Apache jUDDI Client and GUI Guide

Kurt T Stam, Red Hat, Inc.
Alex O'Ree, Apache Software Foundation (ASF), http://juddi.apache.org

Apache jUDDI Client and GUI Guide

by Kurt T Stam and Alex O'Ree
Copyright © 2003-2014 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS
IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Dedication

We'd like to dedicate this guide to Steve Viens and Andy Cutright who started this project back
in 2003.

g (=] = o1 <Y Vii

1. Simple Publishing Using the JUDDI APlcoouiiii e e 1
1.1. UDDI Data MOEIueeiiiiiiee ettt e e et e e e e e an s 1
1.2. jUDDI Additions t0 the MOAElociiuiiiiiii e 2
1.3. UDDI @nd JUDDI AP ..ottt e e e 2
1.4, Getting StAMEAcovniiii i 3

1.4.1. Simple Publishing EXamPpPlec..uiiiiiiiiiiiiii e 3
1.4.2. About UDDI ENtity KEYS ...iiiiiiiiiiiiiiee it e e e e e et e e eeeens 8
1.5. A few tips on adding Binding TEMPIALESccouuuiiiiiiiiiiiiii e 9
T o] o Tod U= o o PP 9

2. JUDDI Client Configuration GUIEoviiiiiiiiiiiii e 11
2% I 1 1 £ To 11 T3 1o) o IR PP 11
2.2, ClENE SEINGS .. iiiiiieeiiit ettt e e et e e et e ee e e e aaa e e eanans 11
22 T N\ o T [PSPPI 11

2.3.1. TranSpPOrt OPLIONSoiiieiieeiiii ettt 12
S O 1= 4 PP 12
T 1 =T 1 P 12
2.6. Digital SIgNAtUIESccuuiiiiei e e e e e e e e e 13
2.7. SUDSCHIPtioN CaAllDACKScceeiiiiii et 14
b S T € 10)11 =T | PSP 14
2.9. Embedded JUDDI SEIVETuuiiiiiiiieiei ettt et 14
b I T = = To (U1 =11 0= o £ 14
2.9.2. Changes in configuration compared to non-embeddedccceeevennnne. 14

3. Key Format TEMPIALEScieiiiiii i e e e e e e e e aaaas 17
3.1. UDDIV3 KEY TOIMALeiiiiiieeiiii et e eea e 17
3.2. JUDDI key format temMPIatesccovuiiiiiiiei e 17

3.2.1. Advantages of using a templateccooeeiiiiiiiiii 17
3.2.2. Default UDDIKeyConvention Key Templatesc.ccceveviiieiiiieiiiieeieeeannn, 17
3.2.3. How to use the templates?cooiiiiiiiiiii e 17
3.2.4. Where to define to PropertieS?cvcvuieiiiiiiii e 18

4, USING the JUDDI GUI ..ouuuiiiiiii e e e e e e e e e e e e e 19
o N = L= U114 =T o 41T) 19
A 1= T 19

0 O o TU [g 153 A= o | 1o T o N 19
e T I o oI V1T o U =T P 23
4.4, Logging in t0 UDDI SEIVICESuuiiiiiieiiiieiii et e e e e e e e e e e 23
A5, LOGUING OUL ..ottt et e et e et 24
4.6. DiscoVEr (Browse UDDI)cuuiiiiiiiiii e e e e e et e e e e e 24
4.6.1. BUSINESS BIOWSEN ...uuiiiiiiiiiieiiieeeiite et e et e et e e e e s e et s e e e e et e eanneeaneees 24
4.6.2. SEIVICE BIOWSEN ..oovtuieiiiiiiieeiiiii e ettt e et e e e e e et e e e e et e e e eate e e e eetenaeaees 26
4.6.3. tMOAE] BIOWSETuneeeieiiiee e e e e e e et e e e e eanns 27
A.6.4. SEAICH ...t 28
4.7. Creating NEW ENLILIESo.uuiiiiiiiieii e et 30
4.7.1. Create @ tMOUEIcoouiiiii e 30

Apache

juDDI
Client
4.7.2. Create a tModek Key Genergjg (Partition)ccoeeviiiiiiiiiiiiiinieeees 30
4.7.3. Create a Business G- vvererernnnnnnen e 31
4.7.4. Create a Service GHE@: -+ rvrerreeererrreriiin e 33
4.7.5. Tmport from WSDL Or WADL ...t e e e e e ens 35
4.8. CUSLOAY TTaNSTEIS ...t 36
4.9, PUDIISNEr ASSEITIONSiiiiiiiiiiiii e 36
4.10. SUDSCHPLONS ..oettiieiiiii ettt et e e e e e et e e bt e e e 37
4.10.1. Create a new SUDSCHPLONco.uiiiiiiiii e 37
4.10.2. View MY SUDSCIIPHONSiiiiiiiieiiii e 41
4.10.3. View the NEWS FEEAiiiiiiii e 42
4.11. Using Digital Signatures in juddi-guic..oieiiiiiiiiiie e 42
4.11.1. Sign a Business, Service or tModelccoveiiiiiiiiiiiiici e 42
4.11.2. Verify a signed UDDI €NtitYcooiiiuiiiiiiiiieiiii e 44
2 o] oo [0 = 11T I 46
4.13. LANQUAGE COUES .. .oietiiieiiiii ettt ettt 46
4,14, SWItChING NOUESciiiiiii e e e e e aaaas 47
5. Mapping WSDL and WSDL t0 UDDIcccuuuiiiiiiiiieiii e 49
L% I T 1 (o To 11 T3 1o) o I PP 49
5.2, USE CaASE - WSDL ..ottt 49
B5.2.1. SAMPIE COUE ..uiiiiiii e e 49
5.2.2. Links t0 SAMPIE PrOJECE ...oevuiiiiii e 50
5.3, USE CaASE - WADL ...t 50
5.3.1. SAMPIE COUER ...oeiiiiiieee e 50
5.3.2. Links t0 SAmMPIE PrOJECEuiiiiiiiiii e 51
6. USING UDDI ANNOTALIONS ..uuiiiiiiiiiiiiiii ettt et e et e e et e eeenb e eene 53
6.1. UDDI Service ANNOALIONiiiiiiiiiiiiiiiie et e e e e e e e e eeenas 53
6.2. UDDIServiceBinding ANNOLALIONccuuuiiiiiiiieiiiii e 54
6.2.1. Java Web Service EXamplecoocoiiiiiiiiiii e 54
6.2.2. Wiring it all togetheriiiii e 55
6.3. .NET Web Service EXamplec.oiiiiiiiiii e 56
6.3.1. Wiring it all together oo 56
6.4. CategoryBag AtrDULEccoovnii s 56
6.5. Considerations for clustered or load balanced web servers and automated
LT 0 £ 1£= L1 o TP 57
7. Using the UDDI v2 Services and AAPLErsScooouuiiiiiiiiiieiiiii e 59
4% R 1 1 (o To 11X 1o) o IR PP 59
7.2. Accessing UDDI v2 services using the jUDDI v3 Clientcooveveviinieiiiiineeeeiinnnn, 59
7.3. Accessing UDDI v2 services using UDDI V2 APIScooeeiiiiiiiiieciecciicev e 59
7.4. Accessing jUDDI v3 services from an existing UDDI v2 based client, plugin or toal. 60
7.5. Additional INfOrMEALIONiiiiiiii i 60
8. UDDI Migration and Backup TOO!coouuiiiiiiiii e 61
8.1. USING the 00l ..eeiiieiii e e 61
8.L.1. Gt NeIP i e 61
8.1.2. Use case: basic import and eXPOrtccccoiveiiiieiiiieiieeeeee e, 62

Apache

jubDDI

Client
8.1.3. Use case: Import and Export y¢hjle preserving ownership information 62
9. Using the jUDDI REST Services G e 65
9.1. URL Patterns and methods (DU -+ vvrrreereeerer e r e 65
0. 1. L. ENAPOINTS ..o e 65
LS TR /=1 1 T Yo £ 65
LS I = 1]] (ST T 11 0T | P 67
9.2, 0. XML ettt ettt e e e e e nnraanas 67
9.2.2. JSON .t 67
1S IS T Lo = 010 g =1 1 o o 70
10. JUDDI Clent fOr NET .oioiiiiiiiiieeiiieiii ettt e e e e e e e e e en s 71
0 I o o To o [71
11. Using the UDDI Technology Compatibility Kitcccocoviiiiiiiiiii e, 73
11.2. USiNg the TCK RUNNETuiiiiiiiiiee et e e e 73
5 O O o Ty o [3= 1 o o PP 73
11.1.2. Running the TCK RUNNETuiiiiiiieiiii e 74
11.2. Analyzing the RESUILSuuiiiiiii e 75
0o 1= 77

Vi

Preface

The jUDDI client framework facilitates interaction with any UDDI v3 compliant registry. In addition
to providing a client framework for both Java and .NET, it also provides a self proclaimed Technical
Compatilibity Test (TCK) Suite. The jUDDI community encourages collabration of other vendors
on the TCK or on the client framework in general.

Vii

viii

Chapter 1. Simple Publishing Using
the JUDDI API

One of the most common requests we get on the message board is "How do | publish a service
using jJUDDI?" This question holds a wide berth, as it can result anywhere from not understanding
the UDDI data model, to confusion around how jUDDI is set up, to the order of steps required
to publish artifacts in the registry, to general use of the API - and everything in between. This
article will attempt to answer this "loaded" question and, while not going into too much detail, will
hopefully clear some of the confusion about publishing into the jUDDI registry.

1.1. UDDI Data Model

Before you begin publishing artifacts, you need to know exactly how to break down your data into
the UDDI model. This topic is covered extensively in the specification, particularly in section 3, so
| only want to gloss over some for details. Readers interested in more extensive coverage should
most definitely take a look at the UDDI specification.

Below is a great diagram of the UDDI data model (taken directly from the specification): http://
juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif As you can see,
data is organized into a hierarchical pattern. Business Entities are at the top of the pyramid, they
contain Business Services and those services in turn contain Binding Templates. TModels (or
technical models) are a catch-all structure that can do anything from categorize one of the main
entities, describe the technical details of a binding (ex. protocols, transports, etc), to registering
a key partition. TModels won't be covered too much in this article as | want to focus on the three
main UDDI entities.

The hierarchy defined in the diagram is self-explanatory. You must first have a Business Entity
before you can publish any services. And you must have a Business Service before you can
publish a Binding Template. There is no getting around this structure; this is the way UDDI works.

Business Entities describe the organizational unit responsible for the services it publishes. It
generally consist of a description and contact information. How one chooses to use the Business
Entity is really dependent on the particular case. If you're one small company, you will likely just
have one Business Entity. If you are a larger company with multiple departments, you may want
to have a Business Entity per department. (The question may arise if you can have one uber-
Business Entity and multiple child Business Entities representing the departments. The answer
is yes, you can relate Business Entities using Publisher Assertions, but that is beyond the scope
of this article.)

Business Services are the cogs of the SOA landscape. They represent units of functionality that
are consumed by clients. In UDDI, there’s not much to a service structure; mainly descriptive
information like name, description and categories. The meat of the technical details about the
service is contained in its child Binding Templates.

http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif
http://juddi.apache.org/docs/3.x/userguide/html/images/uddi_core_datastructures.gif

juDDI
Additions

to
Binding Templates, as mentioned above, give g details about the technical specification of the

service. This can be as simple as just providinghgeervice’s access point, to providing the location
of the service WSDL to more complicated scenarios to breaking down the technical details of the
WSDL (when used in concert with tModels). Once again, getting into these scenarios is beyond
the scope of this article but may be the subject of future articles.

1.2. jUDDI Additions to the Model

Out of the box, jUDDI provides some additional structure to the data model described in the
specification. Primarily, this is the concept of the Publisher.

The UDDI specification talks about ownership of the entities that are published within the registry,
but makes no mention about how ownership should be handled. Basically, it is left up to the
particular implementation to decide how to handle "users" that have publishing rights in the
registry.

Enter the jUDDI Publisher. The Publisher is essentially an out-of-the-box implementation of an
identity management system. Per the specification, before assets can be published into the
registry, a "publisher" must authenticate with the registry by retrieving an authorization token. This
authorization token is then attached to future publish calls to assign ownership to the published
entities.

jUDDI’'s Publisher concept is really quite simple, particularly when using the default authentication.
You can save a Publisher to the registry using jUDDI’s custom API and then use that Publisher
to publish your assets into the registry. jUDDI allows for integration into your own identity
management system, circumventing the Publisher entirely if desired. This is discussed in more
detail in the documentation, but for purposes of this article, we will be using the simple out-of-
the-box Publisher solution.

