
Sequence Manager

by Armin Waibel, Thomas Mahler, Ryan Vanderwerf et al., Andrew Clute

Table of contents

1 The OJB Sequence Manager..2

1.1 Automatical assignment of unique values...2

1.2 Force computation of unique values..2

1.3 How to change the sequence manager?...2

1.4 SequenceManager implementations..3

1.4.1 High/Low sequence manager..3

1.4.2 In-Memory sequence manager..4

1.4.3 Database sequences based implementation...5

1.4.4 Database sequences based high/low implementation... 7

1.4.5 Database Identity-column based sequence manager...8

1.4.6 Stored Procedures based (Oracle-style) sequencing... 8

1.4.7 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing.................................. 10

1.5 The sequence-name attribute...10

1.6 The autoNaming property..11

1.7 How to write my own sequence manager?..11

1.8 Questions... 12

1.8.1 When using sequence-name attribute in field-descriptor?..12

1.8.2 What to hell does extent aware mean? ...12

1.8.3 How could I prevent auto-build of the sequence-name?...12

1.8.4 Sequence manager handling using multiple databases... 13

1.8.5 One sequence manager with multiple databases?... 13

1.8.6 Can I get direct access to the sequence manager?.. 13

1.8.7 Any known pitfalls?.. 13

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. The OJB Sequence Manager

All sequence manager implementations shipped with OJB you can find under the
org.apache.ojb.broker.util.sequence package using the following naming
convention SequenceManagerXXXImpl.

1.1. Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique values for
primary key attributes. You just have to enable the autoincrement attribute in the respective
field-descriptor of the XML repository file as follows:

<class-descriptor
class="my.Article"
table="ARTICLE"

>
<field-descriptor
name="articleId"
column="ARTICLE_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>
....

</class-descriptor>

This definitions contains the following information:
The attribute articleId is mapped on the table's column ARTICLE_ID. The JDBC Type of this
column is INTEGER. This is a primary key column and OJB shall automatically assign unique
values to this attribute.

This mechanism works for all whole-numbered column types like BIGINT, INTEGER,
SMALLINT,... and for CHAR, VARCHAR columns. This mechanism helps you to keep your
business logic free from code that computes unique ID's for primary key attributes.

1.2. Force computation of unique values

By default OJB triggers the computation of unique ids during calls to PersistenceBroker.store(...).
Sometimes it will be necessary to have the ids computed in advance, before a new persistent object
was written to database. This can be done by simply obtaining the Identity of the respective object
as follows:

Identity oid = broker.serviceIdentity().buildIdentity(Object
newPersistentObject);

This creates an Identity object for the new persistent object and set all primary key values of the
new persistent object - But it only works if autoincrement is enabled for the primary key
fields.

Warning:
Force computation of unique values is not allowed when using database based Identity columns for primary key generation (e.g via
Identity column supporting sequence manager), because the real PK value is at the earliest available after database insert operation. If
you nevertheless force PK computing, OJB will use an temporary dummy PK value in the Identity object and this may lead to unexpeted
behavior.

Info about lookup persistent objects by primary key fields see here.

1.3. How to change the sequence manager?

Sequence Manager

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/repository.html#field-descriptor
../../api/org/apache/ojb/broker/Identity.html
../../docu/tutorials/pb-tutorial.html#find-by-pk

To enable a specific SequenceManager implementation declare an sequence-manager attribute
within the jdbc-connection-descriptor element in the repository file.
If no sequence-manager was specified in the jdbc-connection-descriptor, OJB use a default
sequence manager implementation (default was SequenceManagerHighLowImpl).

Further information you could find in the repository.dtd section sequence-manager element.

Example jdbc-connection-descriptor using a sequence-manager tag:

<jdbc-connection-descriptor
jcd-alias="farAway"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"
subprotocol="hsqldb"
dbalias="../OJB_FarAway"
username="sa"
password=""
batch-mode="false"

>

<connection-pool
maxActive="5"
whenExhaustedAction="0"
validationQuery="select count(*) from OJB_HL_SEQ"

/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="seq.start" attribute-value="10000"/>
<attribute attribute-name="grabSize" attribute-value="20"/>

</sequence-manager>
</jdbc-connection-descriptor>

The mandatory className attribute needs the full-qualified class name of the desired
sequence-manager implementation. If a implementation needs configuration properties you pass
them using custom attribute tags with attribute-name represents the property name and
attribute-value the property value. Each sequence manager implementation shows all properties on
the according javadoc page.

