile"/>

</ root >
</l ogger s>
</ confi guration>

10.1.10 TimekFilter

packages="">

102

onM smat ch="DENY"/ >

The time filter can be used to restrict filter to only a certain portion of the day.

start String
end String
timezone String
onMatch String
onMismatch String

Time Filter Parameters

A time in HH:mm:ss format.

A time in HH:mm:ss format.
Specifying an end time less than the
start time will result in no log entries
being written.

The timezone to use when
comparing to the event timestamp.

Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

A sample configuration that only allows the event to be written by the appender from 5:00 to 5:30 am

each day using the default timezone:

©2013, The Apache Software Foundation

ALL RIGHTS RESERVED.

10 Filters

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration status="warn" nane="MApp" packages="">
<appender s>
<Rol l'ingFil e name="Rol | ingFile" fil eName="I ogs/ app. | o0g"
filePattern="Ilogs/app-%{ M} dd-yyyy}. | og.gz">
<TienFilter start="05:00: 00" end="05:30: 00" onMat ch="ACCEPT"
<Patt er nLayout >
<pattern>%d % %C{1.} [%] %dm</pattern>
</ Patt ernLayout >
<Ti neBasedTri ggeringPolicy />
</ Rol l'i ngFi | e>
</ appender s>
<l ogger s>
<root |level="error">
<appender-ref ref="RollingFile"/>
</ root >
</l ogger s>
</ confi guration>

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

onM smat ch="DENY"/ >

103

11 JMX 104

11.1 IMX
JMX support isincomplete at thistime. Patches are welcome!

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Logging Separation 105

1Pogging Separation

12.1 Logging Separation

There are many well known use cases where applications may share an environment with other
applications and each has a need to have its own, separate logging environment. This purpose of this
section is to discuss some of these cases and ways to accomplish this.

12.1.1 Use Cases

This section describes some of the use cases where Log4j could be used and what its desired behavior
might be.

12.1.1.1 Standalone Application

Standal one applications are usually relatively simple. They typically have one bundled executable that
regquires only a single logging configuration.

12.1.1.2 Web Applications

A typical web application will be packaged as a WAR file and will include al of its dependenciesin
WEB-INF/lib and will have its configuration file located in the class path or in alocation configured in
the web.xml.

12.1.1.3 Java EE Applications

A Java EE application will consist of one or more WAR files and possible some EJBs, typically all
packaged in an EAR file. Usually, it is desirable to have a single configuration that appliesto al the
components in the EAR. The logging classes will generally be placed in alocation shared across all the
components and the configuration needs to also be shareable.

12.1.1.4 "Shared" Web Applications and REST Service Containers

In this scenario there are multiple WAR files deployed into a single container. Each of the applications
should use the same logging configuration and share the same logging implementation across each of the
web applications. When writing to files and streams each of the applications should share them to avoid
the issues that can occur when multiple components try to write to the same file(s) through different File
objects, channels, etc.

12.1.2 Approaches

12.1.2.1 The Simple Approach

The simplest approach for separating logging within applicationsis to package each application with its
own copy of Log4j and to use the BasicContextSelector. While this works for standal one applications
and may work for web applications and possibly Java EE applications, it does not work at all in the last

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

12 Logging Separation 106

case. However, when this approach does work it should be used as it is ultimately the simplest and most
straightforward way of implementing logging.

12.1.2.2 Using Context Selectors
There are afew patterns for achieving the desired state of logging separation using ContextSelectors:

1. Place thelogging jarsin the container's classpath and set the system property
"L ogdjContextSelector” to "org.apache.logging.logdj.core.sel ector.BasicContextSelector”. Thiswill
create asingle LoggerContext using a single configuration that will be shared across all applications.

2. Place the logging jarsin the container's classpath and use the default ClassL oaderContextSel ector.
Include the L og4jContextL istener in each web application. Each ContextL istener can be configured
to share the same configuration used at the container or they can be individually configured. If status
logging is set to debug in the configuration there will be output from when logging isinitialized in
the container and then again in each web application.

3. Use the INDIContextFilter and set the system property "L og4jContextSel ector” to
"org.apache.logging.logdj.core.selector. JNDIContextSel ector”. Thiswill cause the container to use
JNDI to locate each's web application’s LoggerContext.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 107

1Bxtending Log4j

13.1 Extending Log4j

Log4j 2 provides numerous ways that it can be manipulated and extended. This section includes an
overview of the various ways that are directly supported by the Log4j 2 implementation.