Tip

In UDDI, ownership is essentially assigned to a given registry entity by using its
"authorizedName" field. The "authorizedName" field is defined in the specification
in the operationallnfo structure which keeps track of operational info for each entity.
In jUDDI, the authorizedName field translates to the person’s username, also know
as the publisher id,

1.3. UDDI and jUuDDI API

Knowing the UDDI data model is all well and good. But to truly interact with the registry, you need
to know how the UDDI API is structured and how jUDDI implements this APIl. The UDDI API is
covered in great detail in chapter 5 of the specification but will be summarized here.

UDDI divides their API into several "sets" - each representing a specific area of functionality. The
API sets are listed below:

Getting
Started

 Inquiry - deals with querying the registry to return details on entities within

 Publication - handles publishing entities into the registry

» Security - open-ended specification that handles authentication

» Custody and Ownership Transfer - deals with transferring ownership and custody of entities

e Subscription - allows clients to retrieve information on entities in a timely manner using a
subscription format

» Subscription Listener - client API that accepts subscription results

* Value Set (Validation and Caching)- validates keyed reference values (not implemented by
jubDI)

» Replication - deals with federation of data between registry nodes (not implemented by jUDDI)
The most commonly used APIs are the Inquiry, Publication and Security APIs. These APIs
provide the standard functions for interacting with the registry.

The jUDDI server implements each of these API sets as a JAX-WS compliant web service and
each method defined in the API set is simply a method in the corresponding web service. The
client module provided by jUDDI uses a "transport” class that defines how the call is to be made.
The default transport uses JAX-WS but there are several alternative ways to make calls to the
API. Please refer to the documentation for more information.

One final note, jUDDI defines its own API set. This API set contains methods that deal with
handling Publishers as well as other useful maintenance functions (mostly related to jUDDI’s
subscription model). This API set is obviously proprietary to jJUDDI and therefore doesn’t conform
to the UDDI specification.

1.4. Getting Started

Now that we've covered the basics of the data model and API sets, it's time to get started
with the publishing sample. The first thing that must happen is to get the jUDDI server up and
running. Please refer to this http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-
v3.html article that explains how to start the jUDDI server.

1.4.1. Simple Publishing Example

We will now go over the "simple-publish" examples. These examples expand upon the HelloWorld
example in that after retrieving an authentication token, a BusinessEntity and BusinessService
are published to the registry. There are two examples:

 simple-publish-portal - This is how to perform the publish operations in a way that's portable,
meaning that the code logic should apply to any UDDIv3 client application library.

http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html

Simple
Publishing

Example
» simple-publish-clerk - This shows you how to perform the same actions using the helper

functions in jUDDI’s Client library, which greatly reduces the code required and makes things
simple. This uses the UDDIClerk’s functions.

1.4.1.1. Simple Publishing using Portable Code

The complete source for this example can be found here: - Portable http://svn.apache.org/repos/
asf/juddi/trunk/juddi-examples/simple-publish-portable/

publ i c Si npl ePubl i shPortabl e() {

try {

/Il create a client and read the config in the
ar chi ve;

/'l you can use your config file name

UDDI i ent uddi Cient = new UDDI Client("META-1 NF/
uddi . xm ") ;

/1 a UddiClient can be a client to rmultiple UDDI
nodes, so

/1 supply the nodeNane (defined in your uddi.xnl.
/1l The transport can be W5, inVM RM etc which is
defined in the uddi.xmn
Transport transport =
uddi Cl i ent.get Transport ("defaul t");
/1 Now you create a reference to the UDDI API
security = transport.get UDDI SecurityService();
publish = transport.get UDDI Publ i shService();
} catch (Exception e) {
e.printStackTrace();

The constructor uses the jUDDI client API to retrieve the transport from the default node. You can
refer to the documentation if you're confused about how clerks and nodes work. Suffice it to say,
we are simply retrieving the default client transport class which is designed to make UDDI calls
out using JAX-WS web services.

Once the transport is instantiated, we grab the two API sets we need for this demo: 1) the Security
API set so we can get authorization tokens and 2) the Publication API set so we can actually
publish entities to the registry.

All the magic happens in the publish method. We will look at that next.

Here are the first few lines of the publish method:

/1 Login aka retrieve its authentication token
Get Aut hToken get Aut hTokenMyPub = new Cet Aut hToken();
get Aut hTokenMyPub. set User | D(" bob") ;

[/'your username

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-portable/

Simple
Publishing

Example
get Aut hTokenMyPub. set Cred(" bob") ;

/' your password

Aut hToken myPubAut hToken =

security. get Aut hToken(get Aut hTokenMyPub) ;

System out . printl n(get Aut hTokenM/Pub. get User I D() +

"'s AUTHTOKEN = " + "**x**x* peyer | og auth tokens!");

Important

Don’t log authentication tokens. In addition, whenever you're done with it, it should
be discarded. Think of it as a logout function.

This code simply gets the authorization token for the bob user.

Tip

juDDI includes two reserved usernames, uddi and root. Root acts as the
"administrator" for jUDDI API calls. Additionally, the root user is the owning
publisher for all the initial services installed with jUDDI. You may be wondering
what those "initial services" are. Well, since the UDDI API sets are all implemented
as web services by jUDDI, every jUDDI node actually registers those services
inside itself. This is done per the specification. The user uddi owns the remaining
preinstalled data.

Now that we have Bob’s authorization, we can start publishing.

servi ce.

Tip

You'll note that no credentials have been set on both authorization calls. This is

because we're using the default authenticator (which is for testing purposes doesn’t
require credentials). Most UDDI servers will require authentication.

/1 Creating the parent business entity that will contain our

Busi nessEntity nyBusEntity = new Busi nessEntity();
Nanme nmyBusNane = new Nane();

myBusNane. set Val ue(" My Busi ness");

myBusEntity. get Nane() . add(myBusNane) ;

/1 Addi ng the business entity to the "save" structure, using our

publ i sher's authentication info

/1 and savi ng away.
SaveBusi ness sb = new SaveBusi ness();

Simple

Publishing

Example
sb. get Busi nessEntity().add(nyBusEntity);
sb. set Aut hl nf o(myPubAut hToken. get Aut hl nfo());
Busi nessDetai | bd = publish. saveBusi ness(sb);
String myBusKey =

bd. get Busi nessEntity().get(0). getBusi nessKey();

System out . println("nyBusi ness key: " + nyBusKey);

/1 Creating a service to save. Only adding the m ni nrum dat a:
the parent business key retrieved

//from saving the busi ness above and a single nane.

Busi nessServi ce nmyServi ce = new Busi nessService();

mySer vi ce. set Busi nessKey(myBusKey) ;

Narme myServNanme = new Nane();

mySer vNane. set Val ue("My Service");

mySer vi ce. get Nanme() . add(nySer vNane) ;

/1 Add binding tenplates, etc...

/'l <snip> W renpved sone stuff here to make the exanpl e
shorter, check out the source for nore info</snip>

/1 Adding the service to the "save" structure, using our
publ i sher's authentication info and

/1 saving away.

SaveServi ce ss = new SaveService();

ss. get Busi nessServi ce() . add(myServi ce);

ss. set Aut hl nf o(nyPubAut hToken. get Aut hl nfo());

Servi ceDetail sd = publish. saveService(ss);

String myServKey =
sd. get Busi nessSer vi ce() . get (0). get Servi ceKey();

System out. println("nyService key:

+ nySer vKey) ;

//and we're done, don't forget to | ogout!
security. di scar dAut hToken(new
Di scar dAut hToken(nyPubAut hToken. get Aut hl nfo()));

To summarize, here we have created and saved a BusinessEntity and then created and saved a
BusinessService. We've just added the bare minimum data to each entity. Obviously, you would
want to fill out each structure with greater information, particularly with services. However, this is
beyond the scope of this article, which aims to simply show you how to programmatically publish
entities.

1.4.1.2. Simple Publishing using Clerks

The complete source for this example can be found here: - Clerk http://svn.apache.org/repos/asf/
juddi/trunk/juddi-examples/simple-publish-clerk/

The sample consists of only one class: SimplePublishPortable. Let's start by taking a look at the
constructor:

public Sinpl ePublishderk() {

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/simple-publish-clerk/

Simple

Publishing
Example
try {
/'l create a client and read the config in the
ar chi ve;
/'l you can use your config file name
UDDI i ent uddi Cient = new UDDI Client("META-1 NF/
uddi . xm ") ;

/lget the clerk
clerk = uddiCient.getd erk("default");
if (clerk==null)
throw new Exception("the clerk wasn't found,
check the config file!");
} catch (Exception e) {
e. printStackTrace();

Notice that this is already much more streamlined than the previous example. In this scenario, all
configuration settings and credentials are stored in "META-INF/uddi.xml".

Tip

The configuration file used by clients can be overridden via the system
property "uddi.client.xml". E.g. java -Duddi.client.xml=/usr/local/uddi.xml -jar
MyCoolProgram.jar

UDDIClient’s job is to read the configuration file and initialize the data structures for working with 1
or more UDDI nodes (or servers). It also handles automatic registration of endpoints using WSDL
documents or using class annotations. UDDIClerk’s job is to manage credentials and to perform
a number of common tasks. Feel free to use them in your programs and help you simplify things.

The UDDIClerk also handle credentials and authentication to UDDI for you. If you didn’t want to
store credentials (it can be encrypted) then you can specify them at runtime very easily.

Moving on, the next function is Publish. Here’s the short short version.

public void publish() {
try {

/'l Creating the parent business entity that wll
contain our service.

Busi nessEntity myBusEntity = new Busi nessEntity();

Narme myBusNanme = new Nane();

myBusNane. set Val ue(" My Busi ness");

myBusEnti ty. get Nane() . add(myBusNane) ;

/'l <sni p>we renmoved a bunch of useful stuff here, see
the full exanple for the rest of it</snip>

About
UDDI
Entity
/lregister the business, if the return value is
nul I, sonething went wr ong!
Busi nessEntity register =
clerk.register(myBusEntity);
//don't forget to | og out!
cl erk. di scar dAut hToken() ;
if (register == null) {
System out. println("Save failed! ");
System exit(1);
}

/1 Now you have a business and service via
/1 the jUDDI API!
Systemout. println("Success!");

} catch (Exception e) {
e.printStackTrace();

The UDDIClerk has a register and unregister function for nearly everything for UDDI. Between the
UDDICIlient and UDDIClerk, there’s enough helper functions to significantly reduce the amount of
code needed to work with UDDI. Here’s a quick list of things they can do for you:

* Create a tModel Partition, also know as a Key Generator

* Resolve endpoints from WSDLs, Hosting directors, and other binding template references from
Access Points http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385

* Get Bindings by Version

* Add REST or SOAP tModels to a binding template

» Setup asynchronous callbacks for subscriptions

» Compare the values of a tModel Instance Info, such as Quality of Service Metrics
« Create and register services using a WADL or WSDL document

* And more...

We're also looking for the next thing to add to the client library. Have an idea? Please open a
ticket on jJUDDI’s Issue Tracker at https://issues.apache.org/jira/browse/JUDDI.

1.4.2. About UDDI Entity Keys

There are a couple important notes regarding the use of entity keys. Version 3 of the specification
allows for publishers to create their own keys but also instructs implementers to have a default
method. Here we have gone with the default implementation by leaving each entity’s "key" field
blank in the save call. jJUDDI's default key generator simply takes the node’s partition and appends
a GUID. In a default installation, it will look something like this:

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908385
https://issues.apache.org/jira/browse/JUDDI

A
few
tips

uddi:juddi.apache.org:(generated GUID/UUID) gn

)) addin . .
You can, of course, customize all of this, butéPnaéilr?Ieft for another article. The second important
point is that when the BusinessService is sal_ved, th have to explicitly set its parent business key
. . . emplates . . L

saved in an independent call like this. Otherwise you would get an error because jUDDI won't know
where to find the parent entity. | could have added this service to the BusinessEntity’s service
collection and saved it with the call to saveBusiness. In that scenario we would not have to set
the parent business key.

1.5. A few tips on adding Binding Templates

Arguably, the most useful useful part of UDDI is advertising your services similar to a phone book
or directory. The important part really isn’t that Bob’s Business exists (BusinessEntity), it's that Bob
provides a service (BusinessService) and it's located at this address. This is where the Binding
Template comes it. It identifies an instance of a service, its location and any other metadata
associated with the endpoint that someone may want to know.

This article skips the binding Template data because it can be lengthy, but the full source for these
examples shows you exactly how to build and add binding templates.