1.4. SequenceManager implementations

Source code of all SequenceManager implementations can be found in
org.apache.ojb.broker.util.sequence package.
If you still think something is missing, you can just write your own sequence manager
implementation.

1.4.1. High/Low sequence manager

The sequence manager implementation class
ojb.broker.util.sequence.SequenceManagerHighLowImpl and is able to generate
ID's unique to a given object and all extent objects declarated in the objects class descriptor.
If you ask for an ID using an interface with several implementor classes, or a baseclass with several
subclasses the returned ID have to be unique accross all tables representing objects of the interface
or base class (more see here).
It's also possible to use this implementation in a global mode, generate global unique id's.

This implementation needs an internal database table and object mapping declaration to persist
the used sequences. The table structure can be found in in platform guide the object metadata
mapping can be found in OJB internal mapping file (called repository_internal.xml).

Sequence Manager

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html
../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html
../../repository.dtd.txt
../../docu/guides/repository.html#custom-attribute
../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html
../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html
../../docu/guides/advanced-technique.html#extents
../../docu/guides/platforms.html#internal-tables
../../repository_internal.xml.txt

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager className=
"org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="seq.start" attribute-value="5000"/>
<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>
<attribute attribute-name="globalSequenceId" attribute-value="false"/>
<!-- deprecated settings -->
<attribute attribute-name="sequenceStart" attribute-value="5000"/>

</sequence-manager>

The property seq.start (or deprecated sequenceStart) define the start value of the id
generation (default was '1'). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

With property grabSize you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of ID's (default grabSize is 20).
If OJB was shutdown/redeployed all unused assigned ID's are lost.

If property globalSequenceId was set true you will get global unique ID's over all persistent
objects. Default was false.
NOTE: If the database is already populated or the global sequence name in OJB_HL_SEQ database
table was removed (by accident), the seq.start value must be greater than the biggest PK value in
database.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names here.
The attribute autoNaming can be used to enable auto-generation of sequence-names, default
value is true.
More info about attribute autoNaming here.

Limitations:
- do not use in managed environments when connections were enlisted in running transactions,
e.g. when using DataSources of an application server
- if set connection-pool attribute 'whenExhaustedAction' to 'block' (wait for connection if
connection-pool is exhausted), under heavy load this sequence manager implementation can block
application.
- superfluously to mention, do not use if other non-OJB applications insert objects too

1.4.2. In-Memory sequence manager

Another sequence manager implementation is a In-Memory version called
ojb.broker.util.sequence.SequenceManagerInMemoryImpl.
Only the first time an UID was requested for a object, the manager query the database for the max
value of the target column - all following request were performed in memory. This implementation
ditto generate unique ID's across all extents, using the same mechanism as the High/Low sequence
manager implementation.

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerInMemoryImpl">

<attribute attribute-name="seq.start" attribute-value="0"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

Sequence Manager

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/advanced-technique.html#extents
../../docu/guides/repository.html#jdbc-connection-descriptor

</sequence-manager>

The property seq.start (or deprecated sequenceStart) define the start value of the id
generation (default was '1'). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names.
The attribute autoNaming can be used to enable auto-generation of sequence-names, default
value is true.
More info about autoNaming.

The specified sequences will only be used in memory. First time a sequence was used OJB does a
select max-query to find the latest/greatest value for the autoincrement field and use this as
starting point for further in-memory key generation.

This is the fastest standard sequence manager implementation and should work with all databases
without any specific preparation, but has some Limitations.

Limitations:
- do not use in clustered environments
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too
- only declare "number" fields as autoincrement fields (because e.g. "select max ... does not work
with CHAR columns in the used manner)

1.4.3. Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL, ...) you can
use the SequenceManagerNextValImpl implementation to force generation of the sequence
keys by your database.

