
..

Apache Log4j 2
v. 2.0-beta3
User's Guide

..

The Apache Software Foundation 2012-11-11

T a b l e o f C o n t e n t s i

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Table of Contents
..

1. Table of Contents . i

2. Introduction . 1

3. Architecture . 3

4. Log4j 1.x Migration . 10

5. API . 16

6. Configuration .

7. Plugins . 37

8. Lookups . 40

9. Appenders . 43

10. Layouts .

11. Filters . 85

12. JMX . 98

13. Logging Separation . 99

14. Extending Log4j . 101

T a b l e o f C o n t e n t s ii

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1 I n t r o d u c t i o n 1

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

1Introduction
..

1.1 Welcome to Log4j 2!

1.1.1 Introduction

Almost every large application includes its own logging or tracing API. In conformance with this rule,
the E.U. SEMPER project decided to write its own tracing API. This was in early 1996. After countless
enhancements, several incarnations and much work that API has evolved to become log4j, a popular
logging package for Java. The package is distributed under the Apache Software License, a fully-fledged
open source license certified by the open source initiative. The latest log4j version, including full-source
code, class files and documentation can be found at http://logging.apache.org/log4j/2.0/index.html.

Inserting log statements into code is a low-tech method for debugging it. It may also be the only way
because debuggers are not always available or applicable. This is usually the case for multithreaded
applications and distributed applications at large.

Experience indicates that logging was an important component of the development cycle. It offeres
several advantages. It provides precise context about a run of the application. Once inserted into the
code, the generation of logging output requires no human intervention. Moreover, log output can be
saved in persistent medium to be studied at a later time. In addition to its use in the development cycle, a
sufficiently rich logging package can also be viewed as an auditing tool.

As Brian W. Kernighan and Rob Pike put it in their truly excellent book "The Practice of Programming"

 As personal choice, we tend not to use debuggers beyond getting a

 stack trace or the value of a variable or two. One reason is that it

 is easy to get lost in details of complicated data structures and

 control flow; we find stepping through a program less productive

 than thinking harder and adding output statements and self-checking

 code at critical places. Clicking over statements takes longer than

 scanning the output of judiciously-placed displays. It takes less

 time to decide where to put print statements than to single-step to

 the critical section of code, even assuming we know where that

 is. More important, debugging statements stay with the program;

 debugging sessions are transient.

Logging does have its drawbacks. It can slow down an application. If too verbose, it can cause scrolling
blindness. To alleviate these concerns, log4j is designed to be reliable, fast and extensible. Since logging
is rarely the main focus of an application, the log4j API strives to be simple to understand and to use.

1.1.2 Log4j 2

Log4j 1.x has been widely adopted and used in many applications. However, through the years
development on it has slowed down. It has become more difficult to maintain due to its need to
be compliant with very old versions of Java. Its alternative, SLF4J/Logback made many needed
improvements to the framework. So why bother with Log4j 2? Here are a few of the reasons.

1. Log4j 2 is designed to be usable as an audit logging framework. Both Log4j 1.x and Logback
will lose events while reconfiguring. Log4j 2 will not. in Logback exceptions in Appenders are

http://www.semper.org
http://www.opensource.org
http://logging.apache.org/log4j/2.0/index.html

1 I n t r o d u c t i o n 2

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

never visible to the application. In Log4j 2 Appenders can be configured to allow the exception to
percolate to the application

2. Log4j 2 uses a Plugin system that makes it extremely easy to extend the framework by adding new
Appenders, Filters, Layouts, Lookups, and Pattern Converters without requiring any changes to
Log4j.

3. The performance of Log4j 2 is similar to that of Logback. It is slightly slower in some tests and
faster in others.

4. Due to the Plugin system configuration is simpler. Entries in the configuration do not require a class
name to be specified.

5. Support for Message objects. Messages allow support for interesting and complex constructs to be
passed through the logging system and be efficiently manipulated. Users are free to create their own
Message types and write custom Layouts, Filters and Lookups to manipulate them.

6. Log4j 1.x supports Filters on Appenders. Logback added TurboFilters to allow filtering of events
before they are processed by a Logger. Log4j 2 supports Filters that can be configured to process
events before they are handled by a Logger, as they are processed by a Logger or on an Appender.

7. Many Logback Appenders do not accept a Layout and will only send data in a fixed format. Most
Log4j 2 Appenders accept a Layout, allowing the data to be transported in any format desired.

8. Layouts in Log4j 1.x and Logback return a String. This resulted in the problems discussed at
Logback Encoders. Log4j 2 takes the simpler approach that Layouts always return a byte array. This
has the advantage that it means they can be used in virtually any Appender, not just the ones that
write to an OutputStream.

9. The Syslog Appender supports both TCP and UDP as well as support for the BSD syslog and the
RFC 5424 formats.

10.Log4j 2 takes advantage of Java 5 concurrency support and performs locking at the lowest level
possible. Log4j 1.x has known deadlock issues. Many of these are fixed in Logback but many
Logback classes still require synchronization at a fairly high level.

11.It is an Apache Software Foundation project following the community and support model used by
all ASF projects. If you want to contribute or gain the right to commit changes just follow the path
outlined at Contributing

http://logback.qos.ch/manual/encoders.html
http://logback.qos.ch/manual/encoders.html
http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424
http://jakarta.apache.org/site/contributing.html

2 A r c h i t e c t u r e 3

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

2Architecture
..

2.1 Architecture

2.1.1 Main Components

Log4j uses the classes shown in the diagram below.

Applications using the Log4j 2 API will request a Logger with a specific name from the LogManager.
The LogManager will locate the appropriate LoggerContext and then obtain the Logger from it. If the
Logger must be created it will be associated with the LoggerConfig that contains either a) the same
name as the Logger, b) the name of a parent package, or c) the root LoggerConfig. LoggerConfig objects
are created from Logger declarations in the configuration. The LoggerConfig is associated with the
Appenders that actually deliver the LogEvents.

2.1.1.1 Logger Hierarchy

The first and foremost advantage of any logging API over plain System.out.println resides in its
ability to disable certain log statements while allowing others to print unhindered. This capability assumes
that the logging space, that is, the space of all possible logging statements, is categorized according to
some developer-chosen criteria.

In Log4j 1.x the Logger Hierarchy was maintained through a relationship between Loggers. In Log4j
2 this relationship no longers exists. Instead, the hierarchy is maintained in the relationship between
LoggerConfig objects.

2 A r c h i t e c t u r e 4

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Loggers and LoggerConfigs are named entities. Logger names are case-sensitive and they follow the
hierarchical naming rule:

Named Hierarchy

A LoggerConfig is said to be an ancestor of another LoggerConfig if its name followed by a
dot is a prefix of the descendant logger name. A LoggerConfig is said to be a parent of a child
LoggerConfig if there are no ancestors between itself and the descendant LoggerConfig.

For example, the LoggerConfig named "com.foo" is a parent of the LoggerConfig named
"com.foo.Bar". Similarly, "java" is a parent of "java.util" and an ancestor of
"java.util.Vector". This naming scheme should be familiar to most developers.

The root LoggerConfig resides at the top of the LoggerConfig hierarchy. It is exceptional in that it always
exists and it is part of every hierarchy. A Logger that is directly linked to the root LoggerConfig can be
obtained as follows:

Logger logger = LogManager.getLogger(LogManager.ROOT_LOGGER_NAME);

All other Loggers can be retrieved using the LogManager.getLogger static method and passing the
name of the desired Logger. Further informaiton on the Logging API can be found at Log4j 2 API.

2.1.1.2 LoggerContext

The LoggerContext acts as the anchor point for the Logging system. However, it is possible to have
multiple active LoggerContexts in an application depending on the circumstances. More details on the
LoggerContext are at Log Separation.

2.1.1.3 Configuration

Every LoggerContext has an active Configuration. The Configuration contains all the Appenders,
context-wide Filtes, LoggerConfigs and contains the reference to the StrSubstitutor. During
reconfiguration two Configuration objects will exist. Once all Loggers have been redirected to the new
Configuration, the old Configuration will be stopped and discarded.

2.1.1.4 Logger

As stated previously, Loggers are created by calling LogManager.getLogger. The Logger itself performs
no direct actions. It simply has a name and is associated with a LoggerConfig. It extends AbstractLogger
and implements the required methods. As the configuration is modified Loggers may become associated
with a different LoggerConfig, thus causing their behavior to be modified.

Retrieving Loggers

Calling the getLogger method with the same name will always return a reference to the exact same
Logger object.

For example, in

 Logger x = Logger.getLogger("wombat");

 Logger y = Logger.getLogger("wombat");

2 A r c h i t e c t u r e 5

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

x and y refer to exactly the same Logger object.

Configuration of the log4j environment is typically done at application initialization. The preferred way is
by reading a configuration file. This is discussed in Configuration.

Log4j makes it easy to name Loggers by software component. This can be accomplished by instantiating
a Logger in each class, with the logger name equal to the fully qualified name of the class. This is a
useful and straightforward method of defining loggers. As the log output bears the name of the generating
Logger, this naming strategy makes it easy to identify the origin of a log message. However, this is only
one possible, albeit common, strategy for naming loggers. Log4j does not restrict the possible set of
loggers. The developer is free to name the loggers as desired.

Nevertheless, naming loggers after the class where they are located seems to be the best strategy known
so far.

2.1.1.5 LoggerConfig

LoggerConfig objects are created when Loggers are declared in the logging configuration. The
LoggerConfig contains a set of Filters that must allow the LogEvent to pass before it will be passed to any
Appenders. It contains references to the set of Appenders that should be used to process the event.

Log Levels

LoggerConfigs will be assigned a Log Level. The set of possible levels includes (TRACE, DEBUG,
INFO, WARN, ERROR and FATAL). Note that in Log4j 2, the Level is an Enum and cannot be sub-
classed. Users who desire more granularity are encouraged to use Markers instead.

Log4j 1.x and Logback both have the concept of "Level Inheritance". In Log4j 2, Loggers and
LoggerConfigs are two different objects so this concept is implemented differently. Each Logger
references the appropriate LoggerConfig which in turn can reference its parent, thus achieving the same
effect.

Below are five tables with various assigned level values and the resulting levels that will be associated
with each Logger. Note that in all these cases if the root LoggerConfig is not configured a default Level
will be assigned to it.

Logger Name Assigned LoggerConfig level

root root DEBUG

X root DEBUG

X.Y root DEBUG

X.Y.Z root DEBUG

Example 1

In example 1 above, only the root logger is configured and has a Log Level. All the other Loggers
reference the root LoggerConfig and use its Level.

Logger Name Assigned LoggerConfig level

http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch/manual/architecture.html#effectiveLevel

2 A r c h i t e c t u r e 6

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

root root DEBUG

X X ERROR

X.Y X.Y INFO

X.Y.Z X.Y.Z WARN

Example 2

In example 2, all loggers have a configured LoggerConfig and obtain their Level from it.

Logger Name Assigned LoggerConfig level

root root DEBUG

X X ERROR

X.Y X ERROR

X.Y.Z X.Y.Z WARN

Example 3

In example 3, the loggers root, X and X.Y.Z each have a configured LoggerConfig with the same
name. The Logger X.Y does not have a configured LoggerConfig with a matching name so uses the
configuration of LoggerConfig X since that is the LoggerConfig whose name has the longest match to the
start of the Logger's name.

Logger Name Assigned LoggerConfig level

root root DEBUG

X X ERROR

X.Y X ERROR

X.Y.Z X ERROR

Example 4

In example 4, the loggers root and X each have a Configured LoggerConfig with the same name.
The loggers X.Y and X.Y.Z do not have configured LoggerConfigs and so get their Level from the
LoggerConfig assigned to them, X, since it is the LoggerCofnig whose name has the longest match to the
start of the Logger's name.

Logger Name Assigned LoggerConfig level

root root DEBUG

X X ERROR

X.Y X.Y INFO

X.YZ X ERROR

2 A r c h i t e c t u r e 7

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Example 5

In example 5, the loggers root. X, and X.Y each have a Configured LoggerConfig with the same name.
The logger X.YZ does not have configured LoggerConfig and so gets its Level from the LoggerConfig
assigned to it, X, since it is the LoggerCofnig whose name has the longest match to the start of the
Logger's name. It is not associated with LoggerConfig X.Y since tokens after periods must match exactly.

The table below provides illustrates how Level filtering works. Im the table, the vertical header shows
the Level of the LogEvent, while the horizontal header shows the Level associated with the appopriate
LoggerConfig. The intersection identifies whether the LogEvent would be allowed to pass for further
processing (Yes) or discarded (No).

Event Level
LoggerConfig

Level

 TRACE DEBUG INFO WARN ERROR FATAL

ALL NO NO NO NO NO NO

TRACE YES NO NO NO NO NO

DEBUG YES YES NO NO NO NO

INFO YES YES YES NO NO NO

WARN YES YES YES YES NO NO

ERROR YES YES YES YES YES NO

FATAL YES YES YES YES YES YES

OFF YES YES YES YES YES YES

2.1.1.6 Filter

In addition to the automatic log Level filtering that takes place as described in the previous section, Log4j
provides Filters that can be applied before control is passed to any LoggerConfig, after control is passed
to a LoggerConfig but before calling any Appenders, after control is passed to a LoggerConfig but before
calling a specific Appender, and on each Appender. In a manner very similar to firewall filters, each
Filter can return one of three results, Accept, Deny or Neutral. A response of Accept means that no other
Filters should be called and the event should progress. A response of Deny means the event should be
immediately ignored and control should be returned to the caller. A response of Neutral indicates the
event should be passed to other Filters. If there are no other Fitlers the event will be processed.

Although an event may be accepted by a Filter the event still might not be logged. This can happen when
the event is accepted by the pre-LoggerConfig Filter but is then denied by a LoggerConfig filter or is
denied by all Appenders.

2.1.1.7 Appender

The ability to selectively enable or disable logging requests based on their logger is only part of the
picture. Log4j allows logging requests to print to multiple destinations. In log4j speak, an output
destination is called an Appender. Currently, appenders exist for the console, files, remote socket servers,

2 A r c h i t e c t u r e 8

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Apache Flume, JMS, and remote UNIX Syslog daemons. More than one Appender can be attached to a
Logger.

An Appender can be added to a Logger by calling the addLoggerAppender method of the current
Configuration. If a LoggerConfig matching the name of the Logger does not exist, one will be created,
the Appender will be attached to it and then all Loggers will be notified to update their LoggerConfig
references.

Each enabled logging request for a given logger will be forwarded to all the appenders in that
Logger's LoggerConfig as well as the Appenders of the LoggerConfig's parents. In other words,
Appenders are inherited additively from the LoggerConfig hierarchy. For example, if a console appender
is added to the root logger, then all enabled logging requests will at least print on the console. If in
addition a file appender is added to a LoggerConfig, say C, then enabled logging requests for C and
C's children will print in a file and on the console. It is possible to override this default behavior so
that Appender accumulation is no longer additive by setting additivity="false" on the Logger
declaration in the configuration file.

The rules governing appender additivity are summarized below.

Appender Additivity

The output of a log statement of Logger L will go to all the Appenders in the LoggerConfig
associated with L and the ancestors of that LoggerConfig. This is the meaning of the term
"appender additivity".

However, if an ancestor of the LoggerConfig associated with Logger L, say P, has the
additivity flag set to false, then L's output will be directed to all the appenders in L's
LoggerConfig and it's ancestors up to and including P but not the Appenders in any of the
ancestors of P.

Loggers have their additivity flag set to true by default.

The table below shows an example:

Logger
Name

Added
Appenders

Additivity
Flag Output Targets Comment

root A1 not applicable A1 The root logger
has no parent so

additivity does
not apply to it.

x A-x1, A-x2 true A1, A-x1, A-x2 Appenders of
"x" and root.

x.y none true A1, A-x1, A-x2 Appenders of "x"
and root. It would
not be typical to

configure a Logger
with no Appenders.

2 A r c h i t e c t u r e 9

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

x.y.z A-xyz1 true A1, A-x1, A-
x2, A-xyz1

Appenders in
"x.y.z", "x" and root.

security A-sec false A-sec No appender
accumulation since
the additivity flag
is set to false.

security.access none true A-sec Only appenders of
"security" because
the additivity flag

in "security" is
set to false.

2.1.1.8 Layout

More often than not, users wish to customize not only the output destination but also the output
format. This is accomplished by associating a Layout with an Appender. The Layout is responsible for
formatting the LogEvent according to the user's wishes, whereas an appender takes care of sending the
formatted output to its destination. The PatternLayout, part of the standard log4j distribution, lets the user
specify the output format according to conversion patterns similar to the C language printf function.

For example, the PatternLayout with the conversion pattern "%r [%t] %-5p %c - %m%n" will output
something akin to:

176 [main] INFO org.foo.Bar - Located nearest gas station.

The first field is the number of milliseconds elapsed since the start of the program. The second field is
the thread making the log request. The third field is the level of the log statement. The fourth field is the
name of the logger associated with the log request. The text after the '-' is the message of the statement.

Just as importantly, log4j will render the content of the log message according to user specified criteria.
For example, if you frequently need to log Oranges, an object type used in your current project, then you
can create an OrangeMessage that accepts an Orange instance and pass that to Log4J so that the Orange
object can be formatted into an appropriate byte array when required.