13.1.1 LoggerContextFactory

The LoggerContextFactory bindsthe Logdj API to its implementation. The Log4j LogManager locates a
LoggerContextFactory by locating all instances of META-INF/logdj-provider.xml, afile that conforms
to the java.util .Properties DTD, and then inspecting each to verify that it specifies avalue for the
"Log4jAPIVersion" property that conforms to the version required by the LogManager. If more than one
valid implementation is located the value for "FactoryPriority" will be used to identify the factory with
the highest priority. Finally, the value of the ""LoggerContextFactory" property will be used to locate the
LoggerContextFactory. In Log4j 2 thisis provided by Log4jContextFactory.

Applications may change the L oggerContextFactory that will be used by

1. Implementing a new L oggerContextFactory and creating alog4j-provider.xml to reference it making
sure that it has the highest priority.

2. Create anew logdj-provider.xml and configure it with the desired L oggerContextFactory making
sure that it has the highest priority.

3. Setting the system property "log4j2.LoggerContextFactory” to the name of the
L oggerContextFactory classto use.

4. Setting the property "logdj2.L oggerContextFactory" in a properties file named
"logdj2.LogManager.properties’ to the name of the LoggerContextFactory classto use. The
properties file must be on the classpath.

13.1.2 ContextSelector

ContextSelectors are called by the Log4j LoggerContext factory. They perform the actual work
of locating or creating a LoggerContext, which is the anchor for Loggers and their configuration.
ContextSelectors are free to implement any mechanism they desire to manage L oggerContexts.
The default Log4jContextFactory checks for the presence of a System Property named
"LogdjContextSelector". If found, the property is expected to contain the name of the Class that
implements the ContextSel ector to be used.

Log4j provides three ContextSelectors:
BasicContextSelector

Uses either aLoggerContext that has been stored in a ThreadL ocal or a common
L oggerContext.

ClassL oader ContextSelector

Associates L oggerContexts with the ClassL oader that created the caller of the getL ogger call.
JNDI ContextSelector

L ocates the LoggerContext by querying JNDI.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 108

13.1.3 ConfigurationFactory

Modifying the way in which logging can be configured is usually one of the areas with the most
interest. The primary method for doing that is by implementing or extending a ConfigurationFactory.
Log4j provides two ways of adding new ConfigurationFactories. Thefirst is by defining the system
property named "log4j.configurationFactory" to the name of the class that should be searched first for a
configuration. The second method is by defining the ConfigurationFactory as a Plugin.

All the ConfigurationFactories are then processed in order. Each factory is called onits
getSupportedTypes method to determine the file extensions it supports. If aconfiguration file islocated
with one of the specified file extensions then control is passed to that ConfigurationFactory to load the
configuration and create the Configuration object.

Most Configuration extend the BaseConfiguration class. This class expects that the subclass will process
the configuration file and create a hierarchy of Node objects. Each Nodeisfairly smplein that it consists
of the name of the node, the name/value pairs associated with the node, The PluginType of the node and
alList of all of its child Nodes. BaseConfiguration will then be passed the Node tree and instantiate the
configuration objects from that.

@l ugi n(name = "XM.Configurati onFactory", type = "ConfigurationFactory")
@x der (5)
public class XM.ConfigurationFactory extends ConfigurationFactory {

/**

* Valid file extensions for XM files.

*/

public static final String[] SUFFIXES = new String[] {".xm", "*"},;

/**
* Return the Configuration.
* @aram source The | nput Source.
* @eturn The Configuration.
*/
public Configuration getConfiguration(lnputSource source) {
return new XM.Confi guration(source, configFile);

}

/**

* Returns the file suffixes for XML files.

* @eturn An array of File extensions.

*/

public String[] getSupportedTypes() {
return SUFFI XES;

}

13.1.4 LoggerConfig

L oggerConfig objects are where Loggers created by applications tie into the configuration. The Log4j
implementation requires that all LoggerConfigs be based on the LoggerConfig class, so applications

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 109

wishing to make changes must do so by extending the LoggerConfig class. To declare the new
LoggerConfig, declareit as a Plugin of type "Core" and providing the name that applications should
specify as the element name in the configuration. The LoggerConfig should aso define a PluginFactory
that will create an instance of the LoggerConfig.

The following example shows how the root LoggerConfig simply extends a generic LoggerConfig.