1.6. Conclusion

Hopefully this added clarity to the question, "How do | publish a service using jUDDI?".

10

Chapter 2. JUDDI Client
Configuration Guide

2.1. Introduction

The jUDDI Java and .NET clients use an XML configuration file that dictates settings and
behaviors. This guide provides an overview of the settings. Both .NET and jUDDI use the same
configuration file schema. This schema is located within the source tree and with the client
distribution packages of jUDDI.

2.2. Client Settings
The root XML node for the jUDDI client configuration file is always "uddi".

<I-- applies to Java clients only -->
uddi / r el oadDel ay

Multiple clients can be defined in each configuration file.

uddi / cl i ent @ane="sonmeNane"

2.3. Nodes

At least one node is required per client. A node represents a one logical UDDI server (or cluster of
servers). Each UDDI node should host at least the inquiry service. A client using the jUDDI client
package can be configured to access multiple nodes at the same time.

<I-- if isHonmeJUDDI is true, then this node is |oaded by default, when no
node is specified in client code -->
uddi / cl i ent/ nodes[]/ node@ sHonmeJUDDI =t r ue/ f al se

<!-- the nane of the node is referenced in client code -->

uddi / cl i ent/ nodes[]/ node/ nane

<I-- the description of the node -->

uddi / cl i ent/ nodes[]/ node/ descri ption

<I-- the properties section defines HITP style credentials and a runtine

t okeni zer for URLs -->

uddi / cl i ent/ nodes[]/ node/ properties

<I-- The transport represents the class nane of the transport nmechani smt hat
the client will use to connect

to the UDDI node. The nbst commonly used is

org. apache.juddi .v3.client.transport.JAXWSTransport, however

RM Transport, |nVMIransport and JAXWSv2Transl ati onTransport are al so defined

s

11

Transport
Options

uddi / cl i ent/ nodes[]/ node/ pr oxyTr anspor t

<!-- endpoint URLs -->

uddi / cl i ent/ nodes[]/ node/ cust odyTr ansf er Ur |

uddi / cl i ent/ nodes[]/ node/i nqui ryUrl

uddi / cl i ent/ nodes[]/ node/ publ i shUr |

uddi / cl i ent/ nodes[]/ node/ securityUrl

uddi / cl i ent/ nodes[]/ node/ subscri ptionUrl

uddi / cl i ent/ nodes[]/ node/ subscri pti onLi st ener Ur |

<I-- note: this is for jUDDI v3.x servers only and is not part of the UDDI
standard -->

uddi / cl i ent/ nodes[]/ node/ j uddi Api Ur |

2.3.1. Transport Options

The Proxy Transport defines which mechanism is used for on the wire transport of the UDDI
XML messages. JAXWS Transport is the most commonly used and assumes SOAP messaging
protocol over HTTP transport layer.

RMI Transport using the Java Remote Method Invocation for transport. It's more commonly used
for communicating within a J2EE container, but could be used in other cases. It's not required by
the UDDI specification and is considered a jUDDI add on.

INVM Transport is for hosting jUDDI services without a J2EE container.

JAXWSv2TranslationTransport is a bridge for accessing UDDIv2 web services using the UDDIv3
data structures and APIs. Only the Inquiry and Publish services are required and they must point
to SOAP/HTTP endpoints for a UDDI v2 node.

2.4. Clerks

Clerks are responsible for mapping stored user credentials to a Node and for automated
registration.

<I-- if true, the contents of the child node xregister are registered
when the UDDI Client object is created, using the credential and node
ref erence. -->

uddi /client/clerks/regi sterOnStartup=true/false

2.5. Clerk

Clerks store credentials and map to a specific node.

<I-- the nane is a reference to the Node that these credentials apply to-->
uddi/client/clerks[]/clerk@ode - This is reference to uddi/client/node/
nane, it nust exist

uddi/client/clerks[]/clerk@anme - This is a unique identifier of the clerk

12

Digital
Signatures

uddi /client/clerks[]/clerk@ublisher - This is the usernane
uddi /client/clerks[]/clerk@assword

uddi /client/clerks[]/cl erk@ sPasswor dEncrypt ed=true/fal se

uddi /client/clerks[]/clerk@ryptoProvi der=(see Crypto providers)

Credentials can be encrypted using the included batch/bash scripts and then appended to the
configuration. Example with encryption:

<cl erk nane="defaul t" node="defaul t" publisher="root" password="(cipher text
renoved) "
i sPasswor dEncrypt ed="true"
crypt oProvi der =" or g. apache. juddi . v3. cl i ent. cryptor. AES128Cryptor" />

Clerks also have settings for the automated cross registration of Businesses and Services on
start up.

uddi /client/clerks[]/xregister/service@i ndi ngkey
uddi /client/clerks[]/xregister/service@ronCl erk
uddi /client/clerks[]/xregister/service@od erk

2.6. Digital Signatures

The Signature section contains settings that map to the Digital Signature Utility that makes working
with UDDI digital signatures simple. The section contains all of the settings for both signing and
validating signatures.

uddi / cl i ent/ si gnat ur e/ si gni ngKeySt or ePat h

uddi / cl i ent/ si gnat ur e/ si gni ngKeySt or eFi | ePasswor d

uddi / cl i ent/ si gnat ur e/ si gni ngKey St or eFi | ePasswor d@ sPasswor dEncr ypt ed
uddi / cl i ent/ si gnat ur e/ si gni ngKey St or eFi | ePasswor d@r ypt oPr ovi der

uddi / cl i ent/ si gnat ur e/ si gni ngkeyPasswor d

uddi / cl i ent/ si gnat ur e/ si gni ngKeyPasswor d@ sPasswor dEncr ypt ed

uddi / cl i ent/ si gnat ur e/ si gni ngKeyPasswor d@r ypt oPr ovi der

uddi / cl i ent/ si gnat ur e/ si gni ngKeyAl i as

uddi / cl i ent/ si gnat ur e/ canoni cal i zat i onMet hod

uddi / cl i ent/ si gnat ur e/ si gnat ur eMet hod=(def aul t RSA SHA1)

uddi / cl i ent/signature/ XM_._DI GSI G NS=(default http://ww. w3. org/ 2000/ 09/
xm dsi g#)

uddi / cl i ent/signature/trustStorePath

uddi / cl i ent/signature/trustStoreType

uddi / cl i ent/si gnature/trust St orePassword

uddi / cl i ent/si gnat ure/trust St orePasswor d@ sPasswor dEncr ypt ed

uddi / cl i ent/signature/trustStorePassword@rypt oProvi der

<I-- checks signing certificates for tinestanp validity -->
uddi / cl i ent/ si gnat ur e/ checkTi mest anps
<I'-- checks signing certificates for trust worthiness -->

uddi / cl i ent/ si gnat ur e/ checkTr ust

13

Subscription
Callbacks

<!'-- checks signing certificates for revocation -->

uddi / cl i ent/ si gnat ur e/ checkRevocat i onCRL

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onSubj ect DN

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onSeri a

uddi / cl i ent/ si gnat ur e/ keyl nf ol ncl usi onBase64Publ i cKey

<I-- default is http://ww. w3. org/ 2000/ 09/ xm dsi g#shal -->
uddi / cl i ent/ si gnat ur e/ di gest Met hod

2.7. Subscription Callbacks

The subscriptionCallbacks section defines settings uses by the subscription callback API. This
enables developers to create capabilities that need to be notified immediately when something in
UDDI changes through the use of subscriptions.

uddi / cl i ent/subscri ptionCal | backs/ keyDomai n

uddi / cl i ent/subscri ptionCal | backs/listenU|l this is the URL that is used for
cal | backs, should be externally resol vabl e

uddi / cl i ent/subscri ptionCal | backs/ aut oRegi st er Bi ndi ngTenpl at e=true/ f al se

uddi / cl i ent/subscri ptionCal | backs/ aut oRegi st er Busi nessSer vi ceKey=(key)
append cal | back endpoint to this service

uddi / cl i ent/subscri ptionCal | backs/

si gnat ur eBehavi or =(Abor t | f Si gned, Si gn, DoNot hi ng, Si gnOnl yI f Par ent | snt Si gned) ,
default DoNot hi ng. Applies when auto registering the endpoint to a business
or service that is already signed.

2.8. Xtowsd|

XtoWsdl represents configuration parameters for importing WSDL or WADL files. Currently, the
only setting is for ignoring SSL errors when fetching remote WSDL or WADL files.

uddi / cl i ent/ Xt oWsdl / | gnor eSSLErrors=true or fal se

2.9. Embedded jUDDI server

jUDDI has the ability to run in embedded mode. This means that the jUDDI services can operate
without a web servlet container, such as Tomcat or JBoss. Typically, this is something that
application developers would use for more advanced scenarios and for operation without network
connectivity.

2.9.1. Requirements

A database server, if one is not available, the embedded Derby engine can be used.

2.9.2. Changes in configuration compared to non-embedded

* META-INF/embedded-uddi.xml needs to contain the connection settings for InVmTransport.

14

Changes
in
configuration

<l-- In VM Transport Settings -->

<pr oxyTransport >or g. apache. juddi . v3. client.transport.|nVMIransport </
proxyTransport >

<cust odyTr ansf er Ur | >or g. apache. j uddi . api . i npl . UDDI Cust odyTr ansf er | npl </
cust odyTransferUr| >

<i nqui ryUr| >or g. apache. j uddi . api . i npl . UDDI | nqui ryl npl </i nqui ryUr | >

<publ i shUr| >or g. apache. j uddi . api . i npl . UDDI Publ i cati onl npl </ publ i shUr| >

<securityUrl >org. apache. juddi . api.inpl.UDDl Securitylnpl </securityUrl >

<subscri pti onUrl >or g. apache. j uddi . api . i npl . UDDI Subscri pti onl npl </
subscri ptionUr| >

<subscri pti onLi st ener Ur | >or g. apache. j uddi . api . i npl . UDDI Subscri pti onLi st ener | npl </
subscri ptionLi stenerUr | >
<j uddi Api Ur | >or g. apache. j uddi . api . i npl . JUDDI Api | npl </j uddi Api Ur| >

» The serverside config file juddiv3.xml needs to be added to the classpath.
* A META-INF/persistence.xml needs to be added.

« Add the juddi-core (UDDI server) and derby (Embedded Database) dependencies to the pom.
Use the juddi-core-openjpa jar for OpenJPA.

See also the hello-world-embedded example.

15

16

Chapter 3. Key Format Templates

3.1. UDDIv3 key format

The UDDI v3 keys are formatted such that they are human readable. The short story is that UDDI
v3 keys are formatted like: uddi:<domain>:name. For example, if you wanted a tModel defined
as "uddi:www.mycompany.com:serviceauthenticationmethod", you would first have to create a
tModel key generator with value "uddi:www.mycompany.com:keygenerator".

3.2. jUDDI key format templates

The jUDDI client has taken the key format approach one step further so the name part of the key
actually helps you understand what the key is for, or even better in the case of a binding template
what server registered the key.

3.2.1. Advantages of using a template

Using a binding Key with format uddi: ${keyDonsi n}: bi ndi ng_${server Nane}_
${servi ceNanme} _${port Name} _${serverPort} contains valuable information for two reasons -
you can tell from the bindingKey what server registered it. This is helpful information if you want
to debug connectivity issues between a client and the UDDI server. - if a server goes to register a
bindingTemplate it registered before it won't create a second bindingTemplate, so it won't leave
behind dead or duplicate bindingTemplates.

3.2.2. Default UDDIKeyConvention Key Templates

The default templates setup by the jJUDDI client are:

uddi : ${ keyDomai n} : busi ness_${ busi nessNane}

uddi : ${ keyDonmi n}: servi ce_${servi ceNane}

uddi : ${ keyDonmi n}: servi ce_cache_${ser ver Nane}

uddi : ${ keyDomai n}: bi ndi ng_${server Nane} ${servi ceNane} ${port Nane} _
${serverPort}

where tokens are expressed using ${}. The templates are defined in the UDDIKeyConvention
class.

