
Mapping Tutorial

by Brian McCallister

Table of contents

1 What is the Object-Relational Mapping Metadata?...2

1.1 The Product Class..2

1.2 The Database... 2

1.3 The Metadata... 2

1.4 Using the XDoclet module.. 3

2 Advanced Topics..4

2.1 Relations.. 4

2.2 Inheritence... 4

2.3 Anonymous Keys.. 5

2.4 Large Projects..5

2.5 Custom JDBC Mapping.. 5

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. What is the Object-Relational Mapping Metadata?

The O/R mapping metadata is the specific configuration information that specifies how to map
classes to relational tables. In OJB this is primarily accomplished through an xml document, the
repository.xml file, which contains all of the initial mapping information.

1.1. The Product Class

This tutorial looks at mapping a simple class with no relations:

package org.apache.ojb.tutorials;

public class Product
{

/** product name */
private String name;

/** price per item */
private Double price;

/** stock of currently available items */
private int stock;

...
}

This class has three fields, price, stock, and name, that need to be mapped to the database.
Additionally, we will introduce one artificial field used by the database that has no real meaning to
the class, an artificial key primary id:

/** Artificial primary-key */
private Integer id;

Including the primary-key attribute in the class definition is mandatory, but under certain
conditions anonymous keys can also be used to keep this database artifact hidden in the database.
However, as access to an artifical unique identifier for a particular object instance can be useful,
particularly in web-based applications, this tutorial will expose it

1.2. The Database

OJB is very flexible in terms of how it can map classes to database tables, however the simplest
technique for mapping a single class to a relational database is to map the class to a single table,
and each attribute on the class to a single column. Each row will then represent a unique instance of
that class.

The DDL for such a table, for the Product class might look like:

CREATE TABLE Product
(

id INTEGER PRIMARY KEY,
name VARCHAR(100),
price DOUBLE,
stock INTEGER

)

The individual field names in the database and class definition match here, but this is no
requirement. They may vary independently of each other as the metadata will specify what maps to
what.

1.3. The Metadata

Mapping Tutorial

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html
../../docu/howtos/howto-use-anonymous-keys.html

The repository.xml document is split into several physical documents. The
repository_user.xml xml file is used to contain user-defined mappings. OJB uses the other
ones for managing other metadata, such as database information.

In general each class will be defined within a class-descriptor element with
field-descriptoy child elements for each field. In addition the mapping of references and
collections is described in the basic technique section. This tutorial sticks to mapping a single,
simplistic, class.

The complete mapping for the Product class is as follows:

<class-descriptor
class="org.apache.ojb.tutorials.Product"
table="Product"

>
<field-descriptor

name="id"
column="id"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="name"

/>
<field-descriptor

name="price"
column="price"

/>
<field-descriptor

name="stock"
column="stock"

/>
</class-descriptor>

Examine the class-descriptor element. It has two attributes:

• class - This attribute is used to specify the fully-qualified Java class name for this mapping.
• table - This attribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified in the
repository.xml documentation.

Examine now the first field-descriptor element. This is used to describe the id field of the
Product class. Two required attributes are specified:

• name - This specifies the name of the instance variable in the Java class.
• column - This specifies the column in the table specified for this class used to store the value.

In addition to those required attributes, notice that the first element specifies two optional
attributes:

• primary-key - This attribute specifies that this field is the primary key for this class.
• autoincrement - The autoincrement attribute specifies that the value will be automatically

assigned by OJB sequence manager. This might use a database supplied sequence, or, by
default, an OJB generated value.

1.4. Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the
corresponding table schema easier. An XDoclet module basically processes custom JavaDoc tags in
the source code, and generates files from them. In the case of OJB, two types of files can be
generated: the repository descriptor (repository_user.xml) and a Torque schema which can

Mapping Tutorial

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html
../../docu/guides/repository.html#class-descriptor
../../docu/guides/sequencemanager.html

be used to create the tables in the database. This provides one important benefit: the descriptor and
the database schema are much more likely in sync with the code thus avoiding errors that are
usually hard to find. Furthermore, the XDoclet module contains some checks that find common
mapping errors.

In the above example, the source code for Product class with JavaDoc tags would look like:

package org.apache.ojb.tutorials;

/**
* @ojb.class
*/
public class Product
{

/**
* Artificial primary-key
*
* @ojb.field primarykey="true"
* autoincrement="ojb"
*/
private Integer id;

/**
* product name
*
* @ojb.field length="100"
*/
private String name;

/**
* price per item
*
* @ojb.field
*/
private Double price;

/**
* stock of currently available items
*
* @ojb.field
*/
private int stock;

}

As you can see, much of the stuff that is present in the descriptor (and the DDL) is generated
automatically by the XDoclet module, e.g. the table/column names and the jdbc-types. Of course,
you can also specify them in the JavaDoc tags, e.g. if they differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see the
OJB XDoclet Module documentation.

2. Advanced Topics

2.1. Relations

As most object models have relationships between objects, mapping specific types of relationships
(1:1, 1:Many, Many:Many) is important in mapping objects into a relational database. The basic
technique tutorial discusses this in great detail.

It is important to note that this metadata mapping can be modified at runtime through the
org.apache.ojb.metadata.MetadataManager class.

2.2. Inheritence

Mapping Tutorial

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/xdoclet-module.html
../../docu/guides/basic-technique.html
../../docu/guides/basic-technique.html
../../docu/guides/metadata.html
../../api/org/apache/ojb/broker/metadata/MetadataManager.html

OJB can map inheritence hierarchies using a variety of techniques discussed in the Extents and
Polymorphism section of the Advanced O/R Documentation

2.3. Anonymous Keys

This tutorial uses explicit keys mapped into the Java class. It is also possible to keep artificial keys
completely hidden within the database. The Anonymous Keys HOWTO explains how this is
accomplished.

2.4. Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many projects
can have hundreds, or even thousands, of distinct classes which must be mapped. In these
circumstances managing the class-database mapping by hand is not viable. The How To Build
Mappings HOWTO explores different tools which can be used for managing large-scale mapping.

2.5. Custom JDBC Mapping

OJB maps Java types to JDBC types according to the JDBC Types table. You can, however, define
custom JDBC -> Java type mappings via custom field conversions.

Mapping Tutorial

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#polymorhism
../../docu/guides/advanced-technique.html#polymorhism
../../docu/guides/advanced-technique.html
../../docu/howtos/howto-use-anonymous-keys.html
../../docu/howtos/howto-build-mappings.html
../../docu/howtos/howto-build-mappings.html
../../docu/guides/jdbc-types.html
../../docu/guides/jdbc-types.html#field-conversion

	1 What is the Object-Relational Mapping Metadata?
	1.1 The Product Class
	1.2 The Database
	1.3 The Metadata
	1.4 Using the XDoclet module

	2 Advanced Topics
	2.1 Relations
	2.2 Inheritence
	2.3 Anonymous Keys
	2.4 Large Projects
	2.5 Custom JDBC Mapping

