
Persistence Broker Tutorial

by Brian McCallister

Table of contents

1 The PersistenceBroker API..........................................................................................................2

1.1 Introduction............................................................................................................................. 2

1.2 A First Look - Persisting New Objects....................................................................................2

1.3 Querying Persistent Objects.................................................................................................... 4

1.4 Updating Persistent Objects.................................................................................................... 5

1.5 Deleting Persistent Objects......................................................................................................6

1.6 Find object by primary key......................................................................................................6

2 Exception Handling......................................................................................................................7

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.



1. The PersistenceBroker API

1.1. Introduction

The PersistenceBroker API provides the lowest level access to OJB's persistence engine. While it is
a low-level API compared to the OTM, ODMG, or JDO API's it is still very straightforward to use.

The core class in the PersistenceBroker API is the
org.apache.ojb.broker.PersistenceBroker class. This class provides the point of
access for all persistence operations in this API.

More detailed information can be found in the PB-guide and in the other reference guides.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{

/* Instance Properties */

private Double price;
private Integer stock;
private String name;lean

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for all tutorials is available in the seperate tutorials-src.jar which you
can download here. If you're eager to try them out, you can use them with the ojb-blank project
which can be downloaded from the same place. It is described in the Getting started section.

Further information about the OJB PB-api implementation can be found in the PB guide.

1.2. A First Look - Persisting New Objects

The most basic operation is to persist an object. This is handled very easily by just

1. obtaining a PersistenceBroker
2. begin the PB-transaction
3. storing the object via the PersistenceBroker
4. commit transaction
5. closing the PersistenceBroker

For example, the following function stores a single object of type Product.

public static void storeProduct(Product product)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.store(product);
broker.commitTransaction();

}

Persistence Broker Tutorial

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/pb-guide.html
../../docu/guides/summary.html
../../docu/tutorials/mapping-tutorial.html
http://www.apache.org/dyn/closer.cgi/db/ojb/
../../docu/getting-started.html
../../docu/guides/pb-guide.html


catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

Two OJB classes are used here, the PersistenceBrokerFactory and the
PersistenceBroker. The PersistenceBrokerFactory class manages the lifecycles of
PersistenceBroker instances: it creates them, pools them, and destroys them as needed. The
exact behavior is very configurable.

In this case we used the static
PersistenceBrokerFactory.defaultPersistenceBroker() method to obtain an
instance of a PersistenceBroker to the default data source. This is most often how it is used
if there is only one database for an application. If there are multiple data sources, a broker may be
obtained by name (using a PBKey instance as argument in
PersistenceBrokerFactory.createPersistenceBroker(pbKey)).

It is worth noting that the broker.close() call is made within a finally {...} block.
This ensures that the broker will be closed, and returned to the broker pool, even if the function
throws an exception.

To use this function, we just create a Product and pass it to the function:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(1.99);
product.setStock(10);
storeProduct(product);

Once a PersistenceBroker has been obtained, its
PersistenceBroker.store(Object) method is used to make an object persistent.

Maybe you have noticed that there has not been an assignment to product.id, the primary-key
attribute. Upon storing product OJB detects that the attribute is not properly set and assigns a
unique id. This automatic assignment of unique Ids for the attribute id has been explicitly declared
in the XML repository file, as we discussed in the .

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
for (int i = 0; i < products.length; i++)
{

broker.store(products[i]);
}
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

Persistence Broker Tutorial

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html


if (broker != null) broker.close();
}

}

This contrived example stores all of the passed Product instances within a single transaction via the
PersistenceBroker.beginTransaction() and
PersistenceBroker.commitTransaction(). These are database level transactions, not
object level transactions.

1.3. Querying Persistent Objects

Once objects have been stored to the database, it is important to be able to get them back. The
PersistenceBroker API provides two mechanisms for building queries, by using a template object,
or by using specific criteria.

public static Product findByTemplate(Product template)
{

PersistenceBroker broker = null;
Product result = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
QueryByCriteria query = new QueryByCriteria(template);
result = (Product) broker.getObjectByQuery(query);

}
finally
{

if (broker != null) broker.close();
}
return result;

}

This function finds a Product by building a query against a template Product. The template
should have any properties set which should be matched by the query. Building on the previous
example where a product was stored, we can now query for that same product:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(new Double(1.99));
product.setStock(new Integer(10));
storeProduct(product);

Product template = new Product();
template.setName("Sprocket");
Product sameProduct = findByTemplate(template);

In the above code snippet, product and sameProduct will reference the same object
(assuming there are no additional products in the database with the name "Sprocket").

The template Product has only one of its properties set, the name property. The others are all
null. Properties with null values are not used to match.