Database based sequences (sequence objects, sequence generators) are special (single-row) tables
in the database created with an specific statement, e.g. CREATE SEQUENCE sequenceName.
This implementation use database based sequences to assign ID's in autoincrement fields.
The sequences can be managed by hand, by a database tool or by OJB. If the autoNaming attribute
is enabled OJB creates sequences if needed. Also it's possible to declare sequence names in the
field-descriptor

<class-descriptor
class="org.greatest.software.Person"
table="GS_PERSON"

>
<field-descriptor

name="seqId"
column="SEQ_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="PERSON_SEQUENCE"

/>

....
</class-descriptor>

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="seq.start" attribute-value="200000"/>

Sequence Manager

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#field-descriptor
../../docu/guides/repository.html#jdbc-connection-descriptor

<attribute attribute-name="autoNaming" attribute-value="true"/>

<!-- optional attributes supported by Oracle, PostgreSQL, MaxDB/SapDB, DB2
-->

<!-- attribute attribute-name="seq.incrementBy" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.maxValue"

attribute-value="999999999999999999999999999"/ -->
<!-- attribute attribute-name="seq.minValue" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.cycle" attribute-value="false"/ -->
<!-- attribute attribute-name="seq.cache" attribute-value="20"/ -->
<!-- attribute attribute-name="seq.order" attribute-value="false"/ -->

</sequence-manager>

Attribute autoNaming, default setting is true. If set true OJB will try to auto-generate a sequence
name if none was found in field-descriptor's sequence-name attribute and create a database
sequence if needed - more details see autoNaming section.
The auto-generated name will be set as sequence-name in the field-descriptor.
If set false OJB throws an exception if none sequence-name was found in field-descriptor, also OJB
does NOT try to create a database sequence when for a given sequence name (specified in
field-descriptor) no database sequence can be found.

The table below show additional sequence properties. To specifiy the properties use
custom-attributes within the sequence-manager element.
The database sequence specific properties are generally speaking, see database user guide for
detailed description.

Name Value Description Supported By

seq.as database specific, e.g.
INTEGER

Database sequence
specific property.
Specifies the datatype
of the sequence, the
allowed datatypes
depend on the used
database
implementation.

DB2

seq.start 1 ... max INTEGER Database sequence
specific property.
Specifies the first
sequence number to
be generated. Allowed:
1 or greater.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.incrementBy >=1 Database sequence
specific property.
Specifies the interval
between sequence
numbers. This value
can be any positive or
negative integer, but it
cannot be 0.
Decrement sequences
are currently not
supported

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.maxValue 1 ... max INTEGER Database sequence
specific property.
Set max value for
sequence numbers.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.minValue min INTEGER Database sequence
specific property.
Set min value for

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

Sequence Manager

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#field-descriptor
../../docu/guides/repository.html#custom-attribute
../../docu/guides/repository.html#sequence-manager

sequence numbers.
Negative sequences
are not tested as yet.

seq.cycle true/false Database sequence
specific property.
If true, specifies that
the sequence
continues to generate
values after reaching
either its maximum or
minimum value.
If false, specifies that
the sequence cannot
generate more values
after reaching its
maximum or minimum
value.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.cache >= 2 Database sequence
specific property.
Specifies how many
values of the sequence
Oracle preallocates
and keeps in memory
for faster access.
Allowed values: 2 or
greater. If set 0, an
explicite nocache
expression will be set.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.order true/false Database sequence
specific property.
If set true, guarantees
that sequence
numbers are
generated in order of
request.
If false, a no order
expression will be set.

Oracle,
MaxDB/SapDB, DB2

Limitations:
- none known

1.4.4. Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low algorithm to
avoid database access.

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerSeqHiLoImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

</sequence-manager>

With property grabSize you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of ID's using the next database sequence (default grabSize is 20).
If OJB was shutdown/redeployed all unused assigned ID's are lost.

Note:
Keep in mind that the database sequence value does not correspond with the used value in the autoincrement-field (table column value).

Sequence Manager

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

Attribute autoNaming is the same as for SequenceManagerNextValImpl.

This sequence manager implementation supports user defined sequence-names to manage the
sequences (see more) or if not set in field-descriptor it is done automatic when autoNaming
is enabled.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too

1.4.5. Database Identity-column based sequence manager

This sequence manager implementation supports database Identity columns (supported by MySQL,
MsSQL, HSQL, ...). When using identity columns we have to do a trick to make the sequence
manager work.
OJB identify each persistence capable object by a unique ojb-Identity object. These ojb-Identity
objects were created using the sequence manager instance to get UID's. Often these ojb-Identity
objects were created before the persistence capable object was written to database.
When using Identity columns it is not possible to retrieve the next valid UID before the object was
written to database. As recently as the real object was written to database, you can ask the DB for
the last generated UID. Thus in SequenceManagerNativeImpl we have to do a trick and use a
'temporary' UID till the object was written to database.
So for best compatibility try to avoid using Identity columns in your database model. If this is not
possible, use this sequence manager implementation to work with database Identity columns.