2.1.1.9 StrSubstitutor and StrLookup

The StrSubstitutor class and StrLookup interface were borrowed from Apache Commons Lang and
then modified to support evaluating LogEvents. In addition the Interpolator class was borrowed from
Apache Commons Configuration to allow the StrSubstitutor to evaluate variables that from multiple
StrLookups. It too was modified to support evaluating LogEvents. Together these provide a mechanism
to allow the configuration to reference variables coming from System Properties, the configuration file,
the ThreadContext Map, StructuredData in the LogEvent. The variables can either be resolved when the
configuration is processed or as each event is processed, if the component is capable of handling it. See
Lookups for more information.

3 L o g 4 j 1 . x M i g r a t i o n 10

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

3Log4j 1.x Migration
..

3.1 Migration from Log4j 1.x

3.1.1 The Log4j 1.x bridge

Perhaps the simplest way to convert to using Log4j 2 is to replace the log4j 1.x jar file with Log4j 2's
log4j12-api jar. However, to use this successfully applications must meet the following requirements:

1. They must not access methods and classes internal to the Log4j 1.x implementation such as
Appenders, LoggerRepository or Logger's callAppenders method.

2. They must not programmatically configure Log4j.
3. They must not be configuring by calling DomConfigurator or the PropertiesConfigurator.

3.1.2 Converting to the Log4j 2 API

For the most part, converting from the Log4j 1.x API to Log4j 2.0 should be fairly simple. Many of the
log statements will require no modification. However, where necessary the following changes must be
made.

1. Calls to Logger.getLogger must be modified to LogManager.getLogger.
2. Calls to Logger.getRootLogger or LogManager.getRootLogger must be replaced woth

LogManager.getLogger("").
3. Calls to LogManager.getLogger that accept a LoggerFactory must remove the LoggerFactory and

use one of Log4j 2's other extension mechanisms.
4. Calls to logger.setLevel or similar methods are not supported in the API. Applications should

remove these. Equivalent functionality is provided in the Log4j 2 implementation classes but may
leave the application susceptible to changes in Log4j 2 internals.

5. The Log4j 2 API methods accept String messages instead of Objects. Applications that wish to
log Objects should either wrap the Object in an ObjectMessage or create a custom Message for the
Object.

6. Where appropriate, applications should convert to use parameterized messages instead of String
concatenation.

3.1.3 Configuration

Although the Log4j 2 configuration syntax is different than that of Log4j 1.x, most, if not all, of the same
functionality is available. Below are the example configurations for Log4j 1.x and their counterparts in
Log4j 2.

3.1.3.1 Sample 1 - Simple configuration using a Console Appender

Log4j 1.x XML configuration

3 L o g 4 j 1 . x M i g r a t i o n 11

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="info" />

 </category>

 <root>

 <priority value ="debug" />

 <appender-ref ref="STDOUT" />

 </root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="org.apache.log4j.xml" level="info"/>

 <root level="debug">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

3.1.3.2 Sample 2 - Simple configuration using a File Appender

Log4j 1.x XML configuration

3 L o g 4 j 1 . x M i g r a t i o n 12

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="A1" class="org.apache.log4j.FileAppender">

 <param name="File" value="A1.log" />

 <param name="Append" value="false" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%t %-5p %c{2} - %m%n"/>

 </layout>

 </appender>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="debug" />

 <appender-ref ref="A1" />

 </category>

 <root>

 <priority value ="debug" />

 <appender-ref ref="STDOUT" />

 </root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appenders>

 <File name="A1" fileName="A1.log" append="false">

 <PatternLayout pattern="%t %-5p %c{2} - %m%n"/>

 </File>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="org.apache.log4j.xml" level="debug">

 <appender-ref ref="A1"/>

 </logger>

 <root level="debug">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

3.1.3.3 Sample 3 - SocketAppender

Log4j 1.x XML configuration. This example from Log4j 1.x is misleading. The SocketAppender does not
actually use a Layout. Configuring one will have no effect.

3 L o g 4 j 1 . x M i g r a t i o n 13

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="A1" class="org.apache.log4j.net.SocketAppender">

 <param name="RemoteHost" value="localhost"/>

 <param name="Port" value="5000"/>

 <param name="LocationInfo" value="true"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%t %-5p %c{2} - %m%n"/>

 </layout>

 </appender>

 <appender name="STDOUT" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <category name="org.apache.log4j.xml">

 <priority value="debug"/>

 <appender-ref ref="A1"/>

 </category>

 <root>

 <priority value="debug"/>

 <appender-ref ref="STDOUT"/>

 </root>

</log4j:configuration>

Log4j 2 XML configuration

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <appenders>

 <Socket name="A1" host="localHost" port="5000">

 <SerializedLayout/>

 </Socket>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="org.apache.log4j.xml" level="debug">

 <appender-ref ref="A1"/>

 </logger>

 <root level="debug">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

3.1.3.4 Sample 4 - AsynchAppender

Log4j 1.x XML configuration using the AsynchAppender.

3 L o g 4 j 1 . x M i g r a t i o n 14

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" configDebug="true">

 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">

 <appender-ref ref="TEMP"/>

 </appender>

 <appender name="TEMP" class="org.apache.log4j.FileAppender">

 <param name="File" value="temp"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <root>

 <priority value="debug"/>

 <appender-ref ref="ASYNC"/>

 </root>

</log4j:configuration>

Log4j 2 XML configuration.

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="debug">

 <appenders>

 <File name="TEMP" fileName="temp">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </File>

 <Asynch name="ASYNC">

 <appender-ref ref="TEMP"/>

 </Asynch>

 </appenders>

 <loggers>

 <root level="debug">

 <appender-ref ref="ASYNC"/>

 </root>

 </loggers>

</configuration>

3.1.3.5 Sample 5 - AsynchAppender with Console and File

Log4j 1.x XML configuration using the AsynchAppender.

3 L o g 4 j 1 . x M i g r a t i o n 15

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" configDebug="true">

 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">

 <appender-ref ref="TEMP"/>

 <appender-ref ref="CONSOLE"/>

 </appender>

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <appender name="TEMP" class="org.apache.log4j.FileAppender">

 <param name="File" value="temp"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </layout>

 </appender>

 <root>

 <priority value="debug"/>

 <appender-ref ref="ASYNC"/>

 </root>

</log4j:configuration>

Log4j 2 XML configuration. Note that the Asynch Appender should be configured after the appenders it
references. This will allow it to shutdown properly.

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="debug">

 <appenders>

 <Console name="CONSOLE" target="SYSTEM_OUT">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </Console>

 <File name="TEMP" fileName="temp">

 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>

 </File>

 <Asynch name="ASYNC">

 <appender-ref ref="TEMP"/>

 <appender-ref ref="CONSOLE"/>

 </Asynch>

 </appenders>

 <loggers>

 <root level="debug">

 <appender-ref ref="ASYNC"/>

 </root>

 </loggers>

</configuration>

4 A P I 16

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

4API
..

4.1 Log4j 2 API

4.1.1 Overview

The Log4Jj 2 API provides the interface that applications should code to and provides the adapter
components required for implementers to create a logging implementation. Although Log4j 2 is broken
up between an API and an implementation, the primary purpose of doing so was not to allow multiple
implementations, although that is certainly possible, but to clearly define what classes and methods are
safe to use in "normal" application code.

4.1.1.1 Hello World!

No introduction would be complete without the customary Hello, World example. Here is ours. First, a
Logger with the name "HelloWorld" is obtained from the LogManager. Next, the logger is used to write
the "Hello, World!" message, however the message will be written only if the Logger is configured to
allow informational messages.

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class HelloWorld {

 private static Logger logger = LogManager.getLogger("HelloWorld");

 public static void main(String[] args) {

 logger.info("Hello, World!");

 }

}

The output from the call to logger.info() will vary significantly depending on the configuration used. See
the Configuration section for more details.

4.1.1.2 Parameter Substitution

Frequently the purpose of logging is to provide information about what is happening in the system,
which requires including information about the objects being manipulated. In Log4j 1.x this could be
accomplished by doing:

if (logger.isDebugEnabled()) {

 logger.debug("Logging in user " + user.getName() + " with id " + user.getId());

}

Doing this repeatedly has the effect of making the code feel like it is more about logging than the
actual task at hand. In addition, it results in the logging level being checked twice; once on the call to
isDebugEnabled and once on the debug method. A better alternative would be:

logger.debug("Logging in user {} with id {}", user.getName(), user.getId());

With the code above the logging level will only be checked once and the String construction will only
occur when debug logging is enabled.

5 C o n f i g u r a t i o n 17

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5Configuration
..

5.1 Configuration
Inserting log requests into the application code requires a fair amount of planning and effort. Observation
shows that approximately 4 percent of code is dedicated to logging. Consequently, even moderately sized
applications will have thousands of logging statements embedded within their code. Given their number,
it becomes imperative to manage these log statements without the need to modify them manually.

Configuration of Log4j 2 can be accomplished in 1 of 4 ways:

1. Through a configuration file written in XML or JSON.
2. Programmatically, by creating a ConfigurationFactory and Configuration implementation.
3. Programmatically, by calling the APIs exposed in the Configuration interface to add components to

the default configuration.
4. Programmatically, by calling methods on the internal Logger class.

This page focuses primarily on configuring Log4j through a configuration file. Information on
programmatically configuring Log4j can be found at Extending Log4j 2.

Note that unlike Log4j 1.x, the public Log4j 2 API does not expose methods to add, modify or remove
appenders and filters or manipulate the configuration in any way.

5.1.1 Automatic Configuration

Log4j has the ability to automatically configure itself during initialization. When Log4j starts it will
locate all the ConfigurationFactory plugins and arrange then in weighted order from highest to lowest. As
delivered, Log4j contains two ConfigurationFactory implementations, one for JSON and one for XML.

1. Log4j will inspect the "log4j.configurationFile" system property and, if set, will attempt to load the
configuration using the ConfigurationFactory that matches the file extension.

2. If no system property is set the JSON ConfigurationFactory will look for log4j2-test.json or log4j2-
test.jsn in the classpath.

3. If no such file is found the XML ConfigurationFactory will look for log4j2-test.xml in the classpath.
4. If a test file cannot be located the JSON ConfigurationFactory will look for log4j2.json or log4j2.jsn

on the classpath.
5. If a JSON file cannot be located the XML ConfigurationFactory will try to locate log4j2.xml on the

classpath.
6. If no configuration file could be located the DefaultConfiguration will be used. This will cause

logging output to go to the console.

An example application named MyApp that uses log4j can be used to illustrate how this is done.

5 C o n f i g u r a t i o n 18

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 import com.foo.Bar;

 // Import log4j classes.

 import org.apache.logging.log4j.Logger;

 public class MyApp {

 // Define a static logger variable so that it references the

 // Logger instance named "MyApp".

 Logger logger = LogManager.getLogger(MyApp.class.getName());

 public static void main(String[] args) {

 // Set up a simple configuration that logs on the console.

 logger.trace("Entering application.");

 Bar bar = new Bar();

 if (!bar.doIt() {

 logger.error("Didn't do it.");

 }

 logger.trace("Exiting application."); }

 }

MyApp begins by importing log4j related classes. It then defines a static logger variable with the name
MyApp which happens to be the fully qualified name of the class.

MyApp uses the Bar class defined in the package com.foo.

 package com.foo;

 import org.apache.logging.log4j.Logger;

 public class Bar {

 static Logger logger = LogManager.getLogger(Bar.class.getName());

 public boolean doIt() {

 logger.entry();

 logger.error("Did it again!");

 return logger.exit(false);

 }

 }

If no configuration files are present logback will default to the DefaultConfiguration which will set
up a minimal logging environment consisting of a ConsoleAppender attached to the root logger. The
output will be formatted using a PatternLayout set to the pattern "%d{HH:mm:ss.SSS} [%t] %-5level
%logger{36} - %msg%n".

Note that by default, the root logger is assigned to Level.ERROR.

The output of MyApp would be similar to:

5 C o n f i g u r a t i o n 19

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

 17:13:01.540 [main] ERROR MyApp - Didn't do it.

As was described previously, Log4j will first attempt to configure itself from configuration files. A
configuration equivalent to the default would look like:

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="OFF">

 <appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Console"/>

 </root>

 </loggers>

</configuration>

Once the file above is placed into the classpath as log4j2.xml you will get results identical to those listed
above. Changing the root level to trace will result in results similar to:

 17:13:01.540 [main] TRACE MyApp - Entering application.

 17:13:01.540 [main] TRACE com.foo.Bar - entry

 17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

 17:13:01.540 [main] TRACE com.foo.Bar - exit with (false)

 17:13:01.540 [main] ERROR MyApp - Didn't do it.

 17:13:01.540 [main] TRACE MyApp - Exiting application.

Note that status logging is disabled when the default configuration is used.

Perhaps it is desired to eliminate all the TRACE output from everything except com.foo.Bar. Simply
changing the log level would not accomplish the task. Instead, the solution is to add a new logger
definition to the configuration:

 <logger name="com.foo.Bar" level="TRACE"/>

 <root level="ERROR">

 <appender-ref ref="STDOUT">

 </root>

With this configuration all log events from com.foo.Bar will be recorded while only error events will
be recorded from all other components.

5.1.2 Additivity

In the previous example all the events from com.foo.Bar were still written to the Console. This is
because the logger for com.foo.Bar did not have any appenders configured while its parent did. In fact,
the following configuration

5 C o n f i g u r a t i o n 20

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="OFF">

 <appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="com.foo.Bar" level="trace">

 <appender-ref ref="Console"/>

 </logger>

 <root level="error">

 <appender-ref ref="Console"/>

 </root>

 </loggers>

</configuration>

would result in

 17:13:01.540 [main] TRACE com.foo.Bar - entry

 17:13:01.540 [main] TRACE com.foo.Bar - entry

 17:13:01.540 [main] ERROR com.foo.Bar - Did it again!

 17:13:01.540 [main] TRACE com.foo.Bar - exit (false)

 17:13:01.540 [main] TRACE com.foo.Bar - exit (false)

 17:13:01.540 [main] ERROR MyApp - Didn't do it.

Notice that the trace messages from com.foo.Bar appear twice. This is because the appender associated
with logger com.foo.Bar is first used, which writes the first instance to the Console. Next, the parent
of com.foo.Bar, which in this case is the root logger, is referenced. The event is then passed to
its appender, which is also writes to the Console, resulting in the second instance. This is known as
additivity. While additivity can be quite a convenient feature (as in the first previous example where no
appender reference needed to be configured), in many cases this behavior is considered undesirable and
so it is possible to disable it by setting the additivity attribute on the logger to false:

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="OFF">

 <appenders>

 <Console name="Console" target="SYSTEM_OUT">

 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="com.foo.Bar" level="trace" additivity="false">

 <appender-ref ref="Console"/>

 </logger>

 <root level="error">

 <appender-ref ref="Console"/>

 </root>

 </loggers>

</configuration>

5 C o n f i g u r a t i o n 21

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Once an event reaches a logger with its additivity set to false the event will not be passed to any of its
parent loggers, regardless of their additivity setting.

5.1.3 Automatic Reconfiguration

When configured from a File, Log4j has the ability to automatically detect changes to the configuration
file and reconfigure itself. If the monitorInterval attribute is specified on the configuration element and is
set to a non-zero value then the file will be checked the next time a log event is evaluated and/or logged
and the monitorInterval has elapsed since the last check. The example below shows how to configure
the attribute so that the configuration file will be checked for changes only after at least 30 seconds have
elapsed. The minimum interval is 5 seconds.

<?xml version="1.0" encoding="UTF-8"?>

<configuration monitorInterval="30">

...

</configuration>

5.1.4 Configuration Syntax

As the previous examples have shown as well as those to follow, Log4j allows you to easily redefine
logging behavior without needing to modify your application. It is possible to disable logging for certain
parts of the application, log only when specific criteria are met such as the action being performed
for a specific user, route output to Flume or a log reporting system, etc. Being able to do this requires
understanding the syntax of the configuration files.

5.1.4.1 Configuration with XML

The configuration element in the XML file accetps several attributes:

Attribute Name Description

dest Either "err", which will send output to stderr, or a file path
or URL.

monitorInterval The minimum amount of time, in seconds, that must
elapse before the file configuration is checked for
changes.

name The name of the configuration.

packages A comma separated list of package names to search for
plugins. Plugins are only loaded once per classloader
so changing this value may not have any effect upon
reconfiguration.

schema Identifies the location for the classloader to located
the XML Schema to use to validate the configuration.
Only valid when strict is set to true. If not set no schema
validation will take place.

status The level of internal Log4j events that should be logged
to the console.

5 C o n f i g u r a t i o n 22

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

strict Enables the use of the strict XML format. Not supported
in JSON configurations.

verbose Enables diagnostic information while loading plugins.

Log4j can be configured using two XML flavors; concise and strict. The concise format makes
configuration very easy as the element names match the components they represent however it cannot be
validated with an XML schema. For example, the ConsoleAppender is configured by declaring an XML
element named Console under its parent appenders element. However, element and attribute names are
are not case sensitive. In addition, attributes can either be specified as an XML attribute or as an XML
element that has no attributes and has a text value. So

<patternLayout pattern="%m%n"/>

and

<PatternLayout>

 <pattern>%m%n</pattern>

</PatternLayout>

are equivalent.

The file below represents the structure of an XML configuration, but note that the elements in italics
below represent the concise element names that would appear in their place.

<?xml version="1.0" encoding="UTF-8"?>;

<configuration>

 <properties>

 <property name="name1">value</property>

 <property name="name2" value="value2"/>

 </properties>

 <

filter ... />

 <appenders>

 <

appender ... >

 <

filter ... />

 </

appender>

 ...

 </appenders>

 <loggers>

 <logger name="name1">

 <

filter ... />

 </logger>

 ...