@ ugi n(name = "root", type = "Core", printCbject = true)
public static class RootlLogger extends LoggerConfig {

@ ugi nFactory
public static LoggerConfig createLogger (@Il ugi nAttr("additivity") String additivity,
@l ugi nAttr("level") String | oggerlLevel,
@ ugi nEl emrent ("appender-ref") AppenderRef[] refs,
@ ugi nEl emrent ("filters") Filter filter) {
Li st <Appender Ref > appender Refs = Arrays. asList(refs);
Level |evel;
try {
| evel = |oggerlLevel == null ? Level.ERROR : Level.val ueO (| oggerLevel.toUpperCase());
} catch (Exception ex) {
LOGGER error("Invalid Log | evel specified: {}. Defaulting to Error", |oggerlLevel);
| evel = Level . ERROR;
}

bool ean additive = additivity == null ? true : Bool ean. parseBool ean(additivity);

return new Logger Confi g(LogManager. ROOT_LOGGER _NAME, appenderRefs, filter, level, additive);

13.1.5 Lookups

Lookups are the means in which parameter substitution is performed. During Configuration initialization
an "Interpolator" is created that locates all the Lookups and registers them for use when a variable needs
to be resolved. The interpolator matches the "prefix" portion of the variable name to aregistered Lookup
and passes control to it to resolve the variable.

A Lookup must be declared using a Plugin annotation with atype of "Lookup”. The name specified

on the Plugin annotation will be used to match the prefix. Unlike other Plugins, Lookups do not use a
PluginFactory. Instead, they are required to provide a constructor that accepts no arguments. The example
below shows a Lookup that will return the value of a System Property.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j llO

@l ugi n(name = "sys", type = "Lookup")
public class SystenPropertiesLookup inplenments StrLookup {

/**
* Lookup the value for the key.
* @aramkey the key to be |ooked up, may be null
* @eturn The value for the key.
*/
public String | ookup(String key) {
return System get Property(key);
}

/**
* Lookup the value for the key using the data in the LogEvent.
* @aram event The current LogEvent.
* @aramkey the key to be |ooked up, may be null
* @eturn The val ue associated with the key.
*/
public String | ookup(LogEvent event, String key) {
return System get Property(key);
}

13.1.6 Filters

As might be expected, Filters are the used to reject or accept |og events as they pass through the logging
system. A Filter is declared using a Plugin annotation of type "Core" and an elementType of "filter". The
name attribute on the Plugin annotation is used to specify the name of the element users should use to
enable the Filter. Specifying the printObject attribute with avalue of "true" indicates that a call to toString
will format the arguments to the filter as the configuration is being processed. The Filter must also specify
a PluginFactory method that will be called to create the Filter.

The example below shows a Filter used to reject LogEvents based upon their logging level. Notice the
typical pattern where all the filter methods resolve to a single filter method.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j

@ ugi n(name = "Threshol dFilter", type = "Core", elenentType = "filter", printObject
public final class Threshol dFilter extends AbstractFilter {

private final Level |evel;
private Threshol dFilter(Level |evel, Result onMatch, Result onMsmatch) {

super (onhat ch, onM smatch);
this.level = level;

public Result filter(Logger |ogger, Level |evel, Marker nmarker, String nsg, Object[] parans) {

return filter(level);

111

= true)

public Result filter(Logger |ogger, Level |evel, Mrker nmarker, Object nsg, Throwable t) {

return filter(level);

public Result filter(Logger |ogger, Level |evel, Mrker nmarker, Message nsg, Throwable t) {

return filter(level);

@verride
public Result filter(LogEvent event) {
return filter(event.getlLevel ());

private Result filter(Level level) {
return | evel.isAtLeast AsSpecificAs(this.level) ? onMatch : onM smatch;

@verride
public String toString() {
return level.toString();

/**

* Create a ThresholdFilter.

* @aram | oggerLevel The |og Level.

* @aram match The action to take on a match.

* @aram m smatch The action to take on a m smatch.
* @eturn The created Threshol dFilter.

*/

@ ugi nFactory

public static Threshol dFilter createFilter(@ uginAttr("level") String |oggerlLevel,

@l ugi nAttr("onMatch") String natch,

@ ugi nAttr("onM smatch") String msmatch) {

Level level = loggerLevel == null ? Level.ERROR : Level.tolLevel (I oggerLevel.toUpperCase());

Result onMatch = match == null ? Result.NEUTRAL : Result.val ueO (nmatch. toUpper Case());

Result onM smatch = mismatch == null ? Result.DENY : Result.val ueO (m snatch. t oUpper Case());

return new Threshol dFilter(level, onMatch, onM smatch);

}©201}3, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 112

13.1.7 Appenders

Appenders are passed an event, (usually) invoke a Layout to format the event, and then "publish” the
event in whatever manner is desired. Appenders are declared as Plugins with atype of "Core" and an
elementType of "appender”. The name attribute on the Plugin annotation specifies the name of the
element users must provide in their configuration to use the Appender. Appender's should specify
printObject as "true" if the toString method renders the values of the attributes passed to the Appender.

Appenders must also declare a PluginFactory method that will create the appender. The example below
shows an Appender named " Stub™ that can be used as an initia template.