To enable this sequence manager implementation set in your
jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNativeImpl">

</sequence-manager>

To declare the identity column in the persistent class mapping class-descriptor, add the following
attributes to the primary key/identity key field-descriptor:
primarykey="true", autoincrement="true" and access="readonly"
The first and second attributes are the same as all sequence manager implementations use to
support autoincrement PK fields, the third one is mandatory for database Identity columns only.

<field-descriptor
name="identifier"
column="NATIVE_ID"
jdbc-type="BIGINT"
primarykey="true"
autoincrement="true"
access="readonly"/>

Limitations:
- The Identity columns have to start with value greater than '0' and should never be negative.
- Use of Identity columns is not extent aware (This may change in further versions). More info
here.

1.4.6. Stored Procedures based (Oracle-style) sequencing

(By Ryan Vanderwerf et al.)
"This solution will give those seeking an oracle-style sequence generator a final answer (Identity
columns really suck). If you are using multiple application servers in your environment, and your

Sequence Manager

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/Identity.html
../../docu/guides/repository.html#class-descriptor
../../docu/guides/repository.html#field-descriptor

database does not support read locking like Microsoft SQL Server, this is the only safe way to
guarantee unique keys (HighLowSequenceManager WILL give out duplicate keys, and corrupt
your data)".
The SequenceManagerStoredProcedureImpl implementation enabled database sequence
key generation in a Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerStoredProcedureImpl">

<attribute attribute-name="autoNaming" attribute-value="true"/>
</sequence-manager>

For attribute autoNaming see.

This sequence manager implementation supports user defined sequence-names to manage the
sequences or if not set in field-descriptor it is done automatic when autoNaming is
enabled.

• Add a new table OJB_NEXTVAL_SEQ to your database.
• You will also need a stored procedure called ojb_nextval_proc that will take care of

giving you a guaranteed unique sequence number.

Below you can find the stored procedures you need to use sequencing for MSSQL server and
Informix.
You have to adapt the scripts for other databases (We are interested in scripts for other databases).

Here you can find the currently supported databases and the statements to create the sql functions:

Database Table Statement Stored Procedure

MSSQL
DROP TABLE
OJB_NEXTVAL_SEQ;
CREATE TABLE
OJB_NEXTVAL_SEQ
(

SEQ_NAME
VARCHAR(150) NOT NULL,

MAX_KEY
INTEGER,

CONSTRAINT
SYS_PK_OJB_NEXTVAL

PRIMARY
KEY(SEQ_NAME)
);

CREATE PROCEDURE
OJB_NEXTVAL_PROC
@SEQ_NAME varchar(150)
AS
declare @MAX_KEY BIGINT
-- return an error if
-- sequence does not
exist
-- so we will know if
someone
-- truncates the table
set @MAX_KEY = 0

UPDATE OJB_NEXTVAL_SEQ
SET @MAX_KEY =
MAX_KEY = MAX_KEY + 1
WHERE SEQ_NAME =
@SEQ_NAME

if @MAX_KEY = 0
select 1/0
else
select @MAX_KEY
RETURN @MAX_KEY

Informix
drop table
ojb_nextval_seq;
create table
ojb_nextval_seq
(

seq_name
varchar(250,0) not

create function
ojb_nextval_proc
(out arg1 int8, arg2
varchar(250,250))
returns int8;
let arg1 = 0;
update ojb_nextval_seq

Sequence Manager

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor

null,
max_key int8,
primary

key(seq_name)
);

set max_key = max_key +
1
where seq_name = arg2;
select max_key into
arg1
from ojb_nextval_seq
where seq_name = arg2;
return arg1;
end function;

Oracle
TODO TODO

Limitations:
- currently none known

1.4.7. Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced, and
allows for your rows Primary Keys to be GUID's that are guaranteed to be unique in time and
space.

However, this type is different than the Identity field type, whereas there is no way to
programmatically retrieve the inserted value. Most implementations when using the u.i. field type
set a default value of "newid()". The SequenceManagerMSSQLGuidImpl class manages this
process for you as if it was any normal generated sequence/identity field.

