
HOWTO - Use DB Sequences

by Brian McCallister

Table of contents

1 Introduction..2

2 The Sample Database...2

3 Using OJB.. 2

3.1 The Database Repository Descriptor...2

3.2 Defining a Thingie Class... 3

3.3 Using Thingie.. 4

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

It is easy to use OJB with with database generated sequences. Typically a table using database
generated sequences will autogenerate a unique id for a field as the default value for that field. This
can be particularly useful if multiple applications access the same database. Not every application
will be using OJB and find it convenient to pull unique values from a high/low table. Using a
database managed sequence can help to enforce unique id's across applications all adding to the
same database. All of that said, care needs to be taken as using database generated sequences
imposes some portability problems.

OJB includes a sequence manager implementation that is aware of database sequences and how to
use them. It is known to work against Oracle, SAP DB, and PostgreSQL. MySQL has its own
sequence manager implementation because it is special. This tutorial will build against
PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managers is available in the Sequence Manager
documentation.

2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will
create a simple table that pulls its primary key from a sequence named 'UniqueIdentifier'.

CREATE TABLE thingie
(

name VARCHAR(50),
id INTEGER DEFAULT NEXTVAL('UniqueIdentifier')

)

We must also define the sequence from which it is drawing values:

CREATE SEQUENCE UniqueIdentifier;

So that we have the following table:

Table "public.thingie"
Column | Type | Modifiers
--------+-----------------------+---
name | character varying(50) |
id | integer | default nextval('UniqueIdentifier'::text)

If we manually insert some entries into this table they will have their id field set automagically.

INSERT INTO thingie (name) VALUES ('Fred');
INSERT INTO thingie (name) VALUES ('Wilma');
SELECT name, id FROM thingie;

name | id
-------+----
Fred | 0
Wilma | 1
(2 rows)

3. Using OJB

3.1. The Database Repository Descriptor

The next step is to configure OJB to access our thingie table. We need to configure the corrct
sequence manager in the repository-database.xml.

HOWTO - Use DB Sequences

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/sequencemanager.html
../../docu/guides/sequencemanager.html

The default repository-database.xml uses the High/Low Sequence manager. We will
delete or comment out that entry, and replace it with the
org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl
manager. This manager will pull the next value from a named sequence and use it. The entry for
our sequence manager in the repository is:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl"

/>

This needs to be declared within the JDBC Connection descriptor, so an entire
repository-database.xml might look like:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="PostgreSQL"
jdbc-level="2.0"
driver="org.postgresql.Driver"
protocol="jdbc"
subprotocol="postgresql"
dbalias="test"
username="tester"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"
>

<connection-pool
maxActive="21"
validationQuery=""/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl" />
</jdbc-connection-descriptor>

3.2. Defining a Thingie Class

For the sake of simplicity we will make a very basic Java Thingie:

public class Thingie
{

/** thingie(name) */
private String name;

/** thingie(id) */
private int id;

public String getName() { return this.name; }
public void setName(String name) { this.name = name; }

public int getId() { return this.id; }
}

We also need a class descriptor in repository-user.xml that appears as follows:

<class-descriptor
class="Thingie"
table="THINGIE"
>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"

HOWTO - Use DB Sequences

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

primarykey="true"
autoincrement="true"
sequence-name="UniqueIdentifier"
/>

<field-descriptor
name="name"
column="NAME"
jdbc-type="VARCHAR"
/>

</class-descriptor>

Look over the id field descriptor carefully. The autoincrement and sequence-name
attributes are important for getting our desired behavior. These tell OJB to use the sequence
manager we defined to auto-increment the the value in id, and they also tell the sequence manager
which database sequence to use - in this case UniqueIdentifier

We could allow OJB to create an extent-aware sequence and use it, however as we are working
against a table that defaults to a specific named sequence, we want to make sure to pull values from
that same sequence. Information on allowing OJB to create its own sequences is available in the
Sequence Manager documentation.

3.3. Using Thingie

Just to demonstrate that this all works, here is a simple application that uses our Thingie.

import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;

public class ThingieDriver
{

public static void main(String [] args)
{

PersistenceBroker broker =
PersistenceBrokerFactory.defaultPersistenceBroker();

Thingie thing = new Thingie();
Thingie otherThing = new Thingie();

thing.setName("Mabob");
otherThing.setName("Majig");

broker.beginTransaction();
broker.store(thing);
broker.store(otherThing);
broker.commitTransaction();

System.out.println(thing.getName() + " : " + thing.getId());
System.out.println(otherThing.getName() + " : " + otherThing.getId());
broker.close();

}
}

When it is run, it will create two Thingie instances, store them in the database, and report on their
assigned id values.

java -cp [...] ThingieDriver

Mabob : 2
Majig : 3

HOWTO - Use DB Sequences

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/sequencemanager.html

	1 Introduction
	2 The Sample Database
	3 Using OJB
	3.1 The Database Repository Descriptor
	3.2 Defining a Thingie Class
	3.3 Using Thingie