3.2.3. How to use the templates?

At runtime a serviceKey can be obtained using

String servi ceKey = UDDI KeyConventi on. get Servi ceKey(properties,
servi ceNane) ;

17

Where
to

define
The serviceName can be specified in as a propggy in the first argument, or it can explicitly passed

as the second argument. Using the secondrﬁ@gﬂg{gfpverrides what'’s specified in the properties.
By default it will use the service template uddi : ${ keyDon=i n}: servi ce_${ser vi ceNane}, but if
you wish to use a different template you can simple specify that as a property, for example

String myCustonServi ceFormat = "uddi: ${ keyDonmi n}:s_${servi ceNane}"
properties. add(Property. SERVI CE_ KEY_FORVAT, myCust onServi ceFormat);
String myCust onfor matt edSer vi ceKey =

UDDI KeyConvent i on. get Servi ceKey(properties, serviceNane);

3.2.4. Where to define to properties?

You can define the properties in your code, or you can obtain and pass in the properties defined
in your uddi . xm . For an exmaple of this you can check out the META- | NF/ wsdl 2uddi - uddi . xm
of the wsdl 2uddi example where for the def aul t node we set

<nodes>
<node>

<nanme>def aul t </ nane>

<properties>
<property nanme="server Nane" val ue="I| ocal host"/>
<property name="serverPort" val ue="8080"/>
<property nanme="keyDomai n"

val ue="uddi . j oepubl i sher. conl'/ >

<property nanme="busi nessNane" val ue="WSDL- Busi ness"/ >

</ properties>

</ node>
</ nodes>
and you can obtain the properties like
UDDI Client uddi Client = new UDDI Cient (" META-I NF/ wsdl 2uddi - uddi . xm ") ;

Properties properties =
uddi Cli ent.getCientConfig().getUDD Node("default").getProperties();

This is exactly what the WSDL2UDDI implementation does, and it the reason the class requires
the properties in the constructor.

18

Chapter 4. Using the jUDDI GUI

Starting with jUDDI v3.2, a nearly full featured UDDI v3 compliant web user interface is included
called the jUDDI Graphical User Interface, or jUDDI GULI. Itis also referred to as the jUDDI Console,
or jUDDI User Console. The jJUDDI GUI is a web application that can run in most web servlet
containers, such as Tomcat and can be deployed along side of the jUDDI Web Services war
(juddiv3d.war). From the jUDDI GUI, users can browse, search, create, update, digitally sign and
delete most UDDI entities, as well as preform custody transfers, configure subscriptions.

As of version 3.2, the jUuDDI GUI supports the complete functionality of the following UDDI services

* Inquiry

* Publish

e Security

e Custody Transfer

* Subscription

4.1. Requirements

The jUDDI GUI needs two things in order to operate.

« UDDI v3 compliant services
» A J2EE application server, such as Tomcat, Jboss, Jetty or maybe even in Winstone

« Optionally, a container level authentication mechanism that supports role based authentication
(for remote configuration)

4.2. Tasks

The following sections detail how to perform basic tasks using the jUDDI GUI. Hopefully, the user
interface is intuitive enough that thorough guidance isn't necessary.

4.2.1. Your first sign on

Typically, the jUDDI GUI is accessed via a URL in a web browser, such as this: http://
localhost:8080/juddi-gui. This URL will probably be different from this if someone else set up jUDDI
GUI for you (such as a system administrator), in which case, you'll want to ask them for the correct
URL. Once loading the page, you should see something similiar to this.

19

http://localhost:8080/juddi-gui
http://localhost:8080/juddi-gui

Your
first
sign

Welcome to jUDDI

/| Remember my decision

We welcome help internationalizing jUDDI!

Figure 4.1. Welcome to jUDDI, Please select a language.

Select a language, then click the button labeled "Go".

Tip

Would you like to see the jUDDI-GUI in a different language that the one’s listed
and want to offer some translation help? Please contact us!

Important

The juddi-gui stores your language preference as a cookie. No personally
identifiable information is stored there.

After clicking on "Go", you should see something similar to the next two screen shots.

20

Your
first
sign

Tip

Why would it be different? The jUDDI GUI is based on the Twitter Bootstrap APl and
is designed to automatically rearrange the user interface based on screen size and
resolution. Small form factor devices, such as tablets and smart phones generally
function as normal, except that the upper navigation bar becomes condensed into
a single button.

JUCDH (prencunced “Judy™) 15 an open souncs Jave implementation of the Unbeersal Description. Discovery

v, Bind infasgration (VDD

o b

v) spacification for (Web) Senvices. Thank of UDDI a3 the _.C- e f-\:';li"'.- of tha phone book Bor web senvices
Leam Mo =
Browse Search About UDDI

Figure 4.2. Full menu bar for computers or large displays.

21

Your
first
sign

JUDDI

Home
C'LDiscwer
. P
& Lreate

£* settings

© Help

jUDDI

jUDDI (pronounced "Judy") is an open source
Java implementation of the Universal

Description, Discovery, and Integration (UDDI
v3) specification for (Web) Services. Think of

UDDI as the yellow pages of the phone book for

web services.
Figure 4.3. Tablet/Mobile menu bar for small displays.

Learn More »

The
Menu

Bar
For now, let’s just focus on the menu or navigation bar.

4.3. The Menu Bar

Figure 4.4. The Menu Bar.

The menu bar is designed to make navigation simple and intuitive.

* Home - This sub-menu contains links towards information that is tailored towards you, such as
all the businesses you own, subscriptions, custody transfer, and publisher assertion (business
relationships)

« Browse - This sub-menu makes it simple to find stuff in UDDI by letting you flip the pages of
the directory.

» Create - This sub-menu makes it simple to create new UDDI entities, such as businesses,
services, tModels, import from WSDL/WADL and some advanced operations.

« Settings - This page is typically access controlled and enables administrators to remotely
configure the juddi-gui.

» Help - Contains links to the Internet for more help with jUDDI and source code access

» Login/Logout - many registries require authentication. These buttons support both HTTP and
UDDI Auth Token style of authentication.

4.4. Logging in to UDDI Services

Assuming that your UDDI services require authentication, you'll probably want to login with your
username and password. This is done using the Login/Logout section the Menu bar (top right of
the screen).

Figure 4.5. Login Warning.

Caution

If you happen to notice that a warning symbol next to the Login button, use caution!
Your password may be exposed if you proceed.

23

Logging
Out

Tip

The Warning symbol on the Login portion of the Menu bar will be present unless
the following conditions are met: Communication from your browser to juddi-gui
is encrypted using SSL/TLS AND the communication from juddi-gui to the UDDI
services is encrypted using SSL/TLS.

4.5. Logging Out

Once logged in, just "Welcome <username>" button to log out.

4.6. Discover (Browse UDDI)

All of the Browse pages support pagination, that is you can flip through the pages of the database,
as if it were a phone book.

In addition, search results can be filtered by language. On each Discover page, you will see the
following

Total records: 7
Records Returned: 7
Offset : 0

Language: Click to edit

oCoO
R
Figure 4.6. Browse Options.

Click on "Click to Edit", enter your desired language code, then either press enter, or click "Ok"
and the results will be filtered automatically. See "Language Codes" for more information.

4.6.1. Business Browser

To browse for a UDDI Business, simply click on the word Discover from the top navigation bar
and select Businesses.

24

Business
Browser

lpmml
Businesses
Q2O
show? ©

Figure 4.7. Browse Business.

When clicking on "Show XX" (XX is the number of services that business has)

25

Service

Browser
lpmnl
Businesses

E A i 's] o s o
Heddords Returned

~freaf - f
Qffsel - 0

Language: Click to edit
F |
OO
Hame Service

show7? &

BETA - v3 2 0 SNARPSHOT 13 The & & Software |

Figure 4.8. Browse Business Zoomed in.

The (+) Plus button will enable you to add a new service that belongs to the business on the same
table row.

4.6.2. Service Browser
To browse for a UDDI Service, simply click on the word Discover from the top navigation bar and

select Services. Clicking on the Name of the service, will bring you to the Service Editor page.
Click on the owning Business key to bring you to the Business Editor page.

26

tModel
Browser

Services

oC0

Figure 4.9. Service Browser.

4.6.3. tModel Browser

To browse for a UDDI tModel simply click on the word Discover from the top navigation bar and
select tModel. Clicking on the Key of the tModel, will bring you to the tModel Editor page.

27

Search

tModel Browser

Figure 4.10. tModel Browser.

4.6.4. Search

Searching UDDI provides you with the capabilities to make both simple and complex queries. To
search, simply click on the word Discover from the top navigation bar and select Search.

28

Search

L P e G g s Gan I

Search

Figure 4.11. Search.

You first need to select what you’re looking for. You can either search a Business, Service, Binding
Template, or tModel.

Tip

Not all combinations are valid. For instance, you can’t search for a Binding
Template by Name because UDDI’s binding templates do not have names.

Important
UDDI offers a wider, richer search capability. The juddi-gui’s search page is in

comparison, limited. If you have the need for more complex searches, you'll
probably have to write some code to do so.

Tip

When using the wildcards (%, ?), you have to add the find qualifier,
approximateMatch.

29

Creating
new
Entities

4.7. Creating new Entities

The jUDDI GUI has the ability to create and register new UDDI entities.

4.7.1. Create a tModel

From the menu, select Create, then tModel. For tModels, the only required item is the Name
element.

4.7.2. Create a tModek Key Generator (Partition)

Important

If you want to create your own UDDI keys (recommended) rather than use the not
so user friendly server generated GUID values, then you'll have to make a Key
Generator first! Read on!

A tModel Key Generator is a special kind of tModel that enables you to define your own keys
(for anything in UDDI) for your own "domain". A "domain" is similar to the Domain Name
System used by the Internet to resolve user friendly names, such as www.apache.org, to an
IP address. This effectively allows you to define any arbitrary UDDI key prefix that you want.
For example, if you wanted a UDDI key defined as "uddi:www.mycompany.com:salesbusiness1”,
you would first have to create a tModel key generator (partition) with the value of
"uddi:www.mycompany.com:keygenerator". TModel keys must start with "uddi:" and end with
":keygenerator". This is part of the UDDI specification and acts as a governance mechanism. You
can also create a tModel Key Generator by using the Create tModel menu option and by adding
the appropriate settings (assuming you know the secret sauce) or you can simply click on the
word Create from the top navigation bar and select tModel Partition (Key Generator).

30

Create
a
Business

JUDDI = - I =

tModel Key Generators (Partitions)

Tip

You can also use nested partitions such as
"uddi:www.mycompany.com:keygenerator" and
"uddi:www.mycompany.com:sales:keygenerator". UDDI uses the colon ":" as a
separator for partitions. This will enable you to make UDDI keys such as
"uddi:www.mycompany.com:biz1" and "uddi:www.mycompany.com:sales:biz2".

Tip

UDDI key names can be at MOST 255 characters long!

4.7.3. Create a Business

The UDDI Business entity enables you to define and advertise your business with a variety of
ways. To create a new business, simply click on the word Create from the top navigation bar and
select Business.

Tip

The "Create", "Business" page is also the same page to use when editing an
existing business.

31

Create
a
Business

I LI '.l‘[I } & J I]. =

Business Editor

O Hame

) Descriplisn

Figure 4.13. Create Business.

Businesses in UDDI only require you to define at least one name. All of fields are optional.
Business entities can have 0 or more of just about everything. For now, let's just make a Name,
give it a Value and then save our new business. To add a new Name, click the "+" button next to
the "Name". Then click on "Click to edit" next to "Value". If you make a mistake or wish to remove
the "Name" or any other element, click on the trash can.

Language: Click to edit

@ Description - businesses can have i

Figure 4.14. How to Add and Delete items.

If you read the previous section on tModel Key Generators, then you know all about UDDI keys.
This is your one and only chance to get it right. Once your done, click "Save". Congrats! You've
just made your first UDDI business!

Important

When working with UDDI entities, you cannot change the UDDI key after it has
been created.

32

Create
a

Service
The Business Editor/Creator web page, along with the other editor/creator pages, has a ton of

other interesting things that you can do. Since there’'s way too much stuff to look at, we broke
them up into logical sections.

Figure 4.15. Business Editor’s Section.

In case you can't see the picture above:

General - Names and Descriptions

» Discovery URLs - Usually a link to a web page

» Contacts - Points of Contact, such as Sales, Tech Support, etc

» Categories - These reference tModels and act as a way to categorize your business.

* Identifiers - Can be used for Tax IDs, DUNS Number, or anything else that you can think of.

» Services - This is the meat and potatoes of UDDI, advertising all the great services that your
business provides.

 Signatures - Digital Signatures prevent tampering
» Operational Info - Who created it and when

» Related Businesses - This is where people can find out if you have a business relationship with
someone else. It's also called Publisher Assertions.

Tip

Clicking on each tab will supply additional information.

Tip

If a business, service, or tModel is signed, the juddi-gui will automatically attempt to
validate the signature. You'll see a thumbs up or thumbs down icon to let you know.

4.7.4. Create a Service

Creating a new service is simple so long as you remember that a service must be attached to a
business. There are a few ways to create a new business.

The first option is to locate the business that you wish to add a service to via the Business Browser
and then click the Plug button.