 <root level="level">

 <appender-ref ref="name"/>

 </root>

 </loggers>

</configuration>

5 C o n f i g u r a t i o n 23

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

See the many examples on this page for sample appender, filter and logger declarations.

5.Strict XML

In addition to the concise XML format above, Log4j allows configurations to be specified in a more
"normal" XML manner that can be validated using an XML Schema. This is accomplished by replacing
the friendly element names above with their object type as shown below. For example, instead of the
ConsoleAppender being configuerd using an element named Console it is instead configured as an
appender element with a type attribute containing "Console".

<?xml version="1.0" encoding="UTF-8"?>;

<configuration>

 <properties>

 <property name="name1">value</property>

 <property name="name2" value="value2"/>

 </properties>

 <filter type="type" ... />

 <appenders>

 <appender type="type" name="name">

 <filter type="type" ... />

 </appender>

 ...

 </appenders>

 <loggers>

 <logger name="name1">

 <filter type="type" ... />

 </logger>

 ...

 <root level="level">

 <appender-ref ref="name"/>

 </root>

 </loggers>

</configuration>

Below is a sample configuration using the strict format.

5 C o n f i g u r a t i o n 24

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="debug" strict="true" name="XMLConfigTest"

 packages="org.apache.logging.log4j.test">

 <properties>

 <property name="filename">target/test.log</property>

 </properties>

 <filter type="ThresholdFilter" level="trace"/>

 <appenders>

 <appender type="Console" name="STDOUT">

 <layout type="PatternLayout" pattern="%m MDC%X%n"/>

 <filters>

 <filter type="MarkerFilter" marker="FLOW" onMatch="DENY" onMismatch="NEUTRAL"/>

 <filter type="MarkerFilter" marker="EXCEPTION" onMatch="DENY" onMismatch="ACCEPT"/>

 </filters>

 </appender>

 <appender type="Console" name="FLOW">

 <layout type="PatternLayout" pattern="%C{1}.%M %m %ex%n"/>

 <filters>

 <filter type="MarkerFilter" marker="FLOW" onMatch="ACCEPT" onMismatch="NEUTRAL"/>

 <filter type="MarkerFilter" marker="EXCEPTION" onMatch="ACCEPT" onMismatch="DENY"/>

 </filters>

 </appender>

 <appender type="File" name="File" fileName="${filename}">

 <layout type="PatternLayout">

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </layout>

 </appender>

 <appender type="List" name="List">

 </appender>

 </appenders>

 <loggers>

 <logger name="org.apache.logging.log4j.test1" level="debug" additivity="false">

 <filter type="ThreadContextMapFilter">

 <KeyValuePair key="test" value="123"/>

 </filter>

 <appender-ref ref="STDOUT"/>

 </logger>>

 <logger name="org.apache.logging.log4j.test2" level="debug" additivity="false">

 <appender-ref ref="File"/>

 </logger>>

 <root level="trace">

 <appender-ref ref="List"/>

 </root>

 </loggers>

</configuration>

5 C o n f i g u r a t i o n 25

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.4.2 Configuration with JSON

In addition to XML, Log4j can be configured using JSON. The JSON format is very similar to the
concise XML format. Each key represents the name of a plugin and the key/value pairs associated with it
are its attributes. Where a key contains more than a simple value it itself will be a subordinate plugin. In
the example below, ThresholdFilter, Console, and PatternLayout are all plugins while the Console plugin
will be assigned a value of STDOUT for its name attribute and the ThresholdFilter will be assigned a
level of debug.

{ "configuration": { "status": "error", "name": "RoutingTest",

 "packages": "org.apache.logging.log4j.test",

 "properties": {

 "property": { "name": "filename",

 "value" : "target/rolling1/rollingtest-$${sd:type}.log" }

 },

 "ThresholdFilter": { "level": "debug" },

 "appenders": {

 "Console": { "name": "STDOUT",

 "PatternLayout": { "pattern": "%m%n" }

 },

 "List": { "name": "List",

 "ThresholdFilter": { "level": "debug" }

 },

 "Routing": { "name": "Routing",

 "Routes": { "pattern": "$${sd:type}",

 "Route": [

 {

 "RollingFile": {

 "name": "Rolling-${sd:type}", "fileName": "${filename}",

 "filePattern": "target/rolling1/test1-${sd:type}.%i.log.gz",

 "PatternLayout": {"pattern": "%d %p %C{1.} [%t] %m%n"},

 "SizeBasedTriggeringPolicy": { "size": "500" }

 }

 },

 { "appender-ref": "STDOUT", "key": "Audit"},

 { "appender-ref": "List", "key": "Service"}

]

 }

 }

 },

 "loggers": {

 "logger": { "name": "EventLogger", "level": "info", "additivity": "false",

 "appender-ref": { "ref": "Routing" }},

 "root": { "level": "error", "appender-ref": { "ref": "STDOUT" }}

 }

 }

}

Note that in the RoutingAppender the Route element has been declared as an array. This is valid because
each array element will be a Route component. This won't work for elements such as appenders and
filters, where each element has a different name in the concise format. Appenders and filters can be

5 C o n f i g u r a t i o n 26

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

defined as array elements if each appender or filter declares an attribute named "type" that contains the
type of the appender. The following example illustrates this as well as how to declare multiple loggers as
an array.

{ "configuration": { "status": "debug", "name": "RoutingTest",

 "packages": "org.apache.logging.log4j.test",

 "properties": {

 "property": { "name": "filename",

 "value" : "target/rolling1/rollingtest-$${sd:type}.log" }

 },

 "ThresholdFilter": { "level": "debug" },

 "appenders": {

 "appender": [

 { "type": "Console", "name": "STDOUT", "PatternLayout": { "pattern": "%m%n" }},

 { "type": "List", "name": "List", "ThresholdFilter": { "level": "debug" }},

 { "type": "Routing", "name": "Routing",

 "Routes": { "pattern": "$${sd:type}",

 "Route": [

 {

 "RollingFile": {

 "name": "Rolling-${sd:type}", "fileName": "${filename}",

 "filePattern": "target/rolling1/test1-${sd:type}.%i.log.gz",

 "PatternLayout": {"pattern": "%d %p %C{1.} [%t] %m%n"},

 "SizeBasedTriggeringPolicy": { "size": "500" }

 }

 },

 { "appender-ref": "STDOUT", "key": "Audit"},

 { "appender-ref": "List", "key": "Service"}

]

 }

 }

]

 },

 "loggers": {

 "logger": [

 { "name": "EventLogger", "level": "info", "additivity": "false",

 "appender-ref": { "ref": "Routing" }},

 { "name": "com.foo.bar", "level": "error", "additivity": "false",

 "appender-ref": { "ref": "Console" }}

],

 "root": { "level": "error", "appender-ref": { "ref": "STDOUT" }}

 }

 }

}

The JSON support uses Jackson to parse the JSON files. These dependencies must be added to a project
that wants to use JSON for configuration:

5 C o n f i g u r a t i o n 27

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 <dependency>

 <groupId>org.codehaus.jackson</groupId>

 <artifactId>jackson-core-asl</artifactId>

 <version>1.9.2</version>

 </dependency>

 <dependency>

 <groupId>org.codehaus.jackson</groupId>

 <artifactId>jackson-mapper-asl</artifactId>

 <version>1.9.2</version>

 </dependency>

5.1.4.3 Configuring loggers

An understanding of how loggers work in Log4j is critical before trying to configure them. Please
reference the Log4j architecture if more information is required. Trying to configure Log4j without
understanding those concepts will lead to frustration.

A LoggerConfig is configured using the logger element. The logger eleemnt must have a name
attribute specified, will usually have a level attribute specified and may also have an additivity attribute
specified. The level may be configured with one of TRACE, DEBUG, INFO, WARN, ERROR, ALL or
OFF. If no level is specified it will default to ERROR. The additivity attribute may be assigned a value of
true or false. If the attribute is omitted the default value of false will be used.

A LoggerConfig (including the root LoggerConfig) can be configured with properties that will be
added to the properties copied from the ThreadContextMap. These properties can be referenced from
Appenders, Filters, Layouts, etc just as if they were part of the ThreadContext Map. The properties can
contain variables that will be resolved either when the configuration is parsed or dynamically when each
event is logged. See Property Substitution for more information on using variables.

The LoggerConfig may also be configured with one or more appender-ref elements. Each appender
referenced will become associated with the specified LoggerConfig. If multiple appenders are configured
on the LoggerConfig each of them be called when processing logging events.

Every configuration must have a root logger. If one is not configured the default root LoggerConfig,
which has a level of ERROR but with no appenders attached, will be used. The main differences between
the root logger and other loggers are

1. The root logger does not have a name attribute.
2. The root logger does not support the additivity attribute since it has no parent.

5.1.4.4 Configuring Appenders

An appender is configured either using the specific appender plugin's name or with an appender element
and the type attibute containing the appender plugin's name. In addition each appender must have a name
attribute specified with a value that is unique within the set of appenders. The name will be used by
loggers to reference the appender as described in the previous section.

Most appenders also support a layout to be configured (which again may be specified either using the
specific Layout plugin's name as the eleemnt or with "layout" as the element name along with a type
attribute that contains the layout plugin's name. The various appenders will contain other attributes or
elements that are required for them to function properly.

5 C o n f i g u r a t i o n 28

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.4.5 Configuring Filters

Log4j allows a filter to be specified in any of 4 places:

1. At the same level as the appenders, loggers and properties elements. These filters can accept or reject
events before they have been passed to a LoggerConfig.

2. In a logger element. These filters can accept or reject events for specific loggers.
3. In an appender element. These filters can prevent or cause events to be processed by the appender.
4. In an appender reference element. These filters are used to determine if a Logger should route the

event to an appender.

Although only a single filter element can be configured, that element may be the filters element
which represents the CompositeFilter. The filters element allows any number of filter elements
to be configured within it. The following example shows how multiple filters can be configured on the
ConsoleAppender.

5 C o n f i g u r a t i o n 29

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="debug" name="XMLConfigTest"

 packages="org.apache.logging.log4j.test">

 <properties>

 <property name="filename">target/test.log</property>

 </properties>

 <ThresholdFilter level="trace"/>

 <appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m MDC%X%n"/>

 </Console>

 <Console name="FLOW">

 <PatternLayout pattern="%C{1}.%M %m %ex%n"/>

 <filters>

 <MarkerFilter marker="FLOW" onMatch="ACCEPT" onMismatch="NEUTRAL"/>

 <MarkerFilter marker="EXCEPTION" onMatch="ACCEPT" onMismatch="DENY"/>

 </filters>

 </Console>

 <File name="File" fileName="${filename}">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 <List name="List">

 </List>

 </appenders>

 <loggers>

 <logger name="org.apache.logging.log4j.test1" level="debug" additivity="false">

 <ThreadContextMapFilter>

 <KeyValuePair key="test" value="123"/>

 </ThreadContextMapFilter>

 <appender-ref ref="STDOUT"/>

 </logger>>

 <logger name="org.apache.logging.log4j.test2" level="debug" additivity="false">

 <property name="user">${sys:user.name}</property>

 <appender-ref ref="File">

 <ThreadContextMapFilter>

 <KeyValuePair key="test" value="123"/>

 </ThreadContextMapFilter>

 </appender-ref>

 <appender-ref ref="STDOUT" level="error"/>

 </logger>>

 <root level="trace">

 <appender-ref ref="List"/>

 </root>

 </loggers>

</configuration>

5 C o n f i g u r a t i o n 30

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.5 Property Substitution

Log4j 2 supports the ability to specify tokens in the configuration as references to properties defined
elsewhere. Some of these properties will be resolved when the configuration file is interpreted while
others may be passed to components where they will be evaluated at runtime. To accomplish this, Log4j
uses variations Apache Commons Lang's StrSubstitutor and StrLookup classes. In a manner similar to
Ant or Maven, this allows variables declared as ${name} to be resolved using properties declared in the
configuration itself. For example, the following example shows the filename for the rolling file appender
being declared as a property.

5 C o n f i g u r a t i o n 31

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="debug" name="RoutingTest"

 packages="org.apache.logging.log4j.test">

 <properties>

 <property name="filename">target/rolling1/rollingtest-$${sd:type}.log</property>

 </properties>

 <ThresholdFilter level="debug"/>

 <appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <List name="List">

 <ThresholdFilter level="debug"/>

 </List>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route appender-ref="STDOUT" key="Audit"/>

 <Route appender-ref="List" key="Service"/>

 </Routes>

 </Routing>

 </appenders>

 <loggers>

 <logger name="EventLogger" level="info" additivity="false">

 <appender-ref ref="Routing"/>

 </logger>

 <root level="error">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

While this is useful, there are many more places properties can originate from. To accommodate this,
Log4j also supports the syntax ${prefix:name} where the prefix identifies tells Log4j that variable
name should be evaluated in a specific context. The contexts that are built in to Logj4 are:

Prefix Context

5 C o n f i g u r a t i o n 32

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

ctx Thread Context Map (MDC)

date Inserts the current date and/or time using the specified
format

env System environment variables

map A value from a MapMessage

sd A value from a StructuredDataMessage. The key "id"
will return the name of the StructuredDataId without
the enterprise number. The key "type" will return the
message type. Other keys will retrieve individual
elements from the Map.

sys System properties

An interesting feature of StrLookup processing is that when a variable reference is declared with multiple
leading '$' characters each time the variable is resolved the leading '$' is simply removed. In the previous
example the "Routes" element is capable of resolving the variable at runtime. To allow this the prefix
value is specified as a variable with two leading '$' characters. When the configuration file is first
processed the first variable is simply removed. Thus, when the Routes element is evaluated at runtime it is
the variable declaration "${sd:type}" which causes the event to be inspected for a StructuredDataMessage
and if one is present the value of its type attribute to be used as the routing key. Not all elements support
resolving variables at runtime. Components that do will specifically call that out in their documentation.

If no value is found for the key in the Lookup associated with the prefix then the value associated with
the key in the properties declaration in the configuration file will be used. If no value is found the variable
declaration will be returned as the value. Default values may be declared in the configuration by doing:

<?xml version="1.0" encoding="UTF-8"?>;

<configuration>

 <properties>

 <property name="type">Audit</property>

 </properties>

 ...

</configuration>

As a footnote, it is worth pointing out that the variables in the RollingFile appender declaration will also
not be evaluated when the configuration is processed. This is simply because the resolution of the whole
RollingFile element is deferred until a match occurs. See RoutingAppender for more information.

5.1.6 Status Messages

Just as it is desirable to be able to diagnose problems in applications, it is frequently necessary to be able
to diagnose problems in the logging configuration or in the configured components. Since logging has
not been configured, "normal" logging cannot be used during initialization. In addition, normal logging
within appenders could create infinite recursion which Log4j will detect and cause the recursive events to
be ignored. To accomodate this need, the Log4j 2 API includes a StatusLogger. Components declare an
instance of the StatusLogger similar to

 protected final static Logger logger = StatusLogger.getLogger();

5 C o n f i g u r a t i o n 33

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Since StatusLogger implements the Log4j 2 API's Logger interface, all the normal Logger methods may
be used.

When configuring Log4j it is sometimes necessary to view the generated status events. This can be
accomplished by adding the status attribute to the configuration element. The following configuration has
the status attribute set to debug.

<?xml version="1.0" encoding="UTF-8"?>;

<configuration status="debug" name="RoutingTest"

 packages="org.apache.logging.log4j.test">

 <properties>

 <property name="filename">target/rolling1/rollingtest-$${sd:type}.log</property>

 </properties>

 <ThresholdFilter level="debug"/>

 <appenders>

 <Console name="STDOUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <List name="List">

 <ThresholdFilter level="debug"/>

 </List>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route appender-ref="STDOUT" key="Audit"/>

 <Route appender-ref="List" key="Service"/>

 </Routes>

 </Routing>

 </appenders>

 <loggers>

 <logger name="EventLogger" level="info" additivity="false">

 <appender-ref ref="Routing"/>

 </logger>

 <root level="error">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

During startup this configuration produces:

5 C o n f i g u r a t i o n 34

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 2011-11-23 17:08:00,769 DEBUG Generated plugins in 0.003374000 seconds

 2011-11-23 17:08:00,789 DEBUG Calling createProperty on class org.apache.logging.log4j.core.

 config.Property for element property with params(name="filename",

 value="target/rolling1/rollingtest-${sd:type}.log")

 2011-11-23 17:08:00,792 DEBUG Calling configureSubstitutor on class org.apache.logging.log4j.

 core.config.plugins.PropertiesPlugin for element properties with

 params(properties={filename=target/rolling1/rollingtest-${sd:type}.log})

 2011-11-23 17:08:00,794 DEBUG Generated plugins in 0.001362000 seconds

 2011-11-23 17:08:00,797 DEBUG Calling createFilter on class org.apache.logging.log4j.core.

 filter.ThresholdFilter for element ThresholdFilter with params(level="debug",

 onMatch="null", onMismatch="null")

 2011-11-23 17:08:00,800 DEBUG Calling createLayout on class org.apache.logging.log4j.core.

 layout.PatternLayout for element PatternLayout with params(pattern="%m%n",

 Configuration(RoutingTest), null, charset="null")

 2011-11-23 17:08:00,802 DEBUG Generated plugins in 0.001349000 seconds

 2011-11-23 17:08:00,804 DEBUG Calling createAppender on class org.apache.logging.log4j.core.

 appender.ConsoleAppender for element Console with params(PatternLayout(%m%n), null,

 target="null", name="STDOUT", suppressExceptions="null")

 2011-11-23 17:08:00,804 DEBUG Calling createFilter on class org.apache.logging.log4j.core.

 filter.ThresholdFilter for element ThresholdFilter with params(level="debug",

 onMatch="null", onMismatch="null")

 2011-11-23 17:08:00,806 DEBUG Calling createAppender on class org.apache.logging.log4j.test.

 appender.ListAppender for element List with params(name="List", entryPerNewLine="null",

 raw="null", null, ThresholdFilter(DEBUG))

 2011-11-23 17:08:00,813 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(appender-ref="null", key="null", Node=Route)

 2011-11-23 17:08:00,823 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(appender-ref="STDOUT", key="Audit", Node=Route)

 2011-11-23 17:08:00,824 DEBUG Calling createRoute on class org.apache.logging.log4j.core.appender.

 routing.Route for element Route with params(appender-ref="List", key="Service", Node=Route)

 2011-11-23 17:08:00,825 DEBUG Calling createRoutes on class org.apache.logging.log4j.core.appender.

 routing.Routes for element Routes with params(pattern="${sd:type}",

 routes={Route(type=dynamic default), Route(type=static Reference=STDOUT key='Audit'),

 Route(type=static Reference=List key='Service')})

 2011-11-23 17:08:00,827 DEBUG Calling createAppender on class org.apache.logging.log4j.core.appender.

 routing.RoutingAppender for element Routing with params(name="Routing",

 suppressExceptions="null", Routes({Route(type=dynamic default),Route(type=static

 Reference=STDOUT key='Audit'),

 Route(type=static Reference=List key='Service')}), Configuration(RoutingTest), null, null)

 2011-11-23 17:08:00,827 DEBUG Calling createAppenders on class org.apache.logging.log4j.core.config.

 plugins.AppendersPlugin for element appenders with params(appenders={STDOUT, List, Routing})

 2011-11-23 17:08:00,828 DEBUG Calling createAppenderRef on class org.apache.logging.log4j.core.

 config.plugins.AppenderRefPlugin for element appender-ref with params(ref="Routing")

 2011-11-23 17:08:00,829 DEBUG Calling createLogger on class org.apache.logging.log4j.core.config.

