
Object Transaction Manager Tutorial

by Brian McCallister

Table of contents

1 The OTM API.. 2

1.1 Introduction... 2

1.2 Persisting New Objects..2

1.3 Deleting Persistent Objects..3

1.4 Querying for Objects... 4

1.5 More Sophisticated Transaction Handling.. 5

2 Notes on the Object Transaction Manager...7

2.1 Transactions...7

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. The OTM API

1.1. Introduction

The Object Transaction Manager (OTM) is written as a tool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's similar to
the ODMG and PersistenceBroker API's in OJB. Several of its idioms are designed around the fact
that it is meant to have additional, client-oriented, API's built on top of it, however.

The OTMKit is the initial access point to the OTM interfaces. The kit provides basic configuration
information to the OTM components used in your system. This tutorial will use the SimpleKit
which will work well under most circumstances for local transaction implementations.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{

/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial.

As always the source code for this tutorial can be found in the tutorials-src.jar available
from here, more specifically in the org/apache/ojb/tutorials/ directory.

1.2. Persisting New Objects

The starting point for using the OTM directly is to look at making a transient object persistent. This
code will use three things, an OTMKit, an OTMConnection, and a Transaction. The
connection and transaction objects are obtained from the kit.

Initial access to the OTM client API's is through the OTMKit interface. We'll use the SimpleKit,
an implementation of the OTMkit suitable for most circumstances using local transactions.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.makePersistent(product);
tx.commit();

}
catch (LockingException e)
{

Object Transaction Manager Tutorial

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../docu/tutorials/mapping-tutorial.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

}

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD alias. In
this case we use the default, but a named datasource could also be used, as configured in the
metadata repository. A transaction is obtained from the kit for the specific connection. Because
multiple connections can be bound to the same transaction in the OTM, the transaction needs to be
acquired from the kit instead of the connection itself. The SimpleKit uses the commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM -- transactions
must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn.makePersistent(..) call obtains a write lock on product and will commit (insert)
the object when the transaction is committed.

The LockingException will be thrown if the object cannot be write-locked in this transaction.
As it is a transient object to begin with, this will probably only ever happen if it has been
write-locked in another transaction already -- but this depends on the transaction semantics
configured in the repository metadata.

Finally, connections maintain resources so it is important to make sure they are closed when no
longer needed.

1.3. Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is almost
identical to making it persistent -- the difference is just in the
conn.deletePersistent(product) call instead of the
conn.makePersistent(product) call. The same notes about transactions and resources
apply here.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.deletePersistent(product);
tx.commit();

}
catch (LockingException e)
{

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

Object Transaction Manager Tutorial

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

}

1.4. Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of
query at present -- an PersistenceBroker like query-by-criteria style querying system, and an
ODMG OQL query system.

Information on constructing these types of queries is available in the PersistenceBroker and ODMG
tutorials respectively. Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

public Iterator findByCriteria(Query query)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query);
tx.commit();
return results;

}
finally
{

conn.close();
}

}

Where, by default, a read lock is obtained on the returned objects. If a different lock is required it
may be specified specifically:

public Iterator findByCriteriaWithLock(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
tx.commit();
return results;

}
finally
{

conn.close();
}

}

The int lock argument is one of the integer constants on
org.apache.ojb.otm.lock.LockType:

LockType.NO_LOCK
LockType.READ_LOCK
LockType.WRITE_LOCK

OQL queries are also supported, as this somewhat more complex example demonstrates:

public Iterator findByOQL(String query, Object[] bindings) throws Exception

Object Transaction Manager Tutorial

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/pb-tutorial.html
../../docu/tutorials/odmg-tutorial.html

{
OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
OQLQuery oql = conn.newOQLQuery();
oql.create(query);
for (int i = 0; i < bindings.length; ++i)
{

oql.bind(bindings[i]);
}
tx.begin();
Iterator results = conn.getIteratorByOQLQuery(oql);
tx.commit();
return results;

}
catch (QueryInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Invalid OQL expression given", e);

}
catch (QueryParameterCountInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect number of bindings given", e);

}
catch (QueryParameterTypeInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect type of object given as binding", e);

}
finally
{

conn.close();
}

}

This function is, at its core, doing the same thing as the PB style queries, except that it constructs
the OQL query, which supports binding values in a manner similar to JDBC prepared statements.

The OQL style queries also support specifying the lock level the same way:

Iterator results = conn.getIteratorByOQLQuery(query, lock);

1.5. More Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go -- they
are only good for retrieving data. More often data will need to be retrieved, used, and committed
back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an already established
transaction, data will be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applications is to start a transaction and then
let any downstream code be executed within the bounds of the transaction automatically. This is
straightforward to do with the OTM using the SimpleKit! Take a look at a very slightly
modified version of the query by criteria function:

public Iterator moreRealisticQueryByCriteria(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();

Object Transaction Manager Tutorial

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
boolean auto = ! tx.isInProgress();
if (auto) tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
if (auto) tx.commit();
return results;

}
finally
{

conn.close();
}

}

In this case the function looks to see if a transaction is already in progress and sets a boolean flag if
it is, auto. It then handles transactions itself, or allows the already opened transaction to maintain
control.

Because connections can be attached to existing transactions the SimpleKit can attach the new
connection to the already established transaction, allowing this function to work as expected
whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and
commit the changes back. For example:

public void renameWidgetExample()
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Product sample = new Product();
sample.setName("Wonder Widget");
Query query = QueryFactory.newQueryByExample(sample);
Iterator wonderWidgets

= moreRealisticQueryByCriteria(query, LockType.WRITE_LOCK);
while (wonderWidgets.hasNext())
{

Product widget = (Product) wonderWidgets.next();
widget.setName("Improved Wonder Widget");

}
tx.commit();

}
finally
{

conn.close();
}

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder
Widget" and stores them back. It must makes the changes within the context of the transaction it
obtained for those changes to be stored back to the database. If the same iterator were obtained
outside of a transaction, and the changes made, the changes would be made on the objects in
memory, but not in the database. You can think of non-transaction objects as free immutable
transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameWidgetExample(...) function obtains a connection, and the

Object Transaction Manager Tutorial

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

moreRealisticQueryByCriteria(...) function obtains an additional connection to the
same transaction!

2. Notes on the Object Transaction Manager

2.1. Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects. It
typically maps 1:1 to database transactions behind the scenes, but this is not actually required for
the OTM to work correctly.

The OTM supports a wide range of transactional options, delimited in the LockManager
documentation. While the lock manager is writte to the ODMG API, the same locking rules apply
at the OTM layer.

Object Transaction Manager Tutorial

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/lockmanager.html

	1 The OTM API
	1.1 Introduction
	1.2 Persisting New Objects
	1.3 Deleting Persistent Objects
	1.4 Querying for Objects
	1.5 More Sophisticated Transaction Handling

	2 Notes on the Object Transaction Manager
	2.1 Transactions