33

Create

a
Service
ll_ll':l[‘.l]
Businesses
ocO

Servece

fearma

Figure 4.16. Add a Service via Business Browser.

The second option is to bring up the Business Editor for the business you want to add a service

to, then click on the Services tab, then "Add a Service".

Business Editor

@ Business Key- The Business Key is the unigue identifier for this business and exis

|uddi juddi apache org-businesses-asf

General Discovery Contacts Categories

hl=am e

Figure 4.17. Add a Service via Business Editor.

Identifiers

Sernvices

L

34

C

~

Import
from
WSDL

Services require at least one name. Everything else is considered optional.

4.7.5. Import from WSDL or WADL

The jUDDI client provides programmatic access to convert a WSDL or WADL document into UDDI
Service and tModel entries. The juddi-gui takes advantage of this and provides a simple to use
interface to quickly and easily import your SOAP and REST services into UDDI.

From the Create menu, select Register Services from WSDL or WADL.
The process is pretty straight forward.

1.Provide the location of the WSDL or WADL file. It must be web accessible from the server hosting
juddi-gui.war. If it is password protected (such as Digest, Basic or NTLM) provide a password
to access the WSDL or WADL. Your credentials will not be saved anywhere. 1.The key domain.
The imported UDDI service, binding, and tModels will all use this key partition/domain for key
generation. The juddi-gui will populate this field with the domain of the URL entered in step 1.
If you don't like, go ahead and change it. One will be automatically created for you. 1.Pick a
business to attach the imported data to. 1.Review and Approve. The Preview button will do all of
the processing except saving the content, so it is a good way to get a preview of what will happen.
Save will do the processing and save it.

Register Services from WSDL

[® prevee | (550 |

Figure 4.18. Importing a Service from WSDL or WADL.

35

Custody
Transfers

4.8. Custody Transfers

Custody Transfers are used to give away ownership and edit permission for UDDI business and
tModels. It's not used very often, but the workflow is simple.

1.Two business representatives agree to transfer either a business(s) or tModel(s) from business
A to business B. 1.Business A creates a transfer token 1.Business A gives the transfer token data
to Business B'’s representative (perhaps via email?) 1.Business B accepts the token and transfers
the ownership over.

All of these actions are processed at the Transfer Ownership page from the Home menu.

Transfer Ownership

|
L

#Gel a Transher Token

Figure 4.19. Custody Transfer.

4.9. Publisher Assertions

Publisher Assertions are how two different businesses can setup a UDDI Business Relationship.
This essentially means that other users can see that this is a relationship between business A and
B and that they can perform queries based on the relationship.

36

Subscriptions

Add a Business Relationship (Publisher
Assertion)

Figure 4.20. Publisher Assertion.

4.10. Subscriptions

Subscriptions in UDDI are used to easily detect when changes are made to a UDDI node.

4.10.1. Create a new subscription

To create a new subscription, you must first be logged in. Click on Home, then Create Subscription.

Subscriptions can either be for a set of specific items or for search results.

37

Create

Subscriptions

Figure 4.21. Create a Subscription, Specific Item or Search Results.

In our example, we've selected a set of specific items.

Create a Subscription, Select Items. image::iimages/juddi-gui-subscription2.png[Create a
Subscription, Select Items

To add an item to the list, click on Add. The item chooser will appear. Check each item to add
them to the list. To remove, select the item, then click remove.

38

Create
a
new

Business Chooser

CCoO

-
&

Figure 4.22. Create a Subscription, Add an item using the chooser.

Specific items are added by entity keys.

Subscriptions

Figure 4.23. Create a Subscription, Item Added.

39

Create
a
new
Next is the delivery mechanism. The UDDJypdeigashdeliver the notifications to you if you have
your own implementation of the UDDI Subscription Listener service. (The juddi-client contains this
for you if you were looking to develop a solution). In addition, the UDDI node can email the results

to you (in XML format).

The other option is to periodically poll the UDDI server and get your subscription results (see the
News Feed).

Here, we've selected the, I'll pick them up, option.

Subscriptions

Figure 4.24. Create a Subscription, Delivery Mechanism.

The final slider provides subscription options. * Expiration - a date where the subscription expires
* Notification Interval - this is only used when the UDDI node sends the notifications to you via the
Subscription Listener Service * Brief - If true, the UDDI node will only tell you which items have
changed, not what the change was.

40

View
My
Subscriptions

JUDDI'

Subscriptions

Figure 4.25. Create a Subscription, Options.

4.10.2. View My Subscriptions

To view, edit, and delete existing subscriptions, click on Home, then View Subscriptions.

Subscriptions

LEeChaniLm —

%,

Figure 4.26. View Subscriptions.

41

View
the
News

4.10.3. View the News Feed Feed

The New Feed is a simple page designed to show you subscription results for the past 24 hrs. To
view the news feed, click on Home, then News Feed.

4.11. Using Digital Signatures in juddi-gui

The juddi-gui makes working with digital signatures simple and enables you do digitally sign and
protect entities right from the web browser. It allows you to sign business, services and tModels.

Tip

Digital signatures are performed using the jUDDI Digital Signature Applet which
requires a Java plugin for your web browser, as well as a digital certificate (X509).

Tip

You also need to have an X509 Certificate installed in either your Windows My/
Current User Certificate Store or your MacOS Key Chain certificate store.

4.11.1. Sign a Business, Service or tModel

I S B e 7 o N s O | I Jidsa

Business Editor

i Bosime s ey 10 iy fucr 7]
5 =

Figure 4.27. Select an entity, then click Digitally Sign.

42

Sign
a
Business,

Security Warning ﬁ

Do you want to run this application?

Publisher: UNEMOWN

Location: htip:/localhost: 8030

Running applications by UNKNOWHN publishers will be blocked in a future release
because it is potentially unsafe and a security risk.

Risk: This application will run with unrestricted access which may put your computer and personal information at
risk. The information provided is unreliable or unknown so it is recommended not to run this application unless
you are familiar with its source

This application will be blocked in a future Java security update because the JAR. file manifest does not
contain the Permissions attribute, Please contact the Publisher for more information. More Information

below, then click Run to start the application

the risk and want to run this application.

Figure 4.28. Java Plugin Warnings.

Select a certificate, then if you're ready to sign, click on "Digitally Sign". This will automatically
generate the signature and save it in the UDDI server.

l/Sign |/ Settings |/Infcr |

[b

s5l.bing.com
safebrowsing-cache.google.com
aus3.mozilla.org
snippets.mozilla.com
login.live.com

selfsigned

urs.microsoft.com
plus.google.com -

Show Certificate Details

Digitally Sign

Figure 4.29. Select a Signing Certificate.

Click on Certificate Info will display the following panel. This is useful if you have a few certificates
that are similarly named.

43

Verify
a
signed

|/Sign rSeﬁings |/Info |

lssuer CH=Alex Oree, QU=JUDDI, O=Apache Software Foundation
Subject CH=Alex Oree, OLU=JUDDI, O=Apache Software Foundation
Walid From: Wed Mar 20 21:44:53 EDT 2013

Walid Until: Sat Mar 15 21:44:53 EDT 2014

Serial Number: 1363830293

Figure 4.30. Certificate Details.

The settings tab gives you a number of options for advanced users. We recommend that you
leave the defaults as is.

Sign | Settings rlnfo |

Advanced Settings
Include your public key in the signature (recommended)

Include your certificate's subject name

[| Include your certificate's issuer and your certificate's serial

Signature Method

|http:waw.wE.nrg!EDDEIIEIQJ‘medsig#rs a-sha’ |
Digest Method

|http:waw.wE.nrgIEDDDiﬂgmmldsig#shm |

Canonicalization Method
|http:waw.w3.nrgIEDD1H Ofml-exc-cl4n# |

Figure 4.31. Signature Settings.

4.11.2. Verify a signed UDDI entity

Once an entity is signed, the juddi-gui will always attempt to validate the signature and will notify
you if its signed and whether or not its valid.

In the following example, the business was signed.

44

Verify

signed

Business Editor

i B ey 10 Ly fucr 7]
5 =

—_ =

L Sugned Dy Segnature Statue

Cugital Signatures

Figure 4.32. Valid Signed Entity.

Important

UDDI entities are hierarchical. A signed business entities includes all of the data
for its services and binding templates. Any change to a service or binding template
will cause the business’s signature to be invalid. TModels are not affected by this.

In the following example, one of the services own by the business was changed. Note that the
signature is now invalid due to the alteration.

45

Configuration

Business Editor

i Business Hay- 11 iy 5 1 gy o B b 5 within 1 7]
1 - '

| D

§ Ssgned By Sugnature SEafui

Cugital Signatures

D D S B

Figure 4.33. Invalid Signed Entity.

4.12. Configuration

The configuration page is usually restricted to system administrators. There are many fields that
are displayed. Some of the are editable, others are not. In general, the following settings can be
changed (the others are just for troubleshooting and informational purposes).

Details on configuration is located in chapter, jJUDDI Server Configuration.

Warning

Saving updates to the console configuration in juddi-gui/WEB-INF/classes/META-
INF/uddi.xml will only work if the juddi-gui is deployed as a folder.

4.13. Language Codes

The Language Code is a field supported by UDDI that is inherited from the errata for XML
Schema, which references RFC 3066, which can be read here: http://www.ietf.org/rfc/rfc3066.txt/.
In general, Language Codes are either 2 or 5 characters but can by up to 26 characters. Here’s
a few examples

e en_US

e es_US

46

http://www.ietf.org/rfc/rfc3066.txt/

Switching
Nodes

More can be found here: http://www.i18nguy.com/unicode/language-identifiers.html

4.14. Switching Nodes

The jUDDI GUI supports connectivity to multiple UDDI nodes. A UDDI Node is simple a collection
of UDDI services that are all connected to the same data source. Another way to put it this, a
UDDI server. Each browser session to the jUDDI GUI has the ability to select the current Node
connection. The current Node select is always saved as a cookie. To avoid any potential confusion,
the currently selected Node is available both from the drop down Settings menu, and on the bottom
of every page.

To switch nodes, simply select the desired node from the Settings menu.

Important

When switching nodes, any unsaved work that you have will be lost. You will also
be logged out of the old node if you were signed in.

47

http://www.i18nguy.com/unicode/language-identifiers.html

Switching
Nodes

Home

Q) Discover~

Create

£+ settings ~
Configure
Node Switch
O juddiv2
default-ssl
& default(active)

=T -

[J juDDI Cloud Sandbox

v3.2.0.5NAPSHOT - @ 2013 The Apache All Rights Reserved.. Now connec

e LUDD| Mode: defa

Farare E nrlat

Figure 4.34. Node Switcher.

* Tip

Administrators can define the default node via the Setting, Configuration page.

48

Chapter 5. Mapping WSDL and
WSDL to UDDI

5.1. Introduction

OASIS published a technical article which describes the recommended way to map the entries
from a WSDL (Web Service Description Language) document into UDDI (https://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm). The jUDDI-
client provides a convenient mechanism for this mapping. In addition, the jUDDI team provides
a similar API for mapping a WADL (Web Application Description Language) document to UDDI.
This guide will help you use the APIs to register a WSDL or WADL document that describes a
service within a UDDI registry.

5.2. Use Case - WSDL

The most basic use case is that we have one or more SOAP/WSDL based services from a 3rd
party that was just stood up on our network and we wish to now advertise to our user base that
this service exists. We could manually punch in the information, but what fun is that? Let's import
it using some code! This can be expanded to import services in bulk.

5.2.1. Sample Code

URL url = new URL("http://sonmeURLtoYour WsDL") ;

ReadWsDL rw = new ReadWsDL() ;

Definition wsdl Definition = rw. readWsDL(url);

Properties properties = new Properties();

properties. put ("keyDomai n", donai n);

properties. put ("busi nessNane", donain);

properties. put ("serverNane", url.getHost());

properties. put(“"serverPort", url.getPort());

wsdl URL = wsdl Definition. get Docunent BaseURI () ;

WSDL2UDDI wsdl 2UDDI = new WSDL2UDDI (nul I, new URLLocal i zer Def aul t | npl (),
properties);

/1 This creates a the services from WSDL

Busi nessSer vi ces busi nessServices =
wsdl 2UDDI . cr eat eBusi nessSer vi ces(wsdl Defini tion);

/1 This creates the tMdels from WSDL

Map<QNane, Port Type> portTypes = (Map<QNane, Port Type>)
wsdl Definition.getAllPortTypes();

/I This creates nore tMdels from WSDL

Set <TMbdel > port TypeTModel s = wsdl 2UDDI . cr eat eWBDLPor t TypeTMbdel s(wsdl URL,
port Types) ;

Map al | Bi ndi ngs = wsdl Definition.getAll Bi ndi ngs();

/1 This creates even nore tMdels from WSDL

49

https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v202-20040631.htm

Links
to

sample
Set <TMbdel > cr eat eWSDLBi ndi ngTMbdel s =

wsdl 2UDDI . cr eat eWSDLBI ndi ngTMbdel s(wsdl URL, al | Bi ndi n

/I Now just save the tMdels, then add the services to a new or existing
busi ness

5.2.2. Links to sample project

SVN Links to sample projects

* http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
« http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/wsdl2uddi/
« http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

The examples are also available in both jUDDI distributions.