Most Appenders use Managers. A manager actually "owns' the resources, such as an OutputStream or
socket. When a reconfiguration occurs a new Appender will be created. However, if nothing significant
in the previous Manager has change the new Appender will simply reference it instead of creating a new
one. Thisinsures that events are not lost while a reconfiguration is taking place without requiring that
logging pause while the reconfiguration takes place.

@l ugi n(name = "Stub", type = "Core", elenmentType = "appender", printCbject = true)
public final class StubAppender extends Qutput StreamAppender {

private StubAppender(String nanme, Layout |layout, Filter filter, StubManager manager,
bool ean handl eExceptions) {

}

@ ugi nFactory

public static StubAppender createAppender (@l ugi nAttr("nane") String nane,
@l ugi nAttr (" suppressExceptions") String suppress,
@l ugi nEl enent ("l ayout") Layout |ayout,
@l ugi nEl enent ("filters") Filter filter) {

bool ean handl eExceptions = suppress == null ? true : Bool ean. val ueOf (suppress);
if (name == null) {
LOGGER. error("No nane provided for StubAppender");
return null;
}
St ubManager nanager = StubManager. get St ubManager (nane) ;
if (manager == null) {
return null;
}
if (layout == null) {
| ayout = PatternLayout.createlLayout(null, null, null, null);
}

return new St ubAppender (nanme, |ayout, filter, manager, handl eExceptions);

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 113

13.1.8 Layouts

Layouts perform the formatting of events into the printable text that iswritten by Appenders to some
destination. All Layouts must implement the Layout interface. Layouts that format the event into a String
should extend AbstractStringL ayout, which will take care of converting the String into the required byte
array.

Every Layout must declareitself as a plugin using the Plugin annotation. The type must be "Core", and
the elementType must be "Layout". printObject should be set to trueif the plugin's toString method will
provide arepresentation of the object and its parameters. The name of the plugin must match the value
users should use to specify it as an element in their Appender configuration. The plugin also must provide
a static method annotated as a PluginFactory and with each of the methods parameters annotated with
PluginAttr or PluginElement as appropriate.

@l ugi n(name = "Sanpl eLayout", type = "Core", elementType = "layout", printCbject = true)
public class Sanpl eLayout extends Abstract StringlLayout {

protected Sanpl eLayout (bool ean | ocati onl nfo, bool ean properties, bool ean conplete,
Charset charset) {

}

@ ugi nFactory
public static Sanpl eLayout createlLayout (@l ugi nAttr("locationlnfo") String |ocationlnfo,
@l ugi nAttr("properties") String properties,
@l ugi nAttr("conplete") String conplete,
@l ugi nAttr("charset") String charset) {
Charset ¢ = Charset.isSupported("UTF-8") ?
Charset.forName("UTF-8") : Charset.defaul tCharset();
if (charset !'=null) {
if (Charset.isSupported(charset)) {
¢ = Charset.forName(charset);

} else {
LOGCGER error("Charset " + charset + " is not supported for layout, using " +
c. di spl ayName());

}
}
bool ean info = locationlnfo == null ? false : Bool ean. val ueOf (| ocati onl nfo);
bool ean props = properties == null ? false : Bool ean. val ueOr (properties);
bool ean conp = conplete == null ? false : Bool ean. val ueO (conpl ete);

return new Sanpl eLayout (i nfo, props, conp, c);

13.1.9 PatternConverters

PatternConverters are used by the PatternLayout to format the log event into a printable String. Each
Converter isresponsible for asingle kind of manipulation, however Converters are free to format the
event in complex ways. For example, there are several converters that manipulate Throwables and format
them in various ways.

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

13 Extending Log4j 114

A PatternConverter must first declare itself as a Plugin using the standard Plugin annotation but must
specify value of "Converter" on the type attribute. Furthermore, the Converter must also specify the
ConverterK eys attribute to define the tokens that can be specified in the pattern (preceded by a'%'
character) to identify the Converter.

Unlike most other Plugins, Converters do not use a PluginFactory. Instead, each Converter is required
to provide a static newlnstance method that accepts an array of Strings as the only parameter. The String
array are the values that are specified within the curly braces that can follow the converter key.

The following shows the skeleton of a Converter plugin.

@l ugi n(name = "query", type = "Converter")
@onverterKeys({"q", "query"})
public final class QueryConverter extends LogEventPatternConverter {

public QueryConverter(String[] options) {
}

public static QueryConverter new nstance(final String[] options) {
return new QueryConverter(options);

}

13.1.10 Custom Plugins

©2013, The Apache Software Foundation « ALL RIGHTS RESERVED.

	Table of Contents
	Introduction
	Architecture
	Log4j 1.x Migration
	API
	Plugins
	Lookups
	Appenders
	Filters
	JMX
	Logging Separation
	Extending Log4j