 LoggerConfig for element logger with params(additivity="false", level="info", name="EventLogger",

 appender-ref={Routing}, null)

 2011-11-23 17:08:00,830 DEBUG Calling createAppenderRef on class org.apache.logging.log4j.core.

 config.plugins.AppenderRefPlugin for element appender-ref with params(ref="STDOUT")

5 C o n f i g u r a t i o n 35

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 2011-11-23 17:08:00,831 DEBUG Calling createLogger on class org.apache.logging.log4j.core.config.

 LoggerConfig$RootLogger for element root with params(additivity="null", level="error",

 appender-ref={STDOUT}, null)

 2011-11-23 17:08:00,833 DEBUG Calling createLoggers on class org.apache.logging.log4j.core.

 config.plugins.LoggersPlugin for element loggers with params(loggers={EventLogger, root})

 2011-11-23 17:08:00,834 DEBUG Reconfiguration completed

 2011-11-23 17:08:00,846 DEBUG Calling createLayout on class org.apache.logging.log4j.core.

 layout.PatternLayout for element PatternLayout with params(pattern="%d %p %C{1.} [%t] %m%n",

 Configuration(RoutingTest), null, charset="null")

 2011-11-23 17:08:00,849 DEBUG Calling createPolicy on class org.apache.logging.log4j.core.

 appender.rolling.SizeBasedTriggeringPolicy for element SizeBasedTriggeringPolicy with

 params(size="500")

 2011-11-23 17:08:00,851 DEBUG Calling createAppender on class org.apache.logging.log4j.core.

 appender.RollingFileAppender for element RollingFile with

 params(fileName="target/rolling1/rollingtest-Unknown.log",

 filePattern="target/rolling1/test1-Unknown.%i.log.gz", append="null", name="Rolling-Unknown",

 bufferedIO="null", immediateFlush="null",

 SizeBasedTriggeringPolicy(SizeBasedTriggeringPolicy(size=500)), null,

 PatternLayout(%d %p %C{1.} [%t] %m%n), null, suppressExceptions="null")

 2011-11-23 17:08:00,858 DEBUG Generated plugins in 0.002014000 seconds

 2011-11-23 17:08:00,889 DEBUG Reconfiguration started for context sun.misc.

 Launcher$AppClassLoader@37b90b39

 2011-11-23 17:08:00,890 DEBUG Generated plugins in 0.001355000 seconds

 2011-11-23 17:08:00,959 DEBUG Generated plugins in 0.001239000 seconds

 2011-11-23 17:08:00,961 DEBUG Generated plugins in 0.001197000 seconds

 2011-11-23 17:08:00,965 WARN No Loggers were configured, using default

 2011-11-23 17:08:00,976 DEBUG Reconfiguration completed

If the status attribute is set to error than only error messages will be written to the console. This makes
troubleshooting configuration errors possible. As an example, if the configuration above is changed to
have the status set to error and the logger declaration is:

 <logger name="EventLogger" level="info" additivity="false">

 <appender-ref ref="Routng"/>

 </logger>

the following error message will be produced.

 2011-11-24 23:21:25,517 ERROR Unable to locate appender Routng for logger EventLogger

Applications may wish to direct the status output to some other destination. This can be accomplished
by setting the dest attribute to either "err" to send the output to stderr or to a file location or URL. This
can also be done by insuring the configured status is set to OFF and then configuring the application
programmatically such as:

 StatusConsoleListener listener = new StatusConsoleListener(Level.ERROR);

 ((StatusLogger) logger).registerListener(listener);

5 C o n f i g u r a t i o n 36

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

5.1.7 Testing in Maven

Maven can run unit and functional tests during the build cycle. By default, any files placed in src/
test/resources are automatically copied to target/test-classes and are included in the classpath during
execution of any tests. As such, placing a log4j2-test.xml into this directory will cause it to be used
instead of a log4j2.xml or log4j2.json that might be present. Thus a different log configuration can be
used during testing than what is used in production.

A second approach, which is extensively used by Log4j 2, is to set the log4j.configurationFile property in
the method annotated with @BeforeClass in the junit test class. This will allow an arbitrarily named file
to be used during the test.

6 P l u g i n s 37

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

6Plugins
..

6.1 Plugins

6.1.1 Introduction

Log4j 1.x allowed for extension by requiring class attributes on most of the configuration declarations.
In the case of some elements, notably the PatternLayout, the only way to add new pattern converters was
to extend the PatternLayout class and add them via code. One of goals of Log4j 2 is to make extending it
extremely easy through the use of plugins.

In Log4j 2 a plugin is declared by adding a Plugin annotation to the class declaration. During
initialization the Configuration will invoke the PluginManager to locate all the Log4j plugins that are
located in the declared packages. As the configuration is processed the appropriate plugins will be
automatically configured and initialized. Log4j 2 utilizes a few different types of plugins which are
described in the follownig sections.

6.1.2 Core

Core plugins are those that are directly represented by an element in a configuration file, such as an
Appender, Logger or Filter. Custom plugins that conform to the rules laid out in the next paragraph may
simply be referenced in the configuration, provided they are appropriate configured to be loaded by the
PluginManager.

Every Core plugin must declare a static method that is marked with a PluginFactory annotation. To allow
the Configuration to pass the correct parameters to the method, every parameter to the method must be
annotated as one of the following attribute types. Each attribute or element annotation must include the
name that must be present in the configuration in order to match the configuration item to its respective
parameter.

6.1.2.1 Attribute Types

PluginAttr

The parameter must resolve to a String, although it can be the String representation of a
boolean. numeric value, or any other Object that can be created from a String value.

PluginElement

The parameter may represent a complex object that itself has parameters that can be configured.

PluginConfiguration

The current Configuration object will be passed to the plugin as a parameter.

6 P l u g i n s 38

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

6.1.3 Converters

Converters are used by PatternLayout to render the elements identified by the conversion pattern.
Every converter must specify its type as "Converter" on the Plugin attribute, have a static newInstance
method that accepts an array of Strings as its only parameter and returns an instance of the Converter,
and must have a ConverterKeys annotation present that contains the array of converter patterns that
will cause the Converter to be selected. Converters that are meant to handle LogEvents must extend the
LogEventPatternConverter class and must implement a format method that accepts a LogEvent and a
StringBuilder as arguments. The Converter should append the result of its operation to the StringBuilder.

A second type of Converter is the FileConverter - which must have "FileConverter" specified in the
type attribute of the Plugin annotation. While similar to a LogEventPatternConverter, instead of a single
format method these Converters will have two variations; one that takes an Object and one that takes an
array of Objects instead of the LogEvent. Both append to the provided StringBuilder in the same fashion
as a LogEventPatternConverter. These Converters are typically used by the RollingFileAppender to
construct the name of the file to log to.

6.1.4 Lookups

Lookups are perhaps the simplest plugins of all. They must declare their type as "Lookup" on the plugin
annotation and must implement the StrLookup interface. They will have two methods; a lookup method
that accepts a String key and returns a String value and a second lookup method that accepts both a
LogEvent and a String key and returns a String. Lookups may be referenced by specifying ${ name:key}
where name is the name specified in the Plugin annotation and key is the name of the item to locate.

6.1.5 Plugin Preloading

Scanning for annotated classes dynamically takes a bit of time during application initialization. Log4j
avoids this by scanning its classes during the build. In the Maven build, the PluginManager is invoked as
shown below and then the resulting Map is stored in a file in the jar being constructed. Log4j will locate
all the files created this way and and preload them, which shortens startup time considerably. Adding the
following plugin definition to your project's pom.xml will cause the plugin manager to be called during
the build. It will store the resulting file in the correct location under the directory specified in the first
argument after scanning all the components located under the package specified in the second argument.

6 P l u g i n s 39

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>exec-maven-plugin</artifactId>

 <version>1.2.1</version>

 <executions>

 <execution>

 <phase>process-classes</phase>

 <goals>

 <goal>java</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <mainClass>org.apache.logging.log4j.core.config.plugins.PluginManager</mainClass>

 <arguments>

 <argument>${project.build.outputDirectory}</argument>

 <argument>org.myorg.myproject.log4j</argument>

 </arguments>

 </configuration>

</plugin>

7 L o o k u p s 40

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

7Lookups
..

7.1 Lookups
Lookups provide a way to add values to the Log4j configuration at arbitrary places. They are a particular
type of Plugin that implements the StrLookup interface. Information on how to use Lookups in
configuration files can be found in the Property Substitution section of the Configuration page.

7.1.1 ContextMapLookup

The ContextMapLookup allows applications to store data in the Log4j ThreadContext Map and then
retrieve the values in the Log4j configuration. In the example below, the application would store the
current user's login id in the ThreadContext Map with the key "loginId". During initial configuration
processing the first '$' will be removed. The PatternLayout supports interpolation with Lookups and will
then resolve the variable for each event. Note that the pattern "%X{loginId}" would achieve the same
result.

 <File name="Application" fileName="application.log">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] $${ctx:loginId} %m%n</pattern>

 </PatternLayout>

 </File>

7.1.2 DateLookup

The DateLookup is somewhat unusual from the other lookups as it doesn't use the key to locate an item.
Instead, the key can be used to specify a date format string that is valid for SimpleDateFormat. The
current date, or the date associated with the current log event will be formatted as specified.

 <RollingFile name="Rolling-${map:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-$${date:MM-dd-yyyy}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

7.1.3 EnvironmentLookup

The EnvironmentLookup allows systems to configure environment variables, either in global files such
as /etc/profile or in the startup scripts for applications, and then retrieve those variables from within
the logging configuration. The example below includes the name of the currently logged in user in the
application log.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

7 L o o k u p s 41

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 <File name="Application" fileName="application.log">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] $${env:USER} %m%n</pattern>

 </PatternLayout>

 </File>

7.1.4 MapLookup

The MapLookup serves two purposes.

1. Provide the base for Properties declared in the configuration file.
2. Retrieve values from MapMessages in LogEvents.

The first item simply means that the MapLookup is used to substitute properties that are defined in the
configuration file. These variables are specified without a prefix - e.g. ${name}. The second usage allows
a value from the current MapMessage, if one is part of the current log event, to be substituted. In the
example below the RoutingAppender will use a different RollingFileAppender for each unique value of
the key named "type" in the MapMessage. Note that when used this way a value for "type" should be
declared in the properties declaration to provide a default value in case the message is not a MapMessage
or the MapMessage does not contain the key. See the Property Substitution section of the Configuration
page for information on how to set the default values.

 <Routing name="Routing">

 <Routes pattern="$${map:type}">

 <Route>

 <RollingFile name="Rolling-${map:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${map:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 </Routes>

 </Routing>

7.1.5 StructuredDataLookup

The StructuredDataLookup is very similar to the MapLookup in that it will retrieve values from
StructuredDataMessages. In addition to the Map values it will also return the name portion of the id (not
including the enterprise number) and the type field. The main difference between the example below and
the example for MapMessage is that the "type" is an attribute of the StructuredDataMessage while "type"
would have to be an item in the Map in a MapMessage.

7 L o o k u p s 42

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${filename}"

 filePattern="target/rolling1/test1-${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 </Routes>

 </Routing>

7.1.6 SystemPropertiesLookup

As it is quite common to define values inside and outside the application by using System Properties, it is
only natural that they should be accessible via a Lookup. As system properties are often defined outside
the application it would be quite common to see something like:

 <appenders>

 <File name="ApplicationLog" fileName="${sys:logPath}/app.log"/>

 </appenders>

8 A p p e n d e r s 43

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

8Appenders
..

8.1 Appenders
Appenders are the component responsible for delivering LogEvents to their destination. Every Appender
must implement the Appender interface. Most Appenders will extend AppenderBase which adds
Lifecycle and Filterable support. Lifecycle allows components to finish initialization after configuration
has completed and to perform cleanup during shutdown. Filterable allows the component to have Filters
attached to it which are evaluated during event processing.

Appenders usually are only responsible for writing the event data to the target destination. In most cases
they delegate responsibility for formatting the event to a layout. Some appenders wrap other appenders
so that they can modify the LogEvent, handle a failure in an Appender, route the event to a subordinate
Appender based on advanced Filter criteria or provide similar functionality that does not directly format
the event for viewing.

Appenders always have a name so that they can be referenced from Loggers.

8.1.1 AsynchAppender

The AsynchAppender accepts references to other Appenders and causes LogEvents to be written to them
on a separate Thread. Note that exceptions while writing to those Appenders will be hidden from the
application. The AsynchAppender should be configured after the appenders it references to allow it to
shut down properly.

Parameter Name Type Description

appender-ref String The name of the Appenders to
invoke asynchronously. Multiple
appender-ref elements can be
configured.

blocking boolean If true, the appender will wait until
there are free slots in the queue. If
false, the event will be written to the
error appender if the queue is full.

bufferSize integer Specifies the maximum number of
events that can be queued. The
default is 128.

error-ref String The name of the Appender to invoke
if none of the appenders can be
called, either due to errors in the
appenders or because the queue is
full. If not specified then errors will
be ignored.

8 A p p e n d e r s 44

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

name String The name of the Appender.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

AsynchAppender Parameters

A typical AsynchAppender configuration might look like:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <File name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 <Asynch name="Asynch">

 <appender-ref ref="MyFile"/>

 </Asynch>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Asynch"/>

 </root>

 </loggers>

</configuration>

8.1.2 ConsoleAppender

As one might expect, the ConsoleAppender writes its output to either System.err or System.out with
System.err being the default target. A Layout must be provided to format the LogEvent.

Parameter Name Type Description

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

8 A p p e n d e r s 45

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

layout Layout The Layout to use to format the
LogEvent. If no layout is supplied the
default pattern layout of "%m%n" will
be used.

name String The name of the Appender.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

ConsoleAppender Parameters

A typical Console configuration might look like:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

8.1.3 FailoverAppender

The FailoverAppender wraps a set of appenders. If the primary Appender fails the secondary appenders
will be tried in order until one succeeds or there are no more secondaries to try.

Parameter Name Type Description

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

primary String The name of the primary Appender
to use.

failovers String[] The names of the secondary
Appenders to use.

8 A p p e n d e r s 46

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

name String The name of the Appender.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

target String Either "SYSTEM_OUT" or
"SYSTEM_ERR". The default is
"SYSTEM_ERR".

FailoverAppender Parameters

A Failover configuration might look like:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Failover name="Failover" primary="RollingFile" suppressExceptions="false">

 <Failovers>

 <appender-ref ref="Console"/>

 </Failovers>

 </Failover>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Failover"/>

 </root>

 </loggers>

</configuration>

8.1.4 FileAppender

The FileAppender is an OutputStreamAppender that writes to the File named in the fileName parameter.
The FileAppender uses a FileManager (which extends OutputStreamManager) to actually perform the file
I/O. While FileAppenders from different Configurations cannot be shared, the FileManagers can be if the
Manager is accessible. For example, two webapps in a servlet container can have their own configuration
and safely write to the same file if Log4J is in a ClassLoader that is common to both of them.

8 A p p e n d e r s 47

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new reocrds are
written.

bufferedIO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedIO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

fileName String The name of the file to write to. If the
file, or any of its parent directories,
do not exist, they will be created.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

layout Layout The Layout to use to format the
LogEvent

locking boolean When set to true, I/O operations will
occur only while the file lock is held
allowing FileAppenders in multiple
JVMs and potentially multiple
hosts to write to the same file
simultaneously. This will significantly
impact performance so should
be used carefully. Furthermore,
on many systems the file lock
is "advisory" meaning that other
applications can perform operations
on the file without acquiring a lock.
The default value is false.

name String The name of the Appender.