5.3. Use Case - WADL

The most basic use case is that we have one or more REST/WADL based services from a 3rd
party that was just stood up on our network and we wish to now advertise to our user base that
this service exists. We could manually punch in the information, but what fun is that? Let's import
it using some code! This can be expanded to import services in bulk.

5.3.1. Sample Code

Application app = WADL2UDDI . Par se\WadIl (new URL("URL to WADL file"));

Li st<URL> urls = WADL2UDDI . Get BaseAddr esses(app) ;

URL url = urls.get(0)

String domain = url.getHost();

Properties properties = new Properties();

properties. put ("keyDomai n", donain);

properties. put ("busi nessNane", donain);

properties. put ("serverNane", url.getHost());

properties. put("serverPort", url.getPort())

WADL2UDDI wadl 2UDDI = new WADL2UDDI (nul |, new URLLocal i zer Def aul t 1 npl (),
properties);

/'l creates the services

Busi nessServi ce busi nessServi ces = wadl 2UDDI . cr eat eBusi nessSer vi ce(new
Nanme(" M/Wasdl . namespace"”, "Servicenane"), app);

/lcreates tMddels (if any)

Set <TMbdel > port TypeTModel s = wadl 2UDDI . cr eat eWADLPor t TypeTMbdel s(wsdl URL
app) ;

/I Now just save the tMdels, then add the services to a new or existing
busi ness

50

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/wsdl2uddi/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

Links
to
sample

5.3.2. Links to sample project project

SVN Links to sample projects

« http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
« http://[svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

The examples are also available in both jUDDI distributions.

51

http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-examples/uddi-samples/

52

Chapter 6. Using UDDI Annotations

Conventionally Services (BusinessService) and their EndPoints (BindingTemplates) are
registered to a UDDI Registry using a GUI, where an admin user manually adds the necessary
info. This process tends to make the data in the Registry rather static and the data can grow stale
over time. To make the data in the UDDI more dynamic it makes sense to register and EndPoint
(BindingTemplate) when it comes online, which is when it gets deployed. The UDDI annotations
are designed to just that: register a Service when it get deployed to an Application Server. There
are two annotations: UDDIService, and UDDIServiceBinding. You need to use both annotations
to register an EndPoint. Upon undeployment of the Service, the EndPoint will be de-registered
from the UDDI. The Service information stays in the UDDI. It makes sense to leave the Service
level information in the Registry since this reflects that the Service is there, however there is
no EndPoint at the moment ("Check back later"). It is a manual process to remove the Service
information. The annotations use the juddi-client library which means that they can be used to
register to any UDDIv3 registry.

6.1. UDDI Service Annotation

The UDDIService annotation is used to register a service under an already existing business in
the Registry. The annotation should be added at the class level of the java class.

Table 6.1. UDDIService attributes

attribute description required

serviceName The name of the service, by | no
default the clerk will use the
one name specified in the
WebService annotation

description Human readable description | yes
of the service

serviceKey UDDI v3 Key of the Service yes

businessKey UDDI v3 Key of the Business | yes
that should own this Service.
The business should exist

in the registry at time of
registration

lang Language locale which will no
be used for the name and
description, defaults to "en" if
omitted

categoryBag Definition of a CategoryBag, | no
see below for details

53

UDDIServiceBinding
Annotation

6.2. UDDIServiceBinding Annotation

The UDDIServiceBinding annotation is used to register a BindingTemplate to the UDDI registry.
This annotation cannot be used by itself. It needs to go along side a UDDIService annotation.

Table 6.2. UDDIServiceBinding attributes

attribute description required

bindingKey UDDI v3 Key of the yes
ServiceBinding

description Human readable description | yes
of the service

accessPointType UDDI v3 no
AccessPointType, defaults to
wsdlDeployment if omitted

accessPoint Endpoint reference yes

lang Language locale which will no
be used for the name and
description, defaults to "en" if
omitted

tModelKeys Comma-separated list of no
tModelKeys key references

categoryBag Definition of a CategoryBag, | no
see below for further details

6.2.1. Java Web Service Example

The annotations can be used on any class that defines a service. Here they are added to a
WebService, a POJO with a JAX-WS WebService annotation.

package org. apache. j uddi . sanpl es;

i mport javax.jws.\WbServi ce;
i mport org.apache. juddi.v3. annot ati ons. UDDI Ser vi ce;
i mport org.apache. juddi.v3. annot ati ons. UDDI Ser vi ceBi ndi ng;

@JDDI Ser vi ce(
busi nessKey="uddi : myBusi nessKey",
servi ceKey="uddi : myServi ceKey",
description = "Hello Wrld test service")
@JDDI Ser vi ceBi ndi ng(
bi ndi ngKey="uddi : nySer vi ceBi ndi ngKey",
description="WSDL endpoint for the helloWrld Service. This service is
used for "

54

Wiring
it

all
+ "testing the jUDDI annotation functionality",

accessPoi nt Type="wsdl Depl oynent ",

accessPoi nt ="http://| ocal host: 8080/ j uddi v3- sanpl es/ servi ces/ hel | owor | d?
wsdl ")
@\ébSer vi ce(

endpoi ntInterface = "org. apache. j uddi . sanpl es. Hel | oWor | d",

servi ceNane = "Hel | oWworl d")

public class HelloWwrldlnpl inplements Hel |l oWorld {
public String sayH (String text) {
System out. println("sayH called");
return "Hello " + text;

On deployment of this WebService, the juddi-client code will scan this class for UDDI annotations
and take care of the registration process. The configuration file uddi.xml of the juddi-client is
described in the chapter, Using the jUDDI-Client. In the clerk section you need to reference the
Service class org.apache.juddi.samples.HelloWorldImpil:

<cl erk nane="BobCratchit" node="default" publisher="sal es" password="sal es">
<cl ass>or g. apache. j uddi . sanpl es. Hel | oWor | dl npl </ cl ass>
</ cl erk>

which means that Bob is using the node connection setting of the node with name "default”, and
that he will be using the "sales" publisher, for which the password it "sales". There is some analogy
here as to how datasources are defined.

6.2.2. Wiring it all together

The mechanism that triggers the automated registration is the UDDIClient. For each class you
annotation, the class needs to be listed in the jUDDI Client Configuration file. When the client
reads in the configuration, it will read the uddi.xml config file for the following location:

client/clerks/clerk[].class

In addition, the following flag must be set to true.

client/clerks@egi sterOnStartup="true"
Here’s a full example

<cl erks regi sterOnStartup="fal se" >
<cl erk nane="defaul t" node="defaul t" publisher="userjoe"

passwor d="******" crypt oProvi der = i sPasswor dEncr ypt ed="f al se" >
<cl ass>com nybi z. servi ces. Servi cel</cl ass>

</cl erk>

55

NET
Web

Service
</ cl erks>

The next step is to automate the "starting" and "stopping” of UDDIClient. In Java, anything that
runs in a servlet container and use the following servlet class:

org. apache. juddi . v3.client.config. UDD Cl erkServl et

It will automatically handle registration on start up and it will remove binding Templates on
shutdown (this ensuring clients that discover the endpoint won't find a dead link).

Clients that run elsewhere simply need to "start" the UDDIClient.

//start up

UDDI Cl i ent cl erkManager = new UDDI O i ent (" META- | NF/ uddi . xm ") ;

/'l register the clerkManager with the client side container

UDDI Cl i ent Cont ai ner. adddl i ent (cl er kiManager) ;

cl erkManager.start(); //wll create business/services/bindings as necessary

/[shut down down
cl erkManager.stop(); //will unregister binding tenplates

6.3. .NET Web Service Example

In .NET, the procedure is almost identical to Java. Annotate your web service classes, append the
classnames to your uddi.xml client config file. .NET annotations work with any WCF, ASP.NET
or any other class.

6.3.1. Wiring it all together
In .NET, there’s a few options, each with pro’s and con’s for automating registration.
6.3.1.1. Use UDDIClient in your service’s constructor

Pro: It's simple Con: Services often get multiple instances depending on the number of worker
threads in the server and thus can cause some concurrency issues.

6.3.1.2. Use UDDIClient in Global.asa Application_Start

Pro: It's simple Con: You need .NET 4.0 and ASP.NET enabled in order to utilize this function

More information about this can be found here: http://weblogs.asp.net/scottgu/
archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx

6.4. CategoryBag Attribute

The CategoryBag attribute allows you to reference tModels. For example the following
categoryBag

56

http://weblogs.asp.net/scottgu/archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx
http://weblogs.asp.net/scottgu/archive/2009/09/15/auto-start-asp-net-applications-vs-2010-and-net-4-0-series.aspx

Considerations
for
clustered

<cat egor yBag>
<keyedRef er ence t Mbdel Key="uddi : uddi . or g: cat egori zati on: t ypes"
keyNanme="uddi - or g: t ypes: wsdl " keyVal ue="wsdl Depl oynent" />
<keyedRef er ence t Mbdel Key="uddi : uddi . or g: cat egori zati on: t ypes"
keyName="uddi - or g: t ypes: wsdl 2" keyVal ue="wsd| Depl oynent 2" />
</ cat egor yBag>

automated
can be putin like registration

cat egor yBag="keyedRef er ence=keyNane=uddi -
org: types: wsdl ; keyVal ue=wsdl Depl oynent ;" +
"t Model Key=uddi : uddi . or g: cat egori zati on: types," +
"keyedRef er ence=keyNanme=uddi -
org: types: wsdl 2; keyVal ue=wsdl| Depl oynent 2; " +
"t Mbdel Key=uddi : uddi . org: cat egori zati on: t ypes2",

6.5. Considerations for clustered or load balanced web
servers and automated registration

Most production environments have primary and failover web servers and/or an intelligent load
balancer that routers traffic to whichever server is online. When using automated registration with
the jUDDI client, care must be taken when enabling automated registration.

57

58

Chapter 7. Using the UDDI v2
Services and Adapters

7.1. Introduction
Starting with jUDDI version 3.2, a number of adapters are provided to help you use or access

UDDI version 2 based services. There are a multitude of options and will be discussed in the
following sections.

7.2. Accessing UDDI v2 services using the jUDDI v3
Client

Accessing UDDI v2 services via the juDDI v3 client is quite simple. All that's required is
modification of the uddi.xml client configuration file. Simply set the transport to:

org. apache. juddi .v3.client.transport. JAXWSv2Tr ansl ati onTr ansport

...and adjust the inquiryUrl and publishUrl URL endpoints.

Tip

When accessing UDDI v2, Custody Transfer, Subscription, Replication and Value
Set APIs will not be available and may generate unexpected behavior. The UDDIv3
Inquiry getOperationallnfo method is only partially mapped.

That's it. No code changes are required other than to avoid Custody Transfer, Subscription,
Replication and Value Set APIs. In addition, digital signatures are not mapped.

7.3. Accessing UDDI v2 services using UDDI v2 APIs

The jUDDI v3 client now contains the UDDI 2 web service clients. Although, there isn't currently
a configuration/transport/client/clerk wrapper for it, you can still get access to web service clients
with the following code:

org. apache. j uddi . v3.client.UDDl Servi ceV2 svc = new UDDI ServiceV2();

I nquire port = svc.getlnquire();

((Bi ndi ngProvi der)
port). get Request Cont ext () . put (Bi ndi ngPr ovi der. ENDPO NT_ADDRESS PROPERTY
"http://1 ocal host: 8080/ j uddi v3/servi ces/inquiryv2");

Publ i sh pub= svc. get Publi sh();

59

Accessing
juDDI

v3
((Bi ndi ngPr ovi der)
pub) . get Request Cont ext () . put (Bi ndi ngPr ovi der. ENDPO NT_ADDRESS PROPERTY,
"http://1ocal host: 8080/] uddi v3/ servi ces/ publishv2");

existing
All you need to reference the following projec§%§ from jUDDI:
v2
* juddi-client based
client,
e uddi-ws plugin

7.4. Accessing juDDI v3 se&jces from an existing UDDI

v2 based client, plugin or tool

When UDDI v2 was release, many application developers jumped on board to support it. As
such, there are many UDDI v2 tools that exist, such as IDE plugins like Eclipse’s Web Services
Explorer. To support legacy tools, juDDI now offers UDDI v2 endpoints. Simple point your tool at
the following URLs. You'll have to alter them to match your environment.

http://1 ocal host: 8080/ uddi v3/ servi ces/inquiryv2
http://1 ocal host: 8080/) uddi v3/ servi ces/ publ i shv2

7.5. Additional Information

The UDDI v2 adapters provide basic mappings from to and from UDDI v3. The juddi-client has
several mapping functions that are used both client and service side to convert from UDDI v2 to
UDDI v3. In addition, the client has as several interface adapters to help with a seamless transition.