An alternate, and more flexible, way to have specified a query via the PersistenceBroker API is by
constructing the criteria on the query by hand. The following function does this.

public static Collection getExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));

Persistence Broker Tutorial

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/query.html


criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
finally
{

if (broker != null) broker.close();
}
return results;

}

This function builds a Criteria object and uses it to set more complex query parameters - in this
case greater-than and less-than contraints. Looking at the first constraint put on the criteria,
criteria.addLessOrEqualThan("stock", new Integer(10)); notice the
arguments. The first is the property name on the object being queried for. The second is an
Integer instance to be used for the comparison.

After the Criteria has been built, the QueryByCriteria constructor used is also different
from the previous example. In this case the criteria does not know the type of the object it is being
used against, so the Class must be specified to the query.

Finally, notice that this example uses the
PersistenceBroker.getCollectionByQuery(...) method instead of the
PersistenceBroker.getObjectByQuery(...) method used previously. This is used
because we want all of the results. Either form can be used with either method of constructing
queries. In the case of the PersistenceBroker.getObjectByQuery(...) style query,
the first matching object is returned, even if there are multiple matching objects.

1.4. Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent
objects. The same PersistenceBroker.store(Object) method is used to store a
modified object as to insert a new one - the difference between new and modified objects is
irrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of
SQL inserts and updates. Basically, OJB will insert a new object into the relational store if the
primary key, as specified in the O/R metadata is not in use. If it is in use, it will update the existing
object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has
been newly created and made persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the object, so
the typical update cycle, unless the application caches objects, is to query for the object to modify,
modify the object, and then store the object. The following function demonstrates this behavior by
"selling" a Product.

public static boolean sellOneProduct(Product template)
{

PersistenceBroker broker = null;
boolean isSold = false;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
QueryByCriteria query = new QueryByCriteria(template);
Product result = (Product) broker.getObjectByQuery(query);

if (result != null)
{

broker.beginTransaction();

Persistence Broker Tutorial

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.



result.setStock(new Integer(result.getStock().intValue() - 1));
broker.store(result);
// alternative, more performant
// broker.store(result, ObjectModificationDefaultImpl.UPDATE);
broker.commitTransaction();
isSold = true;

}
}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}
return isSold;

}

This function uses the same query-by-template and PersistenceBroker.store() API's
examined previously, but it uses the store method to store changes to the object it retrieved. It is
worth noting that the entire operation took place within a transaction.

1.5. Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished via the
PersistenceBroker.delete() method. This removes the persistent object from the
repository, but does not affect any change on the object itself. For example:

public static void deleteProduct(Product product)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.delete(product);
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

This method simply deletes an object from the database.

1.6. Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary keys) of
an object are known. In OJB you have several ways to request the whole object. It is possible to
build a query as shown above, but the smarter solution is to use
PersistenceBroker#getObjectByIdentity(Identity oid). An Identity object is a
unique representation of a persistence capable object based on the object primary key values and
the top-level class (abstract class, interface or the class itself, depending on the extent metadata
mapping).

For example, to find an Product with an single primary key of '23' do

Persistence Broker Tutorial

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/Identity.html
../../docu/guides/advanced-technique.html#extents
../../docu/guides/advanced-technique.html#extents


Identity oid = broker.serviceIdentity().buildIdentity(Product.class, new
Integer(23));
Product product = (Product) broker.getObjectByIdentity(oid);

2. Exception Handling

Most PersistenceBroker operations throw a
org.apache.ojb.broker.PersistenceBrokerException, which is derived from
java.lang.RuntimeException if an error occurs. This means that no try/catch block is
required but does not mean that it should not be used. This tutorial specifically does not catch
exceptions all in order to focus more tightly on the specifics of the API, however, best usage would
be to include a try/catch/finally block around persistence operations using the PeristenceBroker
API.

Additionally, the closing of PersistenceBroker instances is best handled in finally blocks
in order to guarantee that it is run, even if an exception occurs. If the
PersistenceBroker.close() is not called then the application will leak broker instances.
The best way to ensure that it is always called is to always retrieve and use
PersistenceBroker instances within a try {...} block, and always close the broker in a
finally {...} block attached to the try {...} block.

A better designed getExpensiveLowStockProducts() method is presented here.

public static Collection betterGetExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));
criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
catch (PersistenceBrokerException e)
{

// Handle exception
}
finally
{

if (broker != null) broker.close();
}
return results;

}

Notice first that the PersistenceBroker is retrieved and used within the confines of a try
{...} block. Assuming nothing goes wrong the entire operation will execute there, all the way to
the return results; line. Java guarantees that finally {...} blocks will be called
before a method returns, so the broker.close() method is only included once, in the
finally block. As an exception may have occured while attempting to retrieve the broker, a
not-null test is first performed before closing the broker.

Persistence Broker Tutorial

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.


	1 The PersistenceBroker API
	1.1 Introduction
	1.2 A First Look - Persisting New Objects
	1.3 Querying Persistent Objects
	1.4 Updating Persistent Objects
	1.5 Deleting Persistent Objects
	1.6 Find object by primary key

	2 Exception Handling