Assuming that your PK on your table is set to 'uniqueidentifier', your field-description would be the
same as using any other SequenceManager:

<field-descriptor
name="guid"
column="document_file_guid"
jdbc-type="VARCHAR"
primarykey="true"
autoincrement="true"

/>

Note that the jdbc-type is a VARCHAR, and thus the attribute (in this case 'guid') on your class
should be a String (SQL Server does the conversion from the String representation to the binary
representation when retrieved/set).

You also need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerMSSQLGuidImpl"
/>

Limitations:
-This will only work with SQL Server 7.0 and higher as the uniqueidentifier type was not
introduced until then.
This works well in situations where other applications might be updated the database as well,
because it guarantees (well, as much as Microsoft can guarantee) that there will be no collisions
between the Guids generated.

1.5. The sequence-name attribute

Several SequenceManager implementations using sequences (synonyms: sequence objects,
sequence generators) to manage the ID generation. Sequences are entities which generate unique
ID's using e.g. database table per sequence, database row per sequence or an in-memory
java-object.

Sequence Manager

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html

To address the sequences, each sequence has an unique sequence-name.

In OJB the sequence-name of an autoincrement field is declared in a sequence-name attribute
within the field-descriptor.

<class-descriptor
class="org.greatest.software.Person"
table="GS_PERSON"
>
<field-descriptor

name="id"
column="ID_PERSON"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="PERSON_SEQUENCE"

/>

....
</class-descriptor>

The sequence-name attribute in the field-descriptor is only needed if the used sequence manager
supports sequences, the field should be autoincremented and the auto-assign of a sequence-name is
not desired.

Note:
Each sequence-name has be extent-aware.

If you don't specify a sequence name in the field-descriptor it is possible to auto-assign a
sequence-name by OJB if autoNaming is supported by the used sequence manager implementation.

1.6. The autoNaming property

All shipped SequenceManager implementations using sequences for ID generation support a
property called autoNaming which can be declared as a custom attribute within the
sequence-manager element:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="autoNaming" attribute-value="true"/>
</sequence-manager>

If set true OJB try to build a sequence name by it's own (a simple algorithm was used to
auto-generate the sequence name - more details how it works in pitfalls section) and set this name
as sequence-name in the field-descriptor of the autoincrement field if no sequence name is
specified.
If set false the sequence manager throw an exception if a sequence name can't be found or was not
declared in the field-descriptor of the autoincrement field. In this case OJB expects a valid
sequence-name in the field-descriptor.
If the attribute autoNaming is set false the sequence manager never try to auto-generate a
sequence-name (more detailed info here). If set true and a sequence-name is set in the
field-descriptor, the SequenceManager will use this one and does not override the existing one.

The default setting is true.

1.7. How to write my own sequence manager?

Very easy to do, just write a implementation class of the interface
org.apache.ojb.broker.util.sequence.SequenceManager. OJB use a factory (
SequenceManagerFactory) to obtain sequence manager instances.

Sequence Manager

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#field-descriptor
../../api/org/apache/ojb/broker/util/sequence/SequenceManager.html
../../docu/guides/repository.html#custom-attribute
../../docu/guides/repository.html#field-descriptor

This Factory can be configured to generate instances of your specific implementation by adding a
sequence-manager tag in the jdbc-connection-descriptor.

<sequence-manager className="my.SequenceManagerMYImpl">
</sequence-manager>

That's it!

If your sequence manager implementation was derived from
org.apache.ojb.broker.util.sequence.AbstractSequenceManager it's easy to
pass configuration properties to your implementation using custom attributes.

<sequence-manager className="my.SequenceManagerMYImpl">
<attribute attribute-name="myProperty" attribute-value="test"/>

</sequence-manager>

With

public String getConfigurationProperty(String key, String defaultValue)

method get the properties in your implementation class.

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

1.8. Questions

1.8.1. When using sequence-name attribute in field-descriptor?

Most SequenceManager implementations based on sequence names. If you want retain control
of sequencing use your own sequence-name attribute in the field-descriptor. In that
case you are reponsible to use the same name across extents, we call it extent-aware (see more info
about extents and polymorphism). Per default the sequence manager build its own extent aware
sequence name with an simple algorithm (see
org.apache.ojb.broker.util.sequence.SequenceManagerHelper#buildSequenceName)
if necessary.
In most cases this should be sufficient. If you have a very complex data model and you will do
many metadata changes in the repository file in future, then it could be better to explicit use
sequence-names in the field-descriptor. See more avoid pitfals.