8 A p p e n d e r s 48

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

FileAppender Parameters

Here is a sample File configuration:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <File name="MyFile" fileName="logs/app.log">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="MyFile"/>

 </root>

 </loggers>

</configuration>

8.1.5 FlumeAppender

This is an optional component supplied in a separate jar.

Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating,
and moving large amounts of log data from many different sources to a centralized data store. The
FlumeAppender takes LogEvents and sends them to a Flume agent as serialized Avro events for
consumption.

The Flume Appender supports two modes of operation.

1. It can act as a remote Flume client which sends Flume events via Avro to a Flume Agent configured
with an Avro Source.

2. It can act as an embedded Flume Agent where Flume events pass directly into Flume for processing.
Usage as an embedded agent will cause the messages to be directly passed to the Flume Channel and
then control will be immediately returned to the application. All interaction with remote agents will occur
asynchronously. Setting the "embedded" attribute to "true" will force the use of the embedded agent. In
addition, configuring agent properties in the appender configuration will also cause the embedded agent
to be used.

Parameter Name Type Description

http://flume.apache.org/index.html

8 A p p e n d e r s 49

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

agents Agent[] An array of Agents to which the
logging events should be sent. If
more than one agent is specified the
first Agent will be the primary and
subsequent Agents will be used in
the order specified as secondaries
should the primary Agent fail. Each
Agent definition supplies the Agents
host and port. The specification of
agents and properties are mutually
exclusive. If both are configured an
error will result.

agentRetries integer The number of times the agent
should be retried before failing to a
secondary.

batchSize integer Specifies the number of events
that should be sent as a batch. The
default is 1. This parameter only
applies to the Flume NG Appender.

compress boolean When set to true the message body
will be compressed using gzip

dataDir String Directory where the Flume write
ahead log should be written. Valid
only when embedded is set to
true and Agent elements are used
instead of Property elements.

embedded boolean When set to true the embedded
Flume agent will be used. When
Agent elements are used the events
will be sent to a file channel and then
routed to a FailoverSinkProcessor
which will use each configured agent
in the order they are declared.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

eventPrefix String The character string to prepend
to each event attribute in order to
distinguish it from MDC attributes.
The default is an empty string.

flumeEventFactory FlumeEventFactory Factory that generates the
Flume events from Log4j
events. The default factory is the
FlumeAvroAppender itself.

layout Layout The Layout to use to format the
LogEvent. If no layout is specified
RFC5424Layout will be used.

8 A p p e n d e r s 50

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

mdcExcludes String A comma separated list of mdc
keys that should be excluded from
the FlumeEvent. This is mutually
exclusive with the mdcIncludes
attribute.

mdcIncludes String A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive with
the mdcExcludes attribute.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.

mdcPrefix String A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:".

name String The name of the Appender.

properties Property[] One or more Property elements that
are used to configure the Flume
Agent. The properties must be
configured without the agent name
(the appender name is used for this)
and no sources can be configured.
All other Flume configuration
properties are allowed. Specifying
both Agent and Property elements
will result in an error.

reconnectionDelay integer The number of milliseconds the
application should wait before trying
again to connect to the agent.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

FlumeAvroAppender Parameters

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, and formats the body using the RFC5424Layout:

8 A p p e n d e r s 51

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Flume name="eventLogger" suppressExceptions="false" compress="true">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="eventLogger"/>

 </root>

 </loggers>

</configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent,
compresses the body, formats the body using RFC5424Layout and passes the events to an embedded
Flume Agent.

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Flume name="eventLogger" suppressExceptions="false" compress="true" embedded="true">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Console name="STDOUT">

 <PatternLayout pattern="%d [%p] %c %m%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="EventLogger" level="info">

 <appender-ref ref="eventLogger"/>

 </logger>

 <root level="warn">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

A sample FlumeAppender configuration that is configured with a primary and a secondary agent using
Flume configuration properties, compresses the body, formats the body using RFC5424Layout and passes
the events to an embedded Flume Agent.

8 A p p e n d e r s 52

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="error" name="MyApp" packages="">

 <appenders>

 <Flume name="eventLogger" suppressExceptions="false" compress="true" embedded="true">

 <Property name="channels">file</Property>

 <Property name="channels.file.type">file</Property>

 <Property name="channels.file.checkpointDir">target/file-channel/checkpoint</Property>

 <Property name="channels.file.dataDirs">target/file-channel/data</Property>

 <Property name="sinks">agent1 agent2</Property>

 <Property name="sinks.agent1.channel">file</Property>

 <Property name="sinks.agent1.type">avro</Property>

 <Property name="sinks.agent1.hostname">192.168.10.101</Property>

 <Property name="sinks.agent1.port">8800</Property>

 <Property name="sinks.agent1.batch-size">100</Property>

 <Property name="sinks.agent2.channel">file</Property>

 <Property name="sinks.agent2.type">avro</Property>

 <Property name="sinks.agent2.hostname">192.168.10.102</Property>

 <Property name="sinks.agent2.port">8800</Property>

 <Property name="sinks.agent2.batch-size">100</Property>

 <Property name="sinkgroups">group1</Property>

 <Property name="sinkgroups.group1.sinks">agent1 agent2</Property>

 <Property name="sinkgroups.group1.processor.type">failover</Property>

 <Property name="sinkgroups.group1.processor.priority.agent1">10</Property>

 <Property name="sinkgroups.group1.processor.priority.agent2">5</Property>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Console name="STDOUT">

 <PatternLayout pattern="%d [%p] %c %m%n"/>

 </Console>

 </appenders>

 <loggers>

 <logger name="EventLogger" level="info">

 <appender-ref ref="eventLogger"/>

 </logger>

 <root level="warn">

 <appender-ref ref="STDOUT"/>

 </root>

 </loggers>

</configuration>

8.1.6 JMSQueueAppender

The JMSQueueAppender sends the formatted log event to a JMS Queue.

Parameter Name Type Description

8 A p p e n d e r s 53

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

factoryBindingName String The name to locate in the
Context that provides the
QueueConnectionFactory.

factoryName String The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.
If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without a
providerURL a warning message will
be logged as this is likely to cause
problems.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

layout Layout The Layout to use to format the
LogEvent. If no layout is specified
SerializedLayout will be used.

name String The name of the Appender.

password String The password to use to create the
queue connection.

providerURL String The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

queueBindingName String The name to use to locate the
Queue.

securityPrincipalName String The name of the identity of
the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

securityCredentials String The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Queue.html
http://download.oracle.com/javaee/5/api/javax/jms/Queue.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS

8 A p p e n d e r s 54

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

urlPkgPrefixes String A colon-separated list of package
prefixes for the class name of
the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

userName String The user id used to create the queue
connection.

JMSQueueAppender Parameters

Here is a sample JMSQueueAppender configuration:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <JMSQueue name="jmsQueue" queueBindingName="MyQueue"

 factoryBindingName="MyQueueConnectionFactory"/>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="jmsQueue"/>

 </root>

 </loggers>

</configuration>

8.1.7 JMSTopicAppender

The JMSTopicAppender sends the formatted log event to a JMS Topic.

Parameter Name Type Description

factoryBindingName String The name to locate in the
Context that provides the
TopicConnectionFactory.

factoryName String The fully qualified class name that
should be used to define the Initial
Context Factory as defined in
INITIAL_CONTEXT_FACTORY.
If no value is provided the default
InitialContextFactory will be used. If
a factoryName is specified without a
providerURL a warning message will
be logged as this is likely to cause
problems.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectionFactory.html
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectionFactory.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#INITIAL_CONTEXT_FACTORY

8 A p p e n d e r s 55

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

layout Layout The Layout to use to format the
LogEvent. If no layout is specified
SerializedLayout will be used.

name String The name of the Appender.

password String The password to use to create the
queue connection.

providerURL String The URL of the provider to use as
defined by PROVIDER_URL. If
this value is null the default system
provider will be used.

topicBindingName String The name to use to locate the
Topic.

securityPrincipalName String The name of the identity of
the Principal as specified by
SECURITY_PRINCIPAL. If a
securityPrincipalName is specified
without securityCredentials a
warning message will be logged as
this is likely to cause problems.

securityCredentials String The security credentials for
the principal as specified by
SECURITY_CREDENTIALS.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

urlPkgPrefixes String A colon-separated list of package
prefixes for the class name of
the factory class that will create a
URL context factory as defined by
URL_PKG_PREFIXES.

userName String The user id used to create the queue
connection.

JMSTopicAppender Parameters

Here is a sample JMSTopicAppender configuration:

http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#PROVIDER_URL
http://download.oracle.com/javaee/5/api/javax/jms/Topic.html
http://download.oracle.com/javaee/5/api/javax/jms/Topic.html
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_PRINCIPAL
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#SECURITY_CREDENTIALS
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES
http://download.oracle.com/javase/6/docs/api/javax/naming/Context.html#URL_PKG_PREFIXES

8 A p p e n d e r s 56

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <JMSTopic name="jmsTopic" topicBindingName="MyTopic"

 factoryBindingName="MyTopicConnectionFactory"/>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="jmsQueue"/>

 </root>

 </loggers>

</configuration>

8.1.8 OutputStreamAppender

The OutputStreamAppender provides the base for many of the other Appenders such as the File and
Socket appenders that write the event to an Output Stream. It cannot be directly configured. Support for
immediateFlush and buffering is provided by the OutputStreamAppender. The OutputStreamAppender
uses an OutputStreamManager to handle the actual I/O, allowing the stream to be shared by Appenders in
multiple configurations.

8.1.9 RewriteAppender

The RewriteAppender allows the LogEvent to manipulated before it is processed by another Appender.
This can be used to mask sensitive information such as passwords or to inject information into each
event. The RewriteAppender must be configured with a RewritePolicy. The RewriteAppender should be
configured after any Appenders it references to allow it to shut down properly.

Parameter Name Type Description

appender-ref String The name of the Appenders to
call after the LogEvent has been
manipulated. Multiple appender-ref
elements can be configured.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolciy The RewritePolicy that will
manipulate the LogEvent.

8 A p p e n d e r s 57

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

RewriteAppender Parameters

8.1.9.1 RewritePolicy

RewritePolicy is an interface that allows implementations to inspect and possibly modify LogEvents
before they are passed to Appender. RewritePolicy declares a single method named rewrite that must be
implemented. The method is passed the LogEvent and can return the same event or create a new one.

8.MapRewritePolicy

MapRewritePolicy will evaluate LogEvents that contain a MapMessage and will add or update elements
of the Map.

Parameter Name Type Description

mode String "Add" or "Update"

keyValuePair KeyValuePair[] An array of keys and their values.

The following configuration shows a RewriteAppender configured to add a product key and its value to
the MapMessage.:

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Rewrite name="rewrite">

 <appender-ref ref="STDOUT"/>

 <MapRewritePolicy mode="Add">

 <KeyValuePair key="product" value="TestProduct"/>

 </MapRewritePolicy>

 </Rewrite>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Rewrite"/>

 </root>

 </loggers>

</configuration>

8 A p p e n d e r s 58

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

8.PropertiesRewritePolicy

PropertiesRewritePolicy will add properties configured on the policy to the ThreadContext Map being
logged. The properties will not be added to the actual ThreadContext Map. The property values may
contain variables that will be evaluated when the configuration is processed as well as when the event is
logged.

Parameter Name Type Description

properties Property[] One of more Property elements to
define the keys and values to be
added to the ThreadContext Map.

The following configuration shows a RewriteAppender configured to add a product key and its value to
the MapMessage.:

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Console name="STDOUT" target="SYSTEM_OUT">

 <PatternLayout pattern="%m%n"/>

 </Console>

 <Rewrite name="rewrite">

 <appender-ref ref="STDOUT"/>

 <PropertiesRewritePolicy>

 <Property key="user">${sys:user.name}</Property>

 <Property key="env">${sys:environment}</Property>

 </PropertiesRewritePolicy>

 </Rewrite>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Rewrite"/>

 </root>

 </loggers>

</configuration>

8.1.10 RollingFileAppender

The RollingFileAppender is an OutputStreamAppender that writes to the File named in the
fileName parameter and rolls the file over according the TriggeringPolicy and the RolloverPolicy.
The RollingFileAppender uses a RollingFileManager (which extends OutputStreamManager) to
actually perform the file I/O and perform the rollover. While RolloverFileAppenders from different
Configurations cannot be shared, the RollingFileManagers can be if the Manager is accessible. For
example, two webapps in a servlet container can have their own configuration and safely write to the
same file if Log4J is in a ClassLoader that is common to both of them.

A RollingFileAppender requires a TriggeringPolicy and a RolloverStrategy. The triggering
policy determines if a rollover should be performed while the RolloverStrategy defines how the

8 A p p e n d e r s 59

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

rollover should be done. If no RolloverStrategy is configured, RollingFileAppender will use the
DefaultRolloverStrategy.

File locking is not supported by the RollingFileAppender.

Parameter Name Type Description

append boolean When true - the default, records
will be appended to the end of the
file. When set to false, the file will
be cleared before new reocrds are
written.

bufferedIO boolean When true - the default, records
will be written to a buffer and the
data will be written to disk when the
buffer is full or, if immediateFlush
is set, when the record is written.
File locking cannot be used with
bufferedIO. Performance tests
have shown that using buffered I/O
significantly improves performance,
even if immediateFlush is enabled.

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

fileName String The name of the file to write to. If the
file, or any of its parent directories,
do not exist, they will be created.

filePattern String The pattern of the file name of the
archived log file. The format of the
pattern should is dependent on the
RolloverPolicy that is used. The
DefaultRolloverPolicy will accept
both a date/time pattern compatible
with SimpleDateFormat and and/
or a %i which represents an integer
counter. The pattern also supports
interpolation at runtime so any of the
Lookups (such as the DateLookup
can be included in the pattern.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

layout Layout The Layout to use to format the
LogEvent

name String The name of the Appender.

policy TriggeringPolicy The policy to use to determine if a
rollover should occur.

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

8 A p p e n d e r s 60

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

strategy RolloverStrategy The strategy to use to determine the
name and location of the archive file.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

RollingFileAppender Parameters

8.1.10.1 Triggering Policies

8.Composite Triggering Policy

The CompositeTriggeringPolicy combines multiple triggering policies and returns true if any of the
configured policies return true. The CompositeTriggeringPolicy is configured simply by wrapping other
policies in a "Policies" element.

8.OnStartup Triggering Policy

The OnStartup policy takes no parameters and causes a rollover if the log file is older than the current
JVM's start time.

8.SizeBased Triggering Policy

Causes a rollover once the file has reached the specified size. The size can be specified in bytes, KB, MB
or GB.

8.TimeBased Triggering Policy

Causes a rollover once the date/time pattern no longer applies to the active file. This policy accepts an
"increment" attribute which indicates how frequently the rollover should occur based on the time pattern
and a "modulate" boolean attribute.

Parameter Name Type Description

interval integer How often a rollover should occur
based on the most specific time unit
in the date pattern. For example,
with a date pattern with hours as
the most specific item and and
increment of 4 rollovers would occur
every 4 hours. The default value is 1.

8 A p p e n d e r s 61

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

modulate boolean Indicates whether the interval
should be adjusted to cause the
next rollover to occur on the interval
boundary. For example, if the item is
hours, the current hour is 3 am and
the interval is 4 then then the first
rollover will occur at 4 am and then
next ones will occur at 8 am, noon,
4pm, etc.

TimeBasedTriggeringPolicy Parameters

8.1.10.2 Rollover Strategies

8.Default Rollover Strategy

The default rollover strategy accepts both a date/time pattern and an integer from the filePattern attribute
specified on the RollingFileAppender itself. If the date/time pattern is present it will be replaced with the
current date and time values. If the pattern contains an integer it will be incremented on each rollover. If
the pattern contains both a date/time and integer in the pattern the integer will be incremented until the
result of the date/time pattern changes. If the file pattern ends with ".gz" or ".zip" the resulting archive
will be compressed using the compression scheme that matches the suffix. The pattern may also contain
lookup references that can be resolved at runtime such as is shown in the example below.

The Default rollover strategy also accepts a minimum value and a maximum value. When a minimim
value other than 1 is specified than files with an index lower than that value will not be deleted when the
maximum value is exceeded.

Parameter Name Type Description

min integer The minimum value of the counter.
The default value is 1.

max integer The maximum value of the counter.
Once this values is reached
older archives will be deleted on
subsequent rollovers.

DefaultRolloverStrategy Parameters

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory based
on the current year and month, and will compress each archive using gzip:

8 A p p e n d e r s 62

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

This second example shows a rollover strategy that will keep up to 20 files before removing them.
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{MM-dd-yyyy}-%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy />

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 <DefaultRolloverStrategy max="20"/>

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

Below is a sample configuration that uses a RollingFileAppender with both the time and size based
triggering policies, will create up to 7 archives on the same day (1-7) that are stored in a directory based
on the current year and month, and will compress each archive using gzip and will roll every 6 hours
when the hour is divisible by 6:

8 A p p e n d e r s 63

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/$${date:yyyy-MM}/app-%d{yyyy-MM-dd-HH}-%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <Policies>

 <TimeBasedTriggeringPolicy interval="6" modulate="true"/>

 <SizeBasedTriggeringPolicy size="250 MB"/>

 </Policies>

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

8.1.11 RoutingAppender

The RoutingAppender evaluates LogEvents and then routes them to a subordinate Appender. The target
Appender may be an appender previously configured and may be referenced by its name or the Appender
can be dynamically created as needed. The RoutingAppender should be configured after any Appenders it
references to allow it to shut down properly.