60

Chapter 8. UDDI Migration and
Backup Tool

The UDDI Migration and Backup Tool can be used to perform a number of administrative tasks
such as

» Backup the contents of a UDDI server (business, services, binding templates and tModels)
« Import contents into a UDDI server (business, services, binding templates and tModels)

In addition, the migration tool has a few features that serve as job aids.

Ability to remove digital signatures on Import or Export

Ability to maintain ownership properties of UDDI entries

Ability to export and import Publishers (jJUDDI only)
« Automatically skip an item on import if the entity key already exists

The UDDI Migration and Backup Tool is Command Line Interface program and has a number of
use cases such as:

» Copying data from one registry to another

Migrating from one vendor to another

Periodic backups

« Upgrades to jUDDI

Tip

The migration tool will not overwrite data when importing.

8.1. Using the tool

There are many configuration options and settings for the migration tool. This tool is distributed
with the uddi client distribution package.

8.1.1. Get help

>java -jar juddi-mgration-tool-3.2.0-SNAPSHOT-j ar-w t h- dependenci es. j ar
This tool is used to export and inport UDDI data froma UDDH v3 registry

61

Use
case:

basic
Random TI P: W thout the preserveOmership flag, all inported data will be

owned by the usernane that inported it.

usage: java -jar juddi-mgration-tool-(VERSION)-jar-with-dependencies.jar

- busi ness <arg> I m Export option, file to store the business data,
default is 'business-export.xm’

-config <arg> Use an alternate config file default is 'uddi.xmn"

-credFil e <arg> I mport option with -preserveOmership, this is a
properties file mapping w th user=pass

- export Exports data into a UDDIv3 registry

-i nport Imports data into a UDDIv3 registry

-1 sJuddi Is this a jUDDI registry? If so we can in/export
nore stuff

- mappi ngs <ar g> I m Export option, file that naps keys to owners,
default is 'entityusernmappi ngs. properties’

-nyltensOnly Export option, Only export itenms owned by yourself

-node <arg> The node 'nane' in the config, default is 'default'

- pass <arg> Password, if not defined, those is uddi.xm wll be
used

- preser veOmner shi p I m Export option, saves owership data to the

"mappi ngs' file
- publ i shers <arg> jubDl only - In/Export option, file to store
publ i shers, default is 'publishers-export.xmn"

-stripSi gnatures | m Export option, renmoves digital signatures from
all signed items, default is false

-tnodel <arg> I m Export for tnodels, file to store tnodel data,
default is 'tnodel -export.xmn'

-user <arg> Usernane, if not defined, those is uddi.xm wll be
used

8.1.2. Use case: basic import and export

To export everything without preserving ownership information:
java -jar juddi-mgration-tool-(VERSION) -jar-wth-dependencies.jar -export
To import everything without preserving ownership information:

java -jar juddi-mgration-tool-(VERSION)-jar-wth-dependencies.jar -inport

8.1.3. Use case: Import and Export while preserving ownership
information

To export everything with preserving ownership information:

java -jar juddi-mgration-tool-(VERSION)-jar-wth-dependencies.jar -export -
preser veOwner shi p

62

Use
case:

Import
To import everything with preserving ownershjgginformation, first edit the mappings file which

is entityusermappings.properties by default. eresrevery user has a password, run the following
command

nracAnsin~

java -jar juddi-mgration-tool-(VERSION)-jar-wth-dependencies.jar -inmport -
preserveOmer shi p

Tip

When preserving ownership information, upon import, you'll need every UDDI
entity owner’s password. If you don’t have this and you're using jUDDI, you
can temporarily switch jUDDI to the DefaultAuthenticator which doesn't validate
passwords (just put anything in the mappings file for each user). Once the import

is complete, you can then switch back to whatever authenticator you were using
before.

63

64

Chapter 9. Using the JUDDI REST
Services

jUDDI includes a Inquiry API adapter that exposes some of the basic functionality of UDDI via
REST. Data can be retrieved in both XML and JSON encoding for all methods.

9.1. URL Patterns and methods

1. All juDDI Inquiry REST service are accessible via HTTP GET.

2. Authentication is not yet supported. This also implies that the Inquiry APl must be configured
for anonymous access (i.e. do not turn on Inquiry Authentication Required).

3. The jUDDI Inquiry REST service is not currently portable as an adapter to other UDDI instances
(but it could be adapted to it in the future)

9.1.1. Endpoints

All endpoints must be prefixed with http(s)://server:port/juddicontext/ where juddicontext is
typically juddiv3.

WADL Document: http://localhost:8080/juddiv3/services/inquiryRest?_wadl

Tip

All of the examples in this document reference JSON encoded messages. To
switch to XML messages, just replace the JSON with XML in the URL. That's it!

9.1.2. Methods

Each method is accessible using the following pattern:

http://1 ocal host: 8080/ j uddi v3/ servi ces/i nqui ryRest/{encodi ng}/{net hod}/
{par anet er s}

/I or

http://1 ocal host: 8080/ j uddi v3/ servi ces/i nqui ryRest/{encodi ng}/{net hod} ?
{nane=val ue}

Notes

* Encoding - Can be XML or JSON
* Methods - See below

o Parameters - usually a unique UDDI key

65

http://localhost:8080/juddiv3/services/inquiryRest?_wadl

Methods

9.1.2.1. xxxList

Returns up to 100 items within a KeyBag object, containing a list of all keys for the given object
type.

1. servicelist - http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceList

2. businessList - http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessList

3. tModelList - http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelList

9.1.2.2. endpointsByService/key

Returns all executable endpoints for a given service key, including all binding Templates. This
also resolves hosting redirector and a number of other accessPoint useType specifics.

Example:

http://1 ocal host: 8080/ uddi v3/ servi ces/inqui ryRest/JSOV endpoi nt sBySer vi ce/
uddi : j uddi . apache. or g: servi ces- cust odyt r ansf er

9.1.2.3. getDetail

Return the details of a specific item using query parameters. This implements the
UDDI recommendation for HTTP GET services for UDDI. See http://uddi.org/pubs/uddi-
v3.0.2-20041019.htm#_ Toc85908158 for further information.

Example:

http://1 ocal host: 8080/) uddi v3/ servi ces/ i nqui ryRest/ XM./ get Detai | ?
busi nessKey=uddi : j uddi . apache. or g: busi nesses- asf

The following query parameters are supported. Only one can be specified at a time

1. businessKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?
businessKey=uddi:juddi.apache.org:businesses-asf

2. tModelKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail ?
tModelKey=uddi:uddi.org:categorization:types

3. bindingKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail ?
bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws

4. serviceKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?
serviceKey=uddi:juddi.apache.org:services-inquiry

9.1.2.4. xxxKey

Return the details of a specific item. This is similar to getDetail except that it is not based on query
parameters. The underlying code of this function is the same as getDetail.

66

http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceList
http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessList
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelList
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm#_Toc85908158
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?businessKey=uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?businessKey=uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?tModelKey=uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?tModelKey=uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?bindingKey=uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?serviceKey=uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/getDetail?serviceKey=uddi:juddi.apache.org:services-inquiry

Example
Output

Example:

1. businessKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/
uddi:juddi.apache.org:businesses-asf

2. tModelKey/(key) - http://localhost;8080/juddiv3/services/inquiryRest/JSON/tModelKey/
uddi:uddi.org:categorization:types

3. bindingKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/
uddi:juddi.apache.org:servicebindings-inquiry-ws

4. serviceKey/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/
uddi:juddi.apache.org:services-inquiry

5. oplInfo/(key) - http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/
uddi:juddi.apache.org:businesses-asf

9.1.2.5. xxxSearch

Returns the search results for registered entities in XML or JSON using a number of query
parameters.

Supported entities: . searchService . searchBusiness . searchTModel

Supported query parameters . name - Filters by the name element. If not specified, the wildcard
symbol is used %. . lang - Filters by language. If not specified, null is used. . findQualifiers -
Adds sorting or additional find parameters. comma delimited. If not specified, approximateMatch
is used . maxrows - Maximum rows returned. If not specified, 100 is used. . offset - Offset for
paging operations. If not specified, 0 is used.

9.2. Example Output

9.2.1. XML

The output of all XML encoded messages is identical to the UDDI schema specifications. There
should be no surprises.

9.2.2. JSON

The output of JSON encoded messages is obviously different than XML. The following is an
example of what it looks like.

"busi nessEntity": {
" @usi nessKey": "uddi:juddi.apache. or g: busi nesses-asf",
"di scoveryURLs": {
"di scoveryURL": {
"@seType": "honepage",
"$": "http://I| ocal host: 8080/ uddi v3"

67

http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/businessKey/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelKey/uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/tModelKey/uddi:uddi.org:categorization:types
http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/bindingKey/uddi:juddi.apache.org:servicebindings-inquiry-ws
http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/serviceKey/uddi:juddi.apache.org:services-inquiry
http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/uddi:juddi.apache.org:businesses-asf
http://localhost:8080/juddiv3/services/inquiryRest/JSON/opInfo/uddi:juddi.apache.org:businesses-asf

JSON

iE
"nanme": {
"@m .lang": "en",
"$": "An Apache jUDDI Node"
iE
"description": {
"@m .lang": "en",
"$": "This is a UDDI v3 registry node as inplenmented by Apache
j upDi . "
iE
"busi nessServi ces": {
"busi nessServi ce": [

{
"@ervi ceKey": "uddi:juddi.apache. org: services-
cust odytransfer”,
" @usi nessKey": "uddi:juddi.apache. org: busi nesses-asf",
"nane": {

"@mn .lang": "en",
"$": "UDDI Custody and Omnership Transfer Service"
iE
"description": {
"@nmn .lang": "en",
"$": "Web Service supporting UDDI Custody and
Ownershi p Transfer API"
iE
"bi ndi ngTenpl ates": {
"bi ndi ngTenpl ate": [
{
" @i ndi ngKey" :
"uddi : j uddi . apache. or g: servi cebi ndi ngs- cust odyt r ansf er-ws",
" @ervi ceKey":
"uddi : j uddi . apache. or g: servi ces-cust odytransfer",
"description": "UDDl Custody and Oanership
Transfer APl V3",
"accessPoint": {
"@seType": "wsdl Depl oynent ",
"$": "http://1ocal host: 8080/ uddi v3/
servi ces/ cust ody-transfer ?wsdl "
},
"t Model | nst anceDetai | s": {
"t Model | nst ancel nfo": {
" @ Model Key":
"uddi : uddi . org: v3_ownershi p_transfer",
"instanceDetail s": {

"instanceParms": "\n
\'n <?xm version=\"1.0\" encoding=\"utf-8\" ?>\n
<UDDI i nst ancePar nsCont ai ner\ n xm ns=\"ur n: uddi -
org: policy_v3 instanceParns\">\n <aut hl nf oUse>r equi r ed</

68

JSON

aut hl nf oUse>\ n </ UDDI i nst ancePar nsCont ai ner >\ n
\n

iE
"cat egoryBag": {
"keyedRef erence": {
" @ Model Key" :
"uddi : uddi . org: cat egori zati on: t ypes",
" @eyNane": "uddi-org:types:wsdl",
" @eyVal ue": "wsdl Depl oynment "

}
}
iE
{
" @i ndi ngKey" :
"uddi : j uddi . apache. or g: servi cebi ndi ngs- cust odyt r ansf er -ws-ssl ",
" @ervi ceKey":

"uddi : j uddi . apache. or g: servi ces-cust odytransfer",
"description": "UDDl Custody and Oanership
Transfer APl V3 SSL",
"accessPoint": {
"@seType": "wsdl Depl oynent ™,
"$": "https://| ocal host:8443/j uddi v3/
servi ces/ cust ody-transfer ?wsdl "
b
"t Model | nst anceDetai | s": {
"t Model | nst ancel nfo": [

{
" @ Model Key":
"uddi : uddi . org: v3_ownershi p_transfer",
"instanceDetail s": {
"instanceParms": "\n
\n <?xm version=\"1.0\" encoding=\"utf-8\" ?>\n
<UDDI i nst ancePar nsCont ai ner\ n xm ns=\"ur n: uddi -
org: policy_v3 instanceParns\">\n <aut hl nf oUse>r equi r ed</
aut hl nf oUse>\ n </ UDDI i nst ancePar msCont ai ner >\ n
\'n
}
iE
{
" @ Model Key":
"uddi : uddi . or g: prot ocol : server aut henti cat edssl 3"
}

b
"cat egoryBag": {
"keyedRef erence": {

69

More
information

" @ Model Key" :

"uddi : uddi . org: cat egori zati on: t ypes",
" @eyNane": "uddi-org:types:wsdl",
" @eyVal ue": "wsdl Depl oynment "

b
"cat egoryBag": {
"keyedRef erence": {
" @ Model Key": "uddi : uddi . org: cat egori zati on: nodes",
" @eyNanme": "",
" @eyVal ue": "node"

9.3. More information

For more information, please check out the source code: http://svn.apache.org/repos/asf/juddi/
trunk/juddi-rest-cxf/

70

http://svn.apache.org/repos/asf/juddi/trunk/juddi-rest-cxf/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-rest-cxf/

Chapter 10. jJUDDI Client for NET

Since 3.2, the majority of the functions in the jUDDI Client for Java have been ported to .NET.