1.8.2. What to hell does extent aware mean?

Say we have an abstract base class Animal and two classes Dog and Cat which extend Animal.
For each non-abstract class we create a separate database table and declare the inheritance in OJB.
Now it is possible to do a query like give me all animals and OJB will return all Cat and Dog
objects. To make this working in OJB the ID's of Dog and Cat objects must be unique across the
tables of both classes or else you may not get a vaild query result (e.g. you can't query for the
Animal with id=23, because in both tables such an id can exist).
The reason for this behaviour is the org.apache.ojb.broker.Identity class
implementation (more details see javadoc/source of this class).

1.8.3. How could I prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID
generation, support by default auto-build (autoNaming) of the sequence name if none was found in
the field-descriptor.

Sequence Manager

12
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#custom-attribute
../../docu/guides/advanced-technique.html#polymorhism
../../docu/guides/advanced-technique.html#polymorhism
../../api/org/apache/ojb/broker/Identity.html

To prevent this, all relevant SM implementations support a autoNaming property - set via
attribute element. If set false OJB doesn't try to build sequence names automatic.

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="autoNaming" attribute-value="false"/>
</sequence-manager>

Keep in mind that user defined sequence names have to be extent-aware.

1.8.4. Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each
jdbc-connection-descriptor. If you don't specify a sequence manager OJB use a default
one (currently ojb.broker.util.sequence.SequenceManagerHighLowImpl).

1.8.5. One sequence manager with multiple databases?

OJB was intended to use a sequence manager per database. But it shouldn't be complicated to
realize a global sequence manager solution by writing your own SequenceManager
implementation.

1.8.6. Can I get direct access to the sequence manager?

That's no problem:

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myPBKey);
SequenceManager sm = broker.serviceSequenceManager();
...
broker.close();

If you use autoincrement=true in your field-descriptor, there is no reason to obtain
UID directly from the sequence manager or to handle UID in your object model.
Except when using user-defined sequence manager implementations, in this case it could be
needed.

Note:
Don't use SequenceManagerFactory#getSequenceManager(PersistenceBroker broker), this method returns a new sequence manager
instance for the given broker instance and not the current used SM instance of the given PersistenceBroker instance]

1.8.7. Any known pitfalls?

• When using sequences based sequence manager implementations it's possible to enable
auto-generation of sequence names - see autoNaming section. To build the sequence name an
simple algorithm was used.
The algorithm try to get the top-level class of the field's (the autoincrement field-descriptor)
enclosing class, if no top-level class was found, the table name of the field's enclosing class was
used. If a top-level class was found, the first found extent class table name was used as
sequence name. The algorithm can be found in
org.apache.ojb.broker.util.sequence.SequenceManagerHelper#buildSequenceName.
When using base classes/interfaces with extent classes (declared in the class-descriptor) based
on different database tables and the extent-class entries in repository often change (e.g. add new
top-level class, change top-level class), the algorithm could be corrupted after restart of OJB,
because the first found extent class's table name could be change, hence the used
sequence-name. Now the ID generation start over and could clash with existing ID's.
To avoid this, remove the implementation specific internal sequence name entry (e.g. from table

Sequence Manager

13
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor
../../docu/guides/repository.html#class-descriptor

OJB_HL_SEQ when using the Hi/Lo implementation, or remove the database sequence entry
when using the 'Nextval' implementation) or use custom sequence name attributes in the field
descriptor.

Sequence Manager

14
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

	1 The OJB Sequence Manager
	1.1 Automatical assignment of unique values
	1.2 Force computation of unique values
	1.3 How to change the sequence manager?
	1.4 SequenceManager implementations
	1.4.1 High/Low sequence manager
	1.4.2 In-Memory sequence manager
	1.4.3 Database sequences based implementation
	1.4.4 Database sequences based high/low implementation
	1.4.5 Database Identity-column based sequence manager
	1.4.6 Stored Procedures based (Oracle-style) sequencing
	1.4.7 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

	1.5 The sequence-name attribute
	1.6 The autoNaming property
	1.7 How to write my own sequence manager?
	1.8 Questions
	1.8.1 When using sequence-name attribute in field-descriptor?
	1.8.2 What to hell does extent aware mean?
	1.8.3 How could I prevent auto-build of the sequence-name?
	1.8.4 Sequence manager handling using multiple databases
	1.8.5 One sequence manager with multiple databases?
	1.8.6 Can I get direct access to the sequence manager?
	1.8.7 Any known pitfalls?