Parameter Name Type Description

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

name String The name of the Appender.

rewritePolicy RewritePolciy The RewritePolicy that will
manipulate the LogEvent.

routes Routes Contains one or more Route
declarations to identify the criteria for
choosing Appenders.

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

8 A p p e n d e r s 64

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

RoutingAppender Parameters

8.1.11.1 Routes

The Routes element accepts a single, required attribute named "pattern". The pattern is evaluated against
all the registered Lookups and the result is used to select a Route. Each Route may be configured with a
key. If the key matches the result of evaluating the pattern then that Route will be selected. If no key is
specified on a Route then that Route is the default. Only one Route can be configured as the default.

Each Route must reference an Appender. If the Route contains an appender-ref attribute then the Route
will reference an Appender that was defined in the configuration. If the Route contains an Appender
definition then an Appender will be created within the context of the RoutingAppender and will be reused
each time a matching Appender name is referenced through a Route.

Below is a sample configuration that uses a RoutingAppender to route all Audit events to a
FlumeAppender and all other events will be routed to a RollingFileAppender that captures only the
specific event type. Note that the AuditAppender was predefined while the RollingFileAppenders are
created as needed.

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Flume name="AuditLogger" suppressExceptions="false" compress="true">

 <Agent host="192.168.10.101" port="8800"/>

 <Agent host="192.168.10.102" port="8800"/>

 <RFC5424Layout enterpriseNumber="18060" includeMDC="true" appName="MyApp"/>

 </Flume>

 <Routing name="Routing">

 <Routes pattern="$${sd:type}">

 <Route>

 <RollingFile name="Rolling-${sd:type}" fileName="${sd:type}.log"

 filePattern="${sd:type}.%i.log.gz">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <SizeBasedTriggeringPolicy size="500" />

 </RollingFile>

 </Route>

 <Route appender-ref="AuditLogger" key="Audit"/>

 </Routes>

 </Routing>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="Routing"/>

 </root>

 </loggers>

</configuration>

8 A p p e n d e r s 65

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

8.1.12 SocketAppender

The SocketAppender is an OutputStreamAppender that writes its output to a remote destination specified
by a host and port. The data can be sent over either TCP or UDP and can be sent in any format. The
default format is to send a Serialized LogEvent. Log4j 2 contains a SocketServer which is capable of
receiving serialized LogEvents and routing them through the logging system on the server.

Parameter Name Type Description

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

host String The name or address of the system
that is listening for log events. This
parameter is required.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

layout Layout The Layout to use to format
the LogEvent. The default is
SerializedLayout.

name String The name of the Appender.

port integer The port on the host that is listening
for log events. This parameter must
be specified.

protocol String "TCP" or "UDP". This parameter is
required.

reconnectionDelay integer If set to a value greater than 0, after
an error the SocketManager will
attempt to reconnect to the server
after waiting the specified number
of milliseconds. If the reconnect
fails then an exception will be
thrown (which can be caught by the
application if suppressExceptions is
set to false).

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

SocketAppender Parameters

8 A p p e n d e r s 66

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Socket name="socket" host="localhost" port="9500">

 <SerlializedLayout />

 </Socket>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="socket"/>

 </root>

 </loggers>

</configuration>

8.1.13 SyslogAppender

The SyslogAppender is a SocketAppender that writes its output to a remote destination specified by a
host and port in a format that conforms with either the BSD Syslog format or the RFC 5424 format. The
data can be sent over either TCP or UDP.

Parameter Name Type Description

appName String The value to use as the APP-NAME
in the RFC 5424 syslog record.

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

filter Filter A Filter to determine if the event
should be handled by this Appender.
More than one Filter may be used by
using a CompositeFilter.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

8 A p p e n d e r s 67

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper or
lower case characters.

format String If set to "RFC5424" the data will be
formatted in accordance with RFC
5424. Otherwise, it will be formatted
as a BSD Syslog record. Note that
although BSD Syslog records are
required to be 1024 bytes or shorter
the SyslogLayout does not truncate
them. The RFC5424Layout also
does not truncate records since
the receiver must accept records of
up to 2048 bytes and may accept
records that are longer.

host String The name or address of the system
that is listening for log events. This
parameter is required.

id String The default structured data id to use
when formatting according to RFC
5424. If the LogEvent contains a
StructuredDataMessage the id from
the Message will be used instead of
this value.

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

includeMDC boolean Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

mdcExcludes String A comma separated list of mdc keys
that should be excluded from the
LogEvent. This is mutually exclusive
with the mdcIncludes attribute. This
attribute only applies to RFC 5424
syslog records.

8 A p p e n d e r s 68

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

mdcIncludes String A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive
with the mdcExcludes attribute. This
attribute only applies to RFC 5424
syslog records.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

mdcPrefix String A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:". This attribute only
applies to RFC 5424 syslog records.

messageId String The default value to be used in the
MSGID field of RFC 5424 syslog
records.

name String The name of the Appender.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

port integer The port on the host that is listening
for log events. This parameter must
be specified.

protocol String "TCP" or "UDP". This parameter is
required.

reconnectionDelay integer If set to a value greater than 0, after
an error the SocketManager will
attempt to reconnect to the server
after waiting the specified number
of milliseconds. If the reconnect
fails then an exception will be
thrown (which can be caught by the
application if suppressExceptions is
set to false).

suppressExceptions boolean The default is true, causing
exceptions to be internally logged
and then ignored. When set to false
exceptions will be percolated to the
caller.

SyslogAppender Parameters

8 A p p e n d e r s 69

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

A sample syslogAppender configuration that is configured with two SyslogAppenders, one using the
BSD format and one using RFC 5424.

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <Syslog name="bsd" host="localhost" port="514" protocol="TCP"/>

 <Syslog name="RFC5424" format="RFC5424" host="localhost" port="8514"

 protocol="TCP" appName="MyApp" includeMDC="true"

 facility="LOCAL0" enterpriseNumber="18060" newLine="true"

 messageId="Audit" id="App"/>

 </appenders>

 <loggers>

 <logger name="com.mycorp" level="error">

 <appender-ref ref="RFC5424"/>

 </logger>

 <root level="error">

 <appender-ref ref="bsd"/>

 </root>

 </loggers>

</configuration>

9 L a y o u t s 70

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9Layouts
..

9.1 Layouts
An Appender uses a Layout to format a LogEvent into a form that meets the needs of whatever will be
consuming the log event. In Log4j 1.x and Logback Layouts were expected to transform an event into a
String. In Log4j 2 Layouts return a byte array. This allows the result of the Layout to be useful in many
more types of Appenders. However, this means you need to configure most Layouts with a Charset to
insure the byte array contains correct values.

9.1.1 HTMLLayout

The HTMLLayout generates an HTML page and adds each LogEvent to a row in a table.

Parameter Name Type Description

charset String The character set to use when
converting the HTML String to a byte
array. The value must be a valid
Charset. If not specified, the default
system Charset will be used.

contentType String The value to assign to the Content-
Type header. The default is "text/
html".

locationInfo boolean If true, the filename and line number
will be included in the HTML output.
The default value is false.

title String A String that will appear as the
HTML title.

HTML Layout Parameters

9.1.2 PatternLayout

A flexible layout configurable with pattern string. The goal of this class is to format a LogEvent and
return the results. The format of the result depends on the conversion pattern.

The conversion pattern is closely related to the conversion pattern of the printf function in C. A
conversion pattern is composed of literal text and format control expressions called conversion specifiers.

Note that any literal text may be included in the conversion pattern.

Each conversion specifier starts with a percent sign (%) and is followed by optional format modifiers and
a conversion character. The conversion character specifies the type of data, e.g. category, priority, date,
thread name. The format modifiers control such things as field width, padding, left and right justification.
The following is a simple example.

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 L a y o u t s 71

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Let the conversion pattern be "%-5p [%t]: %m%n" and assume that the log4j environment was set to
use a PatternLayout. Then the statements
Logger logger = LogManager.getLogger("MyLogger");

logger.debug("Message 1");

logger.warn("Message 2");

would yield the output
DEBUG [main]: Message 1

WARN [main]: Message 2

Note that there is no explicit separator between text and conversion specifiers. The pattern parser knows
when it has reached the end of a conversion specifier when it reads a conversion character. In the example
above the conversion specifier %-5p means the priority of the logging event should be left justified to a
width of five characters.

Parameter Name Type Description

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

pattern String

replace RegexReplacement Allows portions of the resulting
String to be replaced. If configured,
the replace element must specify the
regular expression to match and the
substitution. This performs a function
similar to the RegexReplacement
converter but applies to the whole
message while the converter only
applies to the String its pattern
generates.

Pattern Layout Parameters

9.1.2.1 Patterns

The conversions that are provided with Log4j are:

Conversion Pattern Description

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 L a y o u t s 72

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

c{precision}
logger{precision}

Outputs the name of the logger that published the
logging event. The logger conversion specifier
can be optionally followed by precision specifier,
which consists of a decimal integer, or a pattern
starting with a decimal integer.

If a precision specifier is given and it is an integer
value, then only the corresponding number of
right most components of the logger name will be
printed. If the precision contains other non-integer
characters then the name will be abbreviated based
on the pattern. If the precision integer is less than
one the right-most token will still be printed in
full. By default the logger name is printed in full.

Conversion
Pattern Logger Name Result

%c{1} org.apache.
commons.Foo

Foo

%c{2} org.apache.
commons.Foo

commons.Foo

%c{1.} org.apache.
commons.Foo

o.a.c.Foo

%c{1.1.~.~} org.apache.
commons.test.
Foo

o.a.~.~.Foo

%c{.} org.apache.
commons.test.
Foo

....Foo

C{precision}
class{precision}

Outputs the fully qualified class name of the
caller issuing the logging request. This conversion
specifier can be optionally followed by precision
specifier, that follows the same rules as the logger
name converter.

9 L a y o u t s 73

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

d{pattern}
date{pattern}

Outputs the date of the logging event. The date
conversion specifier may be followed by a set of
braces containing a date and time pattern string per
SimpleDateFormat.

The predefined formats are ABSOLUTE,
COMPACT, DATE, ISO8601, and
ISO8601_BASIC.

You can also use a set of braces containing a time
zone id per java.util.TimeZone.getTimeZone.
If no date format specifier is given then ISO8601
format is assumed.

Pattern Example

%d{ISO8601} 2012-11-02 14:34:02,781

%d{ISO8601_BASIC} 20121102 143402,781

%d{ABSOLUTE} 14:34:02,781

%d{DATE} 02 Nov 2012
14:34:02,781

%d{COMPACT} 20121102143402781

%d{HH:mm:ss,SSS} 14:34:02,781

%d{dd MMM yyyy
HH:mm:ss,SSS}

02 Nov 2012
14:34:02,781

%d{HH:mm:ss}{GMT+0} 18:34:02,781

ex{["short"|"full"|depth]}
exception{["short"|"full"|depth]}
throwable{["short"|"full"|depth]}

Outputs the Throwable trace that has been bound
to the LoggingEvent, by default this will output
the full trace as one would normally find by a call
to Throwable.printStackTrace(). The throwable
conversion word can be followed by an option
in the form %throwable{short} which will
only output the first line of the Throwable or
%throwable{n} where the first n lines of the
stacktrace will be printed.

F
file

Outputs the file name where the logging request was
issued.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getTimeZone(java.lang.String)

9 L a y o u t s 74

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

highlight{pattern}{style} Adds ANSI colors to the result of the enclosed
pattern based on the current event's logging level.

The default colors for each level are:

Level ANSI color

FATAL Bright red

ERROR Bright red

WARN Yellow

INFO Green

DEBUG Cyan

TRACE Black (looks dark grey)

The color names are ANSI names defined in the
AnsiEscape class.

The color and attribute names and are standard, but
the exact shade, hue, or value.

Intensity
Code0 1 2 3 4 5 6 7

NormalBlack Red GreenYellowBlue MagentaCyan White

BrightBlack Red GreenYellowBlue MagentaCyan White

Color table

You can use the default colors with:
%highlight{%d [%t] %-5level: %msg%n%throwable}

You can override the default colors in the optional
{style} option. For example:
%highlight{%d [%t] %-5level: %msg%n%throwable}

 {FATAL=white, ERROR=red, WARN=blue, INFO=black,

 DEBUG=green, TRACE=blue}

You can highlight only the a portion of the log
event:
%d [%t] %highlight{%-5level: %msg%n%throwable}

You can style one part of the message and
highlight the rest the log event:
%style{%d [%t]}{black} %highlight{%-5level:

 %msg%n%throwable}

9 L a y o u t s 75

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

You can also use the STYLE key to use a
predefined group of colors:
%highlight{%d [%t] %-5level: %msg%n%throwable}

 {STYLE=Logback}

The STYLE value can be one of:

Style Description

Default See above

Logback

Level
ANSI
color

FATAL Blinking
bright red

ERROR Bright red

WARN Red

INFO Blue

DEBUG Normal

TRACE Normal

K{key}
map{key}
MAP{key}

Outputs the entries in a MapMessage, if one is
present in the event. The K conversion character
can be followed by the key for the map placed
between braces, as in %K{clientNumber} where
clientNumber is the key. The value in the Map
corresponding to the key will be output. If no
additional sub-option is specified, then the entire
contents of the Map key value pair set is output
using a format {{key1,val1},{key2,val2}}

l
location

Outputs location information of the caller which
generated the logging event.

The location information depends on the JVM
implementation but usually consists of the fully
qualified name of the calling method followed by
the callers source the file name and line number
between parentheses.

L
line

Outputs the line number from where the logging request
was issued.

m
msg

message

Outputs the application supplied message associated
with the logging event.

9 L a y o u t s 76

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

M
method

Outputs the method name where the logging request
was issued.

marker The name of the marker, if one is present.

n Outputs the platform dependent line separator
character or characters.

This conversion character offers practically the
same performance as using non-portable line
separator strings such as "\n", or "\r\n". Thus, it is
the preferred way of specifying a line separator.

p{level name mapping}
level{level name mapping}

Outputs the level of the logging event. A level name
mapping map be provided in the form "level=value,
level=value" where level is the name of the Level and
value is the value that should be displayed instead of the
name of the Level.

r
relative

Outputs the number of milliseconds elapsed since the
JVM was started until the creation of the logging event.

replace{pattern}{regex}{substitution} Replaces occurrences of 'regex', a regular
expression, with its replacement 'substitution' in
the string resulting from evaluation of the pattern.
For example, "%replace(%msg}{\s}{}" will
remove all spaces contained in the event message.

The pattern can be arbitrarily complex and
in particular can contain multiple conversion
keywords. For instance, "%replace{%logger
%msg}{\.}{/}" will replace all dots in the logger
or the message of the event with a forward slash.

rEx["short"|"full"|depth],[filters(packages)}
rException["short"|"full"|depth],[filters(packages)}
rThrowable["short"|"full"|depth],[filters(packages)}

The same as the %throwable conversion word
but the stack trace is printed starting with the
first exception that was thrown followed by each
subsequent wrapping exception.

The throwable conversion word can be followed
by an option in the form %rEx{short} which
will only output the first line of the Throwable or
%rEx{n} where the first n lines of the stacktrace
will be printed. The conversion word can also be
followed by "filters(packages)" where packages is
a list of package names that should be suppressed
from stack traces.

sn
sequenceNumber

Includes a sequence number that will be incremented
in every event. The counter is a static variable so will
only be unique within applications that share the same
converter Class object.

9 L a y o u t s 77

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

style{pattern}{ANSI style} Uses ANSI escape sequences to style the result
of the enclosed pattern. The style can consist of
a comma separated list of style names from the
following table.

Style Name Description

Normal Normal display

Bright Bold

Dim Dimmed or faint
characters

Underline Underlined characters

Blink Blinking characters

Reverse Reverse video

Hidden

Black or FG_Black Set foreground color to
black

Red or FG_Red Set foreground color to
red

Green or FG_Green Set foreground color to
green

Yellow or FG_Yellow Set foreground color to
yellow

Blue or FG_Blue Set foreground color to
blue

Magenta or FG_Magenta Set foreground color to
magenta

Cyan or FG_Cyan Set foreground color to
cyan

White or FG_White Set foreground color to
white

Default or FG_Default Set foreground color to
default (white)

BG_Black Set background color to
black

BG_Red Set background color to
red

BG_Green Set background color to
green

BG_Yellow Set background color to
yellow

BG_Blue Set background color to
blue

BG_Magenta Set background color to
magenta

BG_Cyan Set background color to
cyan

BG_White Set background color to
white

9 L a y o u t s 78

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

t
thread

Outputs the name of the thread that generated the
logging event.

x
NDC

Outputs the Thread Context Stack (also known as the
Nested Diagnostic Context or NDC) associated with the
thread that generated the logging event.

X{key}
mdc{key}
MDC{key}

Outputs the Thread Context Map (also known
as the Mapped Diagnostic Context or MDC)
associated with the thread that generated the
logging event. The X conversion character
can be followed by the key for the map placed
between braces, as in %X{clientNumber} where
clientNumber is the key. The value in the MDC
corresponding to the key will be output. If no
additional sub-option is specified, then the entire
contents of the MDC key value pair set is output
using a format {{key1,val1},{key2,val2}}

See the ThreadContext class for more details.

u{"RANDOM" | "TIME"}
uuid

Includes either a random or a time-based UUID. The
time-based UUID is a Type 1 UUID that can generate up
to 10,000 unique ids per millisecond, will use the MAC
address of each host, and to try to insure uniqueness
across multiple JVMs and/or ClassLoaders on the same
host a random number between 0 and 16,384 will be
associated with each instance of the UUID generator
Class and included in each time-based UUID generated.
Because time-based UUIDs contain the MAC address
and timestamp they should be used with care as they
can cause a security vulnerability.

xEx{["short"|"full"|depth],[filters(packages)}
xException["short"|"full"|depth],[filters(packages)}
xThrowable["short"|"full"|depth],[filters(packages)}

The same as the %throwable conversion word but
also includes class packaging information.

