
The ODMG API

by Brian McCallister

Table of contents

1 Introduction..2

2 Initializing ODMG...2

3 Persisting New Objects.. 3

4 Querying Persistent Objects...3

5 Updating Persistent Objects... 3

6 Deleting Persistent Objects.. 4

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level API and query language based interface over the PersistenceBroker API.

More detailed information can be found in the ODMG-guide and in the other reference guides.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{
/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...
}

The metadata descriptor for mapping this class is described in the mapping tutorial

When using 1:1, 1:n and m:n references (the example doesn't use it) the ODMG-api need specific
metadata settings on relationship definition, the mandatory settings are listed in the ODMG-Guide -
additional info see auto-xxx settings and repository file settings.

As with the other tutorials, the source code for this tutorial is contained in the
tutorials-src.jar which can be downloaded here. The source files are contained in the
org/apache/ojb/tutorial2/ directory.
You can try it out with the ojb-blank project which can be downloaded from the same place and is
described in the Getting started section.

Further information about the OJB odmg-api implementation can be found in the ODMG guide.

2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. This is accomplished
via the following code:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("default", Database.OPEN_READ_WRITE);

/* ... use the database ... */

db.close();

With method call OJB.getInstance() always a new org.odmg.Implementation instance will
be created and odmg.newDatabase() returns a new Database instance.

Call db.open(...) opens an ODMG Database using the name specified in metadata for the
database -- "default" in this case. Notice the Database is opened in read/write mode. It is possible
to open it in read-only or write-only modes as well.

Once a Implementation instance is created and a Database has been opened it is available

The ODMG API

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://www.odmg.org/
../../docu/guides/pb-guide.html
../../docu/guides/odmg-guide.html
../../docu/guides/summary.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/odmg-guide.html#metadata
../../docu/guides/basic-technique.html#cascading
../../docu/guides/repository.html
http://www.apache.org/dyn/closer.cgi/db/ojb/
../../docu/getting-started.html
../../docu/guides/odmg-guide.html
../../api/org/odmg/Implementation.html
../../docu/guides/odmg-guide.html#lookup-odmg
../../docu/guides/odmg-guide.html#lookup-odmg

for use. Unlike PersistenceBroker instances, ODMG Implementation and Database
instances are threadsafe and can typically be used for the entire lifecycle of an application. There is
no need to call the Database.close() method until the database is truly no longer needed.

The OJB.getInstance() function provides the ODMG Implementation instance required
for using the ODMG API. From here on out it is straight ODMG code that should work against any
compliant ODMG implementation.

3. Persisting New Objects

Persisting an object via the ODMG API is handled by writing it to the peristence store within the
context of a transaction:

public static void storeNewProduct(Product product)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();
// get current used Database instance
Database db = odmg.getDatabase(null);
// make persistent new object
db.makePersistent(product);
tx.commit();

}

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain a write
lock on the Product, and commit the transaction. It is very important to note that all changes
need to be made within transactions in the ODMG API. When the transaction is committed the
changes are made to the database. Until the transaction is committed the database is unaware of any
changes -- they exist solely in the object model.

4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL
is very similar to SQL, and using it is very similar to use JDBC. The ODMG implementation is
used to create a query, the query is specifed, executed, and a list fo results is returned:

public static Product findProductByName(String name) throws Exception
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();

OQLQuery query = odmg.newOQLQuery();
query.create("select products from "

+ Product.class.getName()
+ " where name = $1");

query.bind(name);
List results = (List) query.execute();
Product product = (Product) results.iterator().next();

tx.commit();
return product;

}

5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

The ODMG API

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/pb-guide.html

public static void sellProduct(Product product, int number)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();

tx.lock(product, Transaction.WRITE);
product.setStock(new Integer(product.getStock().intValue() - number));

tx.commit();
}

The sample code obtains a write lock on the object (before the changes are made), binding it to the
transaction, changes the object, and commits the transaction. The newly modified Product now
has a new stock value.

6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Database which contains the
persistent object. This can be obtained from the ODMG Implementation by asking for it. Once
retrieved, just ask the Database to delete the object. Once again, this is all done in the context of
a transaction.

public static void deleteProduct(Product product)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();

tx.begin();
// get current used Database instance
Database db = odmg.getDatabase(null);
db.deletePersistent(product);
tx.commit();

}

It is important to note that the Database.deletePerstient() call does not delete the object
itself, just the persistent representation of it. The transient object still exists and can be used
however desired -- it is simply no longer persistent.

The ODMG API

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Initializing ODMG
	3 Persisting New Objects
	4 Querying Persistent Objects
	5 Updating Persistent Objects
	6 Deleting Persistent Objects