This guide will show you how to use it and integrate it with your own .NET based applications.

10.1. Procedure

1. Add a reference to jUDDI-Client.NET.dII

2. Add a reference to System.Web.Services

3. Add a reference to System.ServiceModel

4. Add a reference to System.Xml

5. Add a reference to System.Runtime.Serialization
6. Add a reference to System.Configuration

7. Add a reference to System.Security

8. Add a copy of the sample uddi.xml file. Modify it to meet your environment and operational

needs.

9. Note, many of the settings are identical to the Java juDDI-client. The APIs are also nearly

identical, so example code should be easily portable from one language to another.

Sample Code

* Copyright 2001-2013 The Apache Software Foundati on.
* Licensed under the Apache License, Version 2.0 (the "License")
* you may not use this file except in conpliance with the License

* You nmay obtain a copy of the License at

* http: //ww. apache. org/ | i censes/ LI CENSE- 2. 0

* Unl ess required by applicable |law or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASI S,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
* See the License for the specific |anguage governi ng perm ssions and

* |imtations under the License.
*
*/
usi ng org. apache. juddi.v3.client;
usi ng org. apache. juddi.v3.client.config;

71

Procedure

usi ng org. apache.juddi.v3.client.transport;
usi ng org. uddi . api v3;

usi ng System

usi ng System Col | ecti ons. Generi c;

usi ng System Text;

nanespace juddi _client.net_sanple

{

class Program
{
static void Main(string[] args)
{
UDDI Cl i ent cl erkManager = new UDDI C i ent ("uddi.xm ");
UDDI Cl i ent Cont ai ner . addCl i ent (cl er kiManager) ;
Transport transport = cl erkManager. get Transport ("defaul t");

org. uddi . api v3. UDDI _Security_SoapBi ndi ng security =
transport. get UDDI SecurityService();

org. uddi . api v3. UDDI _I nqui ry_SoapBi ndi ng i nquiry =
transport.get UDDI | nqui ryService();

UDDI Cl erk clerk = cl erkManager. getC erk("default");

find_business fb = new find_busi ness();
fb.authlnfo = cl erk. get Aut hToken(security. Url);
fb.findQualifiers = new string[]
{ UDDI Const ant s. APPROXI MVATE_NMATCH 1} ;
fb. name = new nang[1] ;
f b. name[0] = new nane(UDDI Const ants. W LDCARD, "en");

busi nessLi st bl = inquiry.find_business(fb);
for (int i = 0; i < bl.businesslnfos.Length; i++)
{

Consol e. Wit eLi ne(bl . busi nessl nfos[i].name[0]. Val ue);

}
Consol e. Read() ;

The sample code above should print out a list of all businesses currently registered in the registry.
If credentials are stored in the uddi.xml file and are encrypted, they will be decrypted automatically
for you.

Within the jJUDDI Source Tree, there are many different examples of how to use the jUDDI Client
for .NET. They are available here: http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/
juddi-client.net-sample/

72

http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/juddi-client.net-sample/
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client.net/juddi-client.net-sample/

Chapter 11. Using the UDDI
Technology Compatibility Kit

Since UDDI is a specification with many complex rules in it, we (the jUDDI team) have had
to write test cases to exercise each of the rules and restrictions in UDDI. Knowing that there
are a number of open source and commercial UDDI v3 implementations, the jUDDI team took
this as an opportunity to create a reusable benchmark for testing the compatibility of UDDI v3
implementations.

7 0 Important

Although the TCK covers a large number of test cases, the UDDI specification is
long and complex. It's more than possible that we missed a few scenarios or test
cases. If you run across any, please let us know.

11.1. Using the TCK Runner

The TCK Runner requires a few files to operate:

1. juddi-tck-runner-version.jar - This is the executable
2. uddi.xml - This file sets the location of the UDDI services
3. tck.properties - This file controls what tests are ran.

4. truststore and keystore.jks - These files are for digital signature tests

11.1.1. Configuration

« Edit the uddi.xml file and update all of the UDDI endpoint locations for all supported endpoints
of UDDI server being tested. Ignore all credentials and other settings

« Edit tck.properties and update the usernames and passwords of the test users. Enable or
disable tests based on the whether or not the UDDI server supports the optional listed
capabilities.

Do not use usernames and passwords that already have data associated with it.

73

Running
the

TCK
A few of the test cases, such as RMI trangggihepre not identified by the UDDI specification,

therefore the results may be skewed if unsupported tests are attempted. In addition, the UDDI
specification identifies a number of APIs and features that are considered optional.

Although it is possible to run the TCK against a UDDIv2 registry using the UDDIv2 transport
adapters, this is not supported. The TCK’s test cases and rules apply to the business rules defined
in UDDIv3. Unsupported and unmapped functions defined in UDDIv3 that are not supported in
UDDIv2 fail ultimately fail.

11.1.1.1. tck.properties

The TCK properties file contains settings for all of the TCK tests.

1. Credentials - You'll need credentials for a number of user accounts

2. jJUDDI optional tests - If you're running the tests against jUDDI, there’'s a number of additional
tests ran to exercise things like user accounts.

3. Load testing - These settings enable you to tweak or disable the load testing.
4. Key stores - These are needed to run the digital signature tests

5. Supported transports - jUDDI supports a number of transports, such as RMI and HTTP (for
UDDI service interaction) and SMTP and HTTP for subscription callbacks. RMI is actually not
in the spec and SMTP is considered optional, so you'll want to adjusted these based on the
available documentation from the vendor.

11.1.1.2. uddi.xml

The only parts used from uddi.xml are the following

1. The endpoints of the UDDI services

2. The client subscription callback settings

11.1.2. Running the TCK Runner

Executing the TCK runner is simple.

java (options) -Duddi.client.xm =uddi.xm -jar juddi-tck-runner-{VERSI ON}-
SNAPSHOT- j ar - wi t h- dependenci es. j ar

Optional parameters

« -Ddebug=true - this turns up the logging output, typically including the XML payloads of each
message.

74

Analyzing
the

Results
« -Duddi.client.xmI=uddi.xml - Use this file as the jUDDI Client config file. This specifies where

all of the UDDI endpoints are.

» -Dtck.properties=file.properties - Use this to use an alternate tck properties file.

11.2. Analyzing the Results

There are two ways to identify the result of the tests.

« Analyze the console output
» Review the test results in uddi-tck-results-[Date Time].txt

The results are summarized in the uddi-tck-results file along with the specific error conditions and
stack traces that will enable you to find out the root cause of the failure. It may be necessary to
obtain UDDI server logs to help with root cause identification.

75

76

Index

77

78

	Apache jUDDI Client and GUI Guide
	Table of Contents
	Preface
	Chapter 1. Simple Publishing Using the jUDDI API
	1.1. UDDI Data Model
	1.2. jUDDI Additions to the Model
	1.3. UDDI and jUDDI API
	1.4. Getting Started
	1.4.1. Simple Publishing Example
	1.4.1.1. Simple Publishing using Portable Code
	1.4.1.2. Simple Publishing using Clerks

	1.4.2. About UDDI Entity Keys

	1.5. A few tips on adding Binding Templates
	1.6. Conclusion

	Chapter 2. jUDDI Client Configuration Guide
	2.1. Introduction
	2.2. Client Settings
	2.3. Nodes
	2.3.1. Transport Options

	2.4. Clerks
	2.5. Clerk
	2.6. Digital Signatures
	2.7. Subscription Callbacks
	2.8. XtoWsdl
	2.9. Embedded jUDDI server
	2.9.1. Requirements
	2.9.2. Changes in configuration compared to non-embedded

	Chapter 3. Key Format Templates
	3.1. UDDIv3 key format
	3.2. jUDDI key format templates
	3.2.1. Advantages of using a template
	3.2.2. Default UDDIKeyConvention Key Templates
	3.2.3. How to use the templates?
	3.2.4. Where to define to properties?

	Chapter 4. Using the jUDDI GUI
	4.1. Requirements
	4.2. Tasks
	4.2.1. Your first sign on

	4.3. The Menu Bar
	4.4. Logging in to UDDI Services
	4.5. Logging Out
	4.6. Discover (Browse UDDI)
	4.6.1. Business Browser
	4.6.2. Service Browser
	4.6.3. tModel Browser
	4.6.4. Search

	4.7. Creating new Entities
	4.7.1. Create a tModel
	4.7.2. Create a tModek Key Generator (Partition)
	4.7.3. Create a Business
	4.7.4. Create a Service
	4.7.5. Import from WSDL or WADL

	4.8. Custody Transfers
	4.9. Publisher Assertions
	4.10. Subscriptions
	4.10.1. Create a new subscription
	4.10.2. View My Subscriptions
	4.10.3. View the News Feed

	4.11. Using Digital Signatures in juddi-gui
	4.11.1. Sign a Business, Service or tModel
	4.11.2. Verify a signed UDDI entity

	4.12. Configuration
	4.13. Language Codes
	4.14. Switching Nodes

	Chapter 5. Mapping WSDL and WSDL to UDDI
	5.1. Introduction
	5.2. Use Case - WSDL
	5.2.1. Sample Code
	5.2.2. Links to sample project

	5.3. Use Case - WADL
	5.3.1. Sample Code
	5.3.2. Links to sample project

	Chapter 6. Using UDDI Annotations
	6.1. UDDI Service Annotation
	6.2. UDDIServiceBinding Annotation
	6.2.1. Java Web Service Example
	6.2.2. Wiring it all together

	6.3. .NET Web Service Example
	6.3.1. Wiring it all together
	6.3.1.1. Use UDDIClient in your service’s constructor
	6.3.1.2. Use UDDIClient in Global.asa Application_Start

	6.4. CategoryBag Attribute
	6.5. Considerations for clustered or load balanced web servers and automated registration

	Chapter 7. Using the UDDI v2 Services and Adapters
	7.1. Introduction
	7.2. Accessing UDDI v2 services using the jUDDI v3 Client
	7.3. Accessing UDDI v2 services using UDDI v2 APIs
	7.4. Accessing jUDDI v3 services from an existing UDDI v2 based client, plugin or tool
	7.5. Additional Information

	Chapter 8. UDDI Migration and Backup Tool
	8.1. Using the tool
	8.1.1. Get help
	8.1.2. Use case: basic import and export
	8.1.3. Use case: Import and Export while preserving ownership information

	Chapter 9. Using the jUDDI REST Services
	9.1. URL Patterns and methods
	9.1.1. Endpoints
	9.1.2. Methods
	9.1.2.1. xxxList
	9.1.2.2. endpointsByService/key
	9.1.2.3. getDetail
	9.1.2.4. xxxKey
	9.1.2.5. xxxSearch

	9.2. Example Output
	9.2.1. XML
	9.2.2. JSON

	9.3. More information

	Chapter 10. jUDDI Client for NET
	10.1. Procedure

	Chapter 11. Using the UDDI Technology Compatibility Kit
	11.1. Using the TCK Runner
	11.1.1. Configuration
	11.1.1.1. tck.properties
	11.1.1.2. uddi.xml

	11.1.2. Running the TCK Runner

	11.2. Analyzing the Results

	Index