At the end of each stack element of the exception,
a string containing the name of the jar file that
contains the class or the directory the class is
located in and the "Implementation-Version"
as found in that jar's manifest will be added.
If the information is uncertain, then the class
packaging data will be preceded by a tilde, i.e. the
'~' character.

The throwable conversion word can be followed
by an option in the form %xEx{short} which
will only output the first line of the Throwable or
%xEx{n} where the first n lines of the stacktrace
will be printed. The conversion word can also be
followed by "filters(packages)" where packages is
a list of package names that should be suppressed
from stack traces.

9 L a y o u t s 79

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

% The sequence %% outputs a single percent sign.

By default the relevant information is output as is. However, with the aid of format modifiers it is
possible to change the minimum field width, the maximum field width and justification.

The optional format modifier is placed between the percent sign and the conversion character.

The first optional format modifier is the left justification flag which is just the minus (-) character. Then
comes the optional minimum field width modifier. This is a decimal constant that represents the minimum
number of characters to output. If the data item requires fewer characters, it is padded on either the left
or the right until the minimum width is reached. The default is to pad on the left (right justify) but you
can specify right padding with the left justification flag. The padding character is space. If the data item
is larger than the minimum field width, the field is expanded to accommodate the data. The value is never
truncated.

This behavior can be changed using the maximum field width modifier which is designated by a period
followed by a decimal constant. If the data item is longer than the maximum field, then the extra
characters are removed from the beginning of the data item and not from the end. For example, it the
maximum field width is eight and the data item is ten characters long, then the first two characters of the
data item are dropped. This behavior deviates from the printf function in C where truncation is done from
the end.

Below are various format modifier examples for the category conversion specifier.

Format modifier left justify minimum width maximum width comment

%20c false 20 none Left pad with spaces
if the category name
is less than 20
characters long.

%-20c true 20 none Right pad with
spaces if the
category name
is less than 20
characters long.

%.30c NA none 30 Truncate from the
beginning if the
category name
is longer than 30
characters.

%20.30c false 20 30 Left pad with spaces
if the category name
is shorter than 20
characters. However,
if category name
is longer than 30
characters, then
truncate from the
beginning.

9 L a y o u t s 80

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

%-20.30c true 20 30 Right pad with
spaces if the
category name is
shorter than 20
characters. However,
if category name
is longer than 30
characters, then
truncate from the
beginning.

Pattern Converters

9.1.2.2 ANSI Styling on Windows

ANSI escape sequences are supported natively on many platforms but are not by default on Windows. To
enable ANSI support simply add the Jansi jar to your application and Log4j will automatically make use
of it when writing to the console.

9.1.2.3 Example Patterns

9.Filtered Throwables

This example shows how to filter out classes from unimportant packages in stack traces.

<properties>

 <property name="filters">org.junit,org.apache.maven,sun.reflect,java.lang.reflect</property>

</properties>

...

<PatternLayout pattern="%m%xEx{filters(${filters})}%n"/>

The result printed to the console will appear similar to:

Exception java.lang.IllegalArgumentException: IllegalArgument

 at org.apache.logging.log4j.core.pattern.ExtendedThrowableTest.

 testException(ExtendedThrowableTest.java:72) [test-classes/:?]

 ... suppressed 26 lines

 at $Proxy0.invoke(Unknown Source)} [?:?]

 ... suppressed 3 lines

 Caused by: java.lang.NullPointerException: null pointer

 at org.apache.logging.log4j.core.pattern.ExtendedThrowableTest.

 testException(ExtendedThrowableTest.java:71) ~[test-classes/:?]

 ... 30 more

9.ANSI Styled

The log level will be highlighted according to the event's log level. All the content that follows the level
will be bright green.

<PatternLayout>

 <pattern>%d %highlight{%p} %style{%C{1.} [%t] %m}{bold,green}%n</pattern>

</PatternLayout>

http://jansi.fusesource.org/

9 L a y o u t s 81

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.1.3 RFC5424Layout

As the name implies, the RFC5424Layout formats LogEvents in accordance with RFC 5424, the
enhanced Syslog specification. Although the specification is primarily directed at sending messages
via Syslog, this format is quite useful for other purposes since items are passed in the message as self-
describing key/value pairs.

Parameter Name Type Description

appName String The value to use as the APP-NAME
in the RFC 5424 syslog record.

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

enterpriseNumber integer The IANA enterprise number as
described in RFC 5424

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper or
lower case characters.

format String If set to "RFC5424" the data will be
formatted in accordance with RFC
5424. Otherwise, it will be formatted
as a BSD Syslog record. Note that
although BSD Syslog records are
required to be 1024 bytes or shorter
the SyslogLayout does not truncate
them. The RFC5424Layout also
does not truncate records since
the receiver must accept records of
up to 2048 bytes and may accept
records that are longer.

id String The default structured data id to use
when formatting according to RFC
5424. If the LogEvent contains a
StructuredDataMessage the id from
the Message will be used instead of
this value.

http://tools.ietf.org/html/rfc5424
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://tools.ietf.org/html/rfc5424#section-7.2.2

9 L a y o u t s 82

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

immediateFlush boolean When set to true, each write will
be followed by a flush. This will
guarantee the data is written to disk
but could impact performance.

includeMDC boolean Indicates whether data from the
ThreadContextMap will be included
in the RFC 5424 Syslog record.
Defaults to true.

mdcExcludes String A comma separated list of mdc keys
that should be excluded from the
LogEvent. This is mutually exclusive
with the mdcIncludes attribute. This
attribute only applies to RFC 5424
syslog records.

mdcIncludes String A comma separated list of mdc
keys that should be included in the
FlumeEvent. Any keys in the MDC
not found in the list will be excluded.
This option is mutually exclusive
with the mdcExcludes attribute. This
attribute only applies to RFC 5424
syslog records.

mdcRequired String A comma separated list of mdc
keys that must be present in the
MDC. If a key is not present a
LoggingException will be thrown.
This attribute only applies to RFC
5424 syslog records.

mdcPrefix String A string that should be prepended to
each MDC key in order to distinguish
it from event attributes. The default
string is "mdc:". This attribute only
applies to RFC 5424 syslog records.

messageId String The default value to be used in the
MSGID field of RFC 5424 syslog
records.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

RFC5424Layout Parameters

9.1.4 SerializedLayout

The SerializedLayout simply serializes the LogEvent into a byte array. This is useful when sending
messages via JMS or via a Socket connection. The SerializedLayout accepts no parameters.

9 L a y o u t s 83

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

9.1.5 SyslogLayout

The SyslogLayout formats the LogEvent as BSD Syslog records matching the same format used by Log4j
1.2.

Parameter Name Type Description

charset String The character set to use when
converting the syslog String to a byte
array. The String must be a valid
Charset. If not specified, the default
system Charset will be used.

facility String The facility is used to try to classify
the message. The facility option
must be set to one of "KERN",
"USER", "MAIL", "DAEMON",
"AUTH", "SYSLOG", "LPR",
"NEWS", "UUCP", "CRON",
"AUTHPRIV", "FTP", "NTP",
"AUDIT", "ALERT", "CLOCK",
"LOCAL0", "LOCAL1", "LOCAL2",
"LOCAL3", "LOCAL4", "LOCAL5",
"LOCAL6", or "LOCAL7". These
values may be specified as upper or
lower case characters.

newLine boolean If true, a newline will be appended
to the end of the syslog record. The
default is false.

SyslogLayout Parameters

9.1.6 XMLLayout

The output of the XMLLayout consists of a series of log4j:event elements as defined in the log4j.dtd. If
configured to do so it will output a complete well-formed XML file. The output is designed to be included
as an external entity in a separate file to form a correct XML file.

For example, if abc is the name of the file where the XMLLayout ouput goes, then a well-formed XML
file would be:

<?xml version="1.0" ?>

<!DOCTYPE log4j:eventSet SYSTEM "log4j.dtd" [<!ENTITY data SYSTEM "abc">]>

<log4j:eventSet version="2.0" xmlns:log4j="http://logging.apache.org/log4j/">

</log4j:eventSet>

This approach enforces the independence of the XMLLayout and the appender where it is embedded.

The version attribute helps components to correctly intrepret output generated by XMLLayout. The
value of this attribute should be "2.0".

http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://download.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html

9 L a y o u t s 84

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Appenders using this layout should have their encoding set to UTF-8 or UTF-16, otherwise events
containing non ASCII characters could result in corrupted log files.

1 0 F i l t e r s 85

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

10Filters
..

10.1 Filters
Filters allow Log Events to be evaluated to determine if or how they should be published. A Filter will
be called on one if its filter methods and will return a Result, which is an Enum that has one of 3 values -
ACCEPT, DENY or NEUTRAL.

Filters may be configured in one of four locations;

1. Context-wide Filters are configured directly in the configuration. Events that are rejected by these
filters will not be passed to loggers for further processing. Once an event has been accepted by a
Context-wide filter it will not be evaluated by any other Context-wide Filters nor will the Logger's
Level be used to filter the event. The event will be evaluated by Logger and Appender Filters
however.

2. Logger Filters are configured on a specified Logger. These are evaluated after the Context-wide
Filters and the Log Level for the Logger. Events that are rejected by these filters will be discarded
and the event will not be passed to a parent Logger regardless of the additivity setting.

3. Appender Filters are used to determine if a specific Appender should handle the formatting and
publication of the event.

4. Appender Reference Filters are used to determine if a Logger should route the event to an appender.

10.1.1 BurstFilter

The BurstFilter provides a mechanism to control the rate at which LogEvents are processed by silently
discarding events after the maximum limit has been reached.

Parameter Name Type Description

level String Level of messages to be filtered.
Anything at or below this level will be
filtered out if maxBurst has been
exceeded. The default is WARN
meaning any messages that are
higher than warn will be logged
regardless of the size of a burst.

rate float The average number of events per
second to allow.

maxBurst integer The maximum number of events that
can occur before events are filtered
for exceeding the average rate. The
default is 10 times the rate.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

1 0 F i l t e r s 86

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Burst Filter Parameters

A configuration containing the BurstFilter might look like:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.2 CompositeFilter

The CompositeFilter provides a way to specify more than one filter. It is added to the configuration as a
filters element and contains other filters to be evaluated. The filters element accepts no parameters.

A configuration containing the CompositeFilter might look like:

1 0 F i l t e r s 87

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <filters>

 <Marker marker="EVENT" onMatch="ACCEPT" onMismatch="NETURAL"/>

 <DynamicThresholdFilter key="loginId" defaultThreshold="ERROR"

 onMatch="ACCEPT" onMismatch="NEUTRAL">

 <KeyValuePair key="User1" value="DEBUG"/>

 </DynamicThresholdFilter>

 </filters>

 <appenders>

 <File name="Audit" fileName="logs/audit.log">

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 </File>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <logger name="EventLogger" level="info">

 <appender-ref ref="Audit"/>

 </logger>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.3 DynamicThresholdFilter

The DynamicThresholdFilter allows filtering by log level based on specific attributes. For example, if the
user's loginid is being captured in the ThreadContext Map then it is possible to enable debug logging for
only that user.

Parameter Name Type Description

defaultThreshold String Level of messages to be filtered. If
there is no matching key in the key/
value pairs then this level will be
compared against the event's level.

1 0 F i l t e r s 88

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

keyValuePair KeyValuePair[] One or more KeyValuePair elements
that define the matching value for
the key and the Level to evaluate
when the key matches.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Dynamic Threshold Filter Parameters

Here is a sample configuration containing the DynamicThresholdFilter:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <DynamicThresholdFilter key="loginId" defaultThreshold="ERROR"

 onMatch="ACCEPT" onMismatch="NEUTRAL">

 <KeyValuePair key="User1" value="DEBUG"/>

 </DynamicThresholdFilter>

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.4 MapFilter

The MapFilter allows filtering against data elements that are in a MapMessage.

Parameter Name Type Description

1 0 F i l t e r s 89

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

keyValuePair KeyValuePair[] One or more KeyValuePair elements
that define the key in the map and
the value to match on. If the same
key is specified more than once
then the check for that key will
automatically be an "or" since a Map
can only contain a single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Map Filter Parameters

As in this configuration, the MapFilter can be used to log particular events:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePari key="eventId" value="Logout"/>

 </MapFilter>

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

This sample configuration will exhibit the same behavior as the preceding example since the only logger
configured is the root.

1 0 F i l t e r s 90

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePari key="eventId" value="Logout"/>

 </MapFilter>

 <appender-ref ref="RollingFile">

 </appender-ref>

 </root>

 </loggers>

</configuration>

This third sample configuration will exhibit the same behavior as the preceding examples since the only
logger configured is the root and the root is only configured with a single appender reference.

1 0 F i l t e r s 91

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile">

 <MapFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="eventId" value="Login"/>

 <KeyValuePari key="eventId" value="Logout"/>

 </MapFilter>

 </appender-ref>

 </root>

 </loggers>

</configuration>

10.1.5 MarkerFilter

The MarkerFilter compares the configured Marker value against the Marker that is included in the
LogEvent. A match occurs when the Marker name matches either the Log Event's Marker or one of its
parents.

Parameter Name Type Description

marker String The name of the Marker to compare.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Marker Filter Parameters

A sample configuration that only allows the event to be written by the appender if the Marker matches:

1 0 F i l t e r s 92

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <MarkerFilter marker="FLOW" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.6 RegexFilter

The RegexFilter allows the formatted or unformatted message to be compared against a regular
expression.

Parameter Name Type Description

regex String The regular expression.

useRawMsg boolean If true the unformatted message will
be used, otherwise the formatted
message will be used. The default
value is false.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Regex Filter Parameters

A sample configuration that only allows the event to be written by the appender if it contains the word
"test":

1 0 F i l t e r s 93

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <RegexFilter regex=".* test .*" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.7 StructuredDataFilter

The StructuredDataFilter is a MapFilter that also allows filtering on the event id, type and message.

Parameter Name Type Description

keyValuePair KeyValuePair[] One or more KeyValuePair elements
that define the key in the map
and the value to match on. "id",
"id.name", "type", and "message"
should be used to match on the
StructuredDataId, the name portion
of the StructuredDataId, the
type, and the formatted message
respectively. If the same key is
specified more than once then the
check for that key will automatically
be an "or" since a Map can only
contain a single value.

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

1 0 F i l t e r s 94

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

StructuredData Filter Parameters

As in this configuration, the StructuredDataFilter can be used to log particular events:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <StructuredDataFilter onMatch="ACCEPT" onMismatch="NEUTRAL" operator="or">

 <KeyValuePair key="id" value="Login"/>

 <KeyValuePari key="id" value="Logout"/>

 </StructuredDataFilter>

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.8 ThreadContextMapFilter

The ThreadContextMapFilter allows filtering against data elements that are in the ThreadContext Map.

Parameter Name Type Description

keyValuePair KeyValuePair[] One or more KeyValuePair elements
that define the key in the map and
the value to match on. If the same
key is specified more than once
then the check for that key will
automatically be an "or" since a Map
can only contain a single value.

1 0 F i l t e r s 95

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

operator String If the operator is "or" then a match
by any one of the key/value pairs
will be considered to be a match,
otherwise all the key/value pairs
must match.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

ThreadContext Map Filter Parameters

A configuration containing the ThreadContextMapFilter might look like:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <DynamicThresholdFilter key="loginId" defaultThreshold="ERROR"

 onMatch="ACCEPT" onMismatch="NEUTRAL">

 <KeyValuePair key="User1" value="DEBUG"/>

 </DynamicThresholdFilter>

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <BurstFilter level="INFO" rate="16" maxBurst="100"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.9 ThresholdFilter

This filter returns the onMatch result if the level in the LogEvent is the same or more specific than the
configured level and the onMismatch value otherwise. For example, if the ThresholdFilter is configured
with Level ERROR and the LogEvent contains Level DEBUG then the onMismatch value will be
returned since ERROR events are more specific than DEBUG.

1 0 F i l t e r s 96

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

Parameter Name Type Description

level String A valid Level name to match on.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Threshold Filter Parameters

A sample configuration that only allows the event to be written by the appender if the level matches:
<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <ThresholdFilter level="TRACE" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

10.1.10 TimeFilter

The time filter can be used to restrict filter to only a certain portion of the day.

Parameter Name Type Description

start String A time in HH:mm:ss format.

end String A time in HH:mm:ss format.
Specifying an end time less than the
start time will result in no log entries
being written.

1 0 F i l t e r s 97

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

timezone String The timezone to use when
comparing to the event timestamp.

omMatch String Action to take when the filter
matches. May be ACCEPT, DENY
or NEUTRAL. The default value is
NEUTRAL.

omMismatch String Action to take when the filter does
not match. May be ACCEPT, DENY
or NEUTRAL. The default value is
DENY.

Time Filter Parameters

A sample configuration that only allows the event to be written by the appender from 5:00 to 5:30 am
each day using the default timezone:

<?xml version="1.0" encoding="UTF-8"?>

<configuration status="warn" name="MyApp" packages="">

 <appenders>

 <RollingFile name="RollingFile" fileName="logs/app.log"

 filePattern="logs/app-%d{MM-dd-yyyy}.log.gz">

 <TiemFilter start="05:00:00" end="05:30:00" onMatch="ACCEPT" onMismatch="DENY"/>

 <PatternLayout>

 <pattern>%d %p %C{1.} [%t] %m%n</pattern>

 </PatternLayout>

 <TimeBasedTriggeringPolicy />

 </RollingFile>

 </appenders>

 <loggers>

 <root level="error">

 <appender-ref ref="RollingFile"/>

 </root>

 </loggers>

</configuration>

1 1 J M X 98

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

11JMX
..

11.1 JMX
JMX support is incomplete at this time. Patches are welcome!

1 2 L o g g i n g S e p a r a t i o n 99

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

12Logging Separation
..

12.1 Logging Separation
There are many well known use cases where applications may share an environment with other
applications and each has a need to have its own, separate logging environment. This purpose of this
section is to discuss some of these cases and ways to accomplish this.

12.1.1 Use Cases

This section describes some of the use cases where Log4j could be used and what its desired behavior
might be.

12.1.1.1 Standalone Application

Standalone applications are usually relatively simple. They typically have one bundled executable that
requires only a single logging configuration.

12.1.1.2 Web Applications

A typical web application will be packaged as a WAR file and will include all of its dependencies in
WEB-INF/lib and will have its configuration file located in the class path or in a location configured in
the web.xml.

12.1.1.3 Java EE Applications

A Java EE application will consist of one or more WAR files and possible some EJBs, typically all
packaged in an EAR file. Usually, it is desirable to have a single configuration that applies to all the
components in the EAR. The logging classes will generally be placed in a location shared across all the
components and the configuration needs to also be shareable.

12.1.1.4 "Shared" Web Applications and REST Service Containers

In this scenario there are multiple WAR files deployed into a single container. Each of the applications
should use the same logging configuration and share the same logging implementation across each of the
web applications. When writing to files and streams each of the applications should share them to avoid
the issues that can occur when multiple components try to write to the same file(s) through different File
objects, channels, etc.

12.1.2 Approaches

12.1.2.1 The Simple Approach

The simplest approach for separating logging within applications is to package each application with its
own copy of Log4j and to use the BasicContextSelector. While this works for standalone applications
and may work for web applications and possibly Java EE applications, it does not work at all in the last

1 2 L o g g i n g S e p a r a t i o n 100

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

case. However, when this approach does work it should be used as it is ultimately the simplest and most
straightforward way of implementing logging.

12.1.2.2 Using Context Selectors

There are a few patterns for achieving the desired state of logging separation using ContextSelectors:

1. Place the logging jars in the container's classpath and set the system property
"Log4jContextSelector" to "org.apache.logging.log4j.core.selector.BasicContextSelector". This will
create a single LoggerContext using a single configuration that will be shared across all applications.

2. Place the logging jars in the container's classpath and use the default ClassLoaderContextSelector.
Include the Log4jContextListener in each web application. Each ContextListener can be configured
to share the same configuration used at the container or they can be individually configured. If status
logging is set to debug in the configuration there will be output from when logging is initialized in
the container and then again in each web application.

3. Use the JNDIContextFilter and set the system property "Log4jContextSelector" to
"org.apache.logging.log4j.core.selector.JNDIContextSelector". This will cause the container to use
JNDI to locate each's web application's LoggerContext.

1 3 E x t e n d i n g L o g 4 j 101

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13Extending Log4j
..

13.1 Extending Log4j
Log4j 2 provides numerous ways that it can be manipulated and extended. This section includes an
overview of the various ways that are directly supported by the Log4j 2 implementation.

13.1.1 LoggerContextFactory

The LoggerContextFactory binds the Log4j API to its implementation. The Log4j LogManager locates a
LoggerContextFactory by locating all instances of META-INF/log4j-provider.xml, a file that conforms
to the java.util.Properties DTD, and then inspecting each to verify that it specifies a value for the
"Log4jAPIVersion" property that conforms to the version required by the LogManager. If more than one
valid implementation is located the value for "FactoryPriority" will be used to identify the factory with
the highest priority. Finally, the value of the "LoggerContextFactory" property will be used to locate the
LoggerContextFactory. In Log4j 2 this is provided by Log4jContextFactory.

Applications may change the LoggerContextFactory that will be used by

1. Implementing a new LoggerContextFactory and creating a log4j-provider.xml to reference it making
sure that it has the highest priority.

2. Create a new log4j-provider.xml and configure it with the desired LoggerContextFactory making
sure that it has the highest priority.

3. Setting the system property "log4j2.LoggerContextFactory" to the name of the
LoggerContextFactory class to use.

4. Setting the property "log4j2.LoggerContextFactory" in a properties file named
"log4j2.LogManager.properties" to the name of the LoggerContextFactory class to use. The
properties file must be on the classpath.

13.1.2 ContextSelector

ContextSelectors are called by the Log4j LoggerContext factory. They perform the actual work
of locating or creating a LoggerContext, which is the anchor for Loggers and their configuration.
ContextSelectors are free to implement any mechanism they desire to manage LoggerContexts.
The default Log4jContextFactory checks for the presence of a System Property named
"Log4jContextSelector". If found, the property is expected to contain the name of the Class that
implements the ContextSelector to be used.

Log4j provides three ContextSelectors:
BasicContextSelector

Uses either a LoggerContext that has been stored in a ThreadLocal or a common
LoggerContext.

ClassLoaderContextSelector

Associates LoggerContexts with the ClassLoader that created the caller of the getLogger call.

JNDIContextSelector

Locates the LoggerContext by querying JNDI.

1 3 E x t e n d i n g L o g 4 j 102

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13.1.3 ConfigurationFactory

Modifying the way in which logging can be configured is usually one of the areas with the most
interest. The primary method for doing that is by implementing or extending a ConfigurationFactory.
Log4j provides two ways of adding new ConfigurationFactories. The first is by defining the system
property named "log4j.configurationFactory" to the name of the class that should be searched first for a
configuration. The second method is by defining the ConfigurationFactory as a Plugin.

All the ConfigurationFactories are then processed in order. Each factory is called on its
getSupportedTypes method to determine the file extensions it supports. If a configuration file is located
with one of the specified file extensions then control is passed to that ConfigurationFactory to load the
configuration and create the Configuration object.

Most Configuration extend the BaseConfiguration class. This class expects that the subclass will process
the configuration file and create a hierarchy of Node objects. Each Node is fairly simple in that it consists
of the name of the node, the name/value pairs associated with the node, The PluginType of the node and
a List of all of its child Nodes. BaseConfiguration will then be passed the Node tree and instantiate the
configuration objects from that.

@Plugin(name = "XMLConfigurationFactory", type = "ConfigurationFactory")

@Order(5)

public class XMLConfigurationFactory extends ConfigurationFactory {

 /**

 * Valid file extensions for XML files.

 */

 public static final String[] SUFFIXES = new String[] {".xml", "*"};

 /**

 * Return the Configuration.

 * @param source The InputSource.

 * @return The Configuration.

 */

 public Configuration getConfiguration(InputSource source) {

 return new XMLConfiguration(source, configFile);

 }

 /**

 * Returns the file suffixes for XML files.

 * @return An array of File extensions.

 */

 public String[] getSupportedTypes() {

 return SUFFIXES;

 }

}

13.1.4 LoggerConfig

LoggerConfig objects are where Loggers created by applications tie into the configuration. The Log4j
implementation requires that all LoggerConfigs be based on the LoggerConfig class, so applications

1 3 E x t e n d i n g L o g 4 j 103

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

wishing to make changes must do so by extending the LoggerConfig class. To declare the new
LoggerConfig, declare it as a Plugin of type "Core" and providing the name that applications should
specify as the element name in the configuration. The LoggerConfig should also define a PluginFactory
that will create an instance of the LoggerConfig.

The following example shows how the root LoggerConfig simply extends a generic LoggerConfig.

@Plugin(name = "root", type = "Core", printObject = true)

public static class RootLogger extends LoggerConfig {

 @PluginFactory

 public static LoggerConfig createLogger(@PluginAttr("additivity") String additivity,

 @PluginAttr("level") String loggerLevel,

 @PluginElement("appender-ref") AppenderRef[] refs,

 @PluginElement("filters") Filter filter) {

 List<AppenderRef> appenderRefs = Arrays.asList(refs);

 Level level;

 try {

 level = loggerLevel == null ? Level.ERROR : Level.valueOf(loggerLevel.toUpperCase());

 } catch (Exception ex) {

 LOGGER.error("Invalid Log level specified: {}. Defaulting to Error", loggerLevel);

 level = Level.ERROR;

 }

 boolean additive = additivity == null ? true : Boolean.parseBoolean(additivity);

 return new LoggerConfig(LogManager.ROOT_LOGGER_NAME, appenderRefs, filter, level, additive);

 }

}

13.1.5 Lookups

Lookups are the means in which parameter substitution is performed. During Configuration initialization
an "Interpolator" is created that locates all the Lookups and registers them for use when a variable needs
to be resolved. The interpolator matches the "prefix" portion of the variable name to a registered Lookup
and passes control to it to resolve the variable.

A Lookup must be declared using a Plugin annotation with a type of "Lookup". The name specified
on the Plugin annotation will be used to match the prefix. Unlike other Plugins, Lookups do not use a
PluginFactory. Instead, they are required to provide a constructor that accepts no arguments. The example
below shows a Lookup that will return the value of a System Property.

1 3 E x t e n d i n g L o g 4 j 104

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

@Plugin(name = "sys", type = "Lookup")

public class SystemPropertiesLookup implements StrLookup {

 /**

 * Lookup the value for the key.

 * @param key the key to be looked up, may be null

 * @return The value for the key.

 */

 public String lookup(String key) {

 return System.getProperty(key);

 }

 /**

 * Lookup the value for the key using the data in the LogEvent.

 * @param event The current LogEvent.

 * @param key the key to be looked up, may be null

 * @return The value associated with the key.

 */

 public String lookup(LogEvent event, String key) {

 return System.getProperty(key);

 }

}

13.1.6 Filters

As might be expected, Filters are the used to reject or accept log events as they pass through the logging
system. A Filter is declared using a Plugin annotation of type "Core" and an elementType of "filter". The
name attribute on the Plugin annotation is used to specify the name of the element users should use to
enable the Filter. Specifying the printObject attribute with a value of "true" indicates that a call to toString
will format the arguments to the filter as the configuration is being processed. The Filter must also specify
a PluginFactory method that will be called to create the Filter.

The example below shows a Filter used to reject LogEvents based upon their logging level. Notice the
typical pattern where all the filter methods resolve to a single filter method.

1 3 E x t e n d i n g L o g 4 j 105

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

@Plugin(name = "ThresholdFilter", type = "Core", elementType = "filter", printObject = true)

public final class ThresholdFilter extends FilterBase {

 private final Level level;

 private ThresholdFilter(Level level, Result onMatch, Result onMismatch) {

 super(onMatch, onMismatch);

 this.level = level;

 }

 public Result filter(Logger logger, Level level, Marker marker, String msg, Object[] params) {

 return filter(level);

 }

 public Result filter(Logger logger, Level level, Marker marker, Object msg, Throwable t) {

 return filter(level);

 }

 public Result filter(Logger logger, Level level, Marker marker, Message msg, Throwable t) {

 return filter(level);

 }

 @Override

 public Result filter(LogEvent event) {

 return filter(event.getLevel());

 }

 private Result filter(Level level) {

 return level.isAtLeastAsSpecificAs(this.level) ? onMatch : onMismatch;

 }

 @Override

 public String toString() {

 return level.toString();

 }

 /**

 * Create a ThresholdFilter.

 * @param loggerLevel The log Level.

 * @param match The action to take on a match.

 * @param mismatch The action to take on a mismatch.

 * @return The created ThresholdFilter.

 */

 @PluginFactory

 public static ThresholdFilter createFilter(@PluginAttr("level") String loggerLevel,

 @PluginAttr("onMatch") String match,

 @PluginAttr("onMismatch") String mismatch) {

 Level level = loggerLevel == null ? Level.ERROR : Level.toLevel(loggerLevel.toUpperCase());

 Result onMatch = match == null ? Result.NEUTRAL : Result.valueOf(match.toUpperCase());

 Result onMismatch = mismatch == null ? Result.DENY : Result.valueOf(mismatch.toUpperCase());

 return new ThresholdFilter(level, onMatch, onMismatch);

 }

}

1 3 E x t e n d i n g L o g 4 j 106

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13.1.7 Appenders

Appenders are passed an event, (usually) invoke a Layout to format the event, and then "publish" the
event in whatever manner is desired. Appenders are declared as Plugins with a type of "Core" and an
elementType of "appender". The name attribute on the Plugin annotation specifies the name of the
element users must provide in their configuration to use the Appender. Appender's should specify
printObject as "true" if the toString method renders the values of the attributes passed to the Appender.

Appenders must also declare a PluginFactory method that will create the appender. The example below
shows an Appender named "Stub" that can be used as an initial template.

Most Appenders use Managers. A manager actually "owns" the resources, such as an OutputStream or
socket. When a reconfiguration occurs a new Appender will be created. However, if nothing significant
in the previous Manager has change the new Appender will simply reference it instead of creating a new
one. This insures that events are not lost while a reconfiguration is taking place without requiring that
logging pause while the reconfiguration takes place.

@Plugin(name = "Stub", type = "Core", elementType = "appender", printObject = true)

public final class StubAppender extends OutputStreamAppender {

 private StubAppender(String name, Layout layout, Filter filter, StubManager manager,

 boolean handleExceptions) {

 }

 @PluginFactory

 public static StubAppender createAppender(@PluginAttr("name") String name,

 @PluginAttr("suppressExceptions") String suppress,

 @PluginElement("layout") Layout layout,

 @PluginElement("filters") Filter filter) {

 boolean handleExceptions = suppress == null ? true : Boolean.valueOf(suppress);

 if (name == null) {

 LOGGER.error("No name provided for StubAppender");

 return null;

 }

 StubManager manager = StubManager.getStubManager(name);

 if (manager == null) {

 return null;

 }

 if (layout == null) {

 layout = PatternLayout.createLayout(null, null, null, null);

 }

 return new StubAppender(name, layout, filter, manager, handleExceptions);

 }

}

1 3 E x t e n d i n g L o g 4 j 107

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

13.1.8 Layouts

Layouts perform the formatting of events into the printable text that is written by Appenders to some
destination. All Layouts must implement the Layout interface. Layouts that format the event into a String
should extend AbstractStringLayout, which will take care of converting the String into the required byte
array.

Every Layout must declare itself as a plugin using the Plugin annotation. The type must be "Core", and
the elementType must be "Layout". printObject should be set to true if the plugin's toString method will
provide a representation of the object and its parameters. The name of the plugin must match the value
users should use to specify it as an element in their Appender configuration. The plugin also must provide
a static method annotated as a PluginFactory and with each of the methods parameters annotated with
PluginAttr or PluginElement as appropriate.

@Plugin(name = "SampleLayout", type = "Core", elementType = "layout", printObject = true)

public class SampleLayout extends AbstractStringLayout {

 protected SampleLayout(boolean locationInfo, boolean properties, boolean complete,

 Charset charset) {

 }

 @PluginFactory

 public static SampleLayout createLayout(@PluginAttr("locationInfo") String locationInfo,

 @PluginAttr("properties") String properties,

 @PluginAttr("complete") String complete,

 @PluginAttr("charset") String charset) {

 Charset c = Charset.isSupported("UTF-8") ?

 Charset.forName("UTF-8") : Charset.defaultCharset();

 if (charset != null) {

 if (Charset.isSupported(charset)) {

 c = Charset.forName(charset);

 } else {

 LOGGER.error("Charset " + charset + " is not supported for layout, using " +

 c.displayName());

 }

 }

 boolean info = locationInfo == null ? false : Boolean.valueOf(locationInfo);

 boolean props = properties == null ? false : Boolean.valueOf(properties);

 boolean comp = complete == null ? false : Boolean.valueOf(complete);

 return new SampleLayout(info, props, comp, c);

 }

}

13.1.9 PatternConverters

PatternConverters are used by the PatternLayout to format the log event into a printable String. Each
Converter is responsible for a single kind of manipulation, however Converters are free to format the
event in complex ways. For example, there are several converters that manipulate Throwables and format
them in various ways.

1 3 E x t e n d i n g L o g 4 j 108

© 2 0 1 2 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D .

A PatternConverter must first declare itself as a Plugin using the standard Plugin annotation but must
specify value of "Converter" on the type attribute. Furthermore, the Converter must also specify the
ConverterKeys attribute to define the tokens that can be specified in the pattern (preceded by a '%'
character) to identify the Converter.

Unlike most other Plugins, Converters do not use a PluginFactory. Instead, each Converter is required
to provide a static newInstance method that accepts an array of Strings as the only parameter. The String
array are the values that are specified within the curly braces that can follow the converter key.

The following shows the skeleton of a Converter plugin.

@Plugin(name = "query", type = "Converter")

@ConverterKeys({"q", "query"})

public final class QueryConverter extends LogEventPatternConverter {

 public QueryConverter(String[] options) {

 }

 public static QueryConverter newInstance(final String[] options) {

 return new QueryConverter(options);

 }

}

13.1.10 Custom Plugins

	Table of Contents
	Introduction
	Architecture
	Log4j 1.x Migration
	API
	Plugins
	Lookups
	Appenders
	Filters
	JMX
	Logging Separation
	Extending Log4j

