
ODMG-api Guide

by Armin Waibel

Table of contents

1 Introduction..2

2 Specific Metadata Settings...2

3 How to access ODMG-api... 3

4 Configuration Properties.. 3

5 OJB Extensions of ODMG.. 5

5.1 The ImplementationExt Interface..5

5.2 The TransactionExt Interface.. 5

5.3 The EnhancedOQLQuery Interface...6

5.4 Access the PB-api within ODMG... 6

6 Notes on Using the ODMG API.. 6

6.1 Transactions...6

6.2 Locks... 6

6.3 Persisting Non-Transactional Objects... 7

7 ODMG Named Objects..7

7.1 Examples... 8

8 ODMG's DCollections... 9

9 Foreign Keys Constraints and ODMG-api...10

10 Questions and Tips... 10

10.1 Disable OJB's object ordering, determine object order "by hand"...................................... 10

10.2 Circular- and Bidirectional References..11

10.3 I don't like OQL, can I use the PersistenceBroker Queries within ODMG......................... 11

10.4 How to use multiple Databases..11

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level API and OQL query language based interface over the PersistenceBroker
API.

This document is not a ODMG tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the ODMG-api and the proprietary
extensions by OJB.

If you don't find an answer for a specific question, please have a look at the FAQ and the other
reference guides.

Additionaly the OJB's ODMG implementation has several extensions described below.

2. Specific Metadata Settings

To make OJB's ODMG-api implementation proper work, some specific metadata settings needed in
the repository mapping files.

All defined reference-descriptor and collection-descriptor need specific auto-xxx settings:

• auto-retrieve="true"
• auto_update="none"
• auto-delete="none" or auto-delete="object" (to enable cascading delete, since OJB 1.0.4!)

Note:
These settings are mandatory for proper work of the odmg-api!

So an example object mapping class-descriptor look like:

<class-descriptor
class="org.apache.ojb.odmg.shared.Master"
table="MDTEST_MASTER"
>
<field-descriptor

name="masterId"
column="MASTERID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="masterText"
column="MASTER_TEXT"
jdbc-type="VARCHAR"
/>

<collection-descriptor
name="collDetailFKinPK"
element-class-ref="org.apache.ojb.odmg.shared.DetailFKinPK"
proxy="false"
auto-retrieve="true"
auto-update="none"
auto-delete="none"
>
<inverse-foreignkey field-ref="masterId"/>

</collection-descriptor>
...
</class-descriptor>

A lot of mapping samples can be found in mappings for the OJB test suite. All mappings for the
ODMG unit test are in repository_junit_odmg.xml file, which can be found under the

ODMG-api Guide

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://www.odmg.org/
../../docu/guides/query.html#odmg-oql
../../docu/guides/pb-guide.html
../../docu/guides/pb-guide.html
../../docu/tutorials/odmg-tutorial.html
../../docu/faq.html
../../docu/guides/summary.html
../../docu/guides/repository.html
../../docu/guides/repository.html#reference-descriptor
../../docu/guides/repository.html#collection-descriptor
../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html

src/test directory.

3. How to access ODMG-api

Obtain a org.odmg.Implementation instance first, then create a new
org.odmg.Database instance and open this instance by setting the used jcd-alias name:

Implementation odmg = OJB.getInstance();
Database database = odmg.newDatabase();
database.open("jcdAliasName#user#password", Database.OPEN_READ_WRITE);

The user and password separated by # hash only needed, when the user/passwd is not specified in
the connection metadata (jdbc-connection-descriptor).

The jdbc-connection-descriptor may look like:

<jdbc-connection-descriptor
jcd-alias="jcdAliasName"
...
username="user"
password="password"
...

>
...

</jdbc-connection-descriptor>

With method call OJB.getInstance() always a new org.odmg.Implementation instance will
be created and odmg.newDatabase() returns a new Database instance.

For best performance it's recommended to share the Implementation instance across the
application. To get the current open database from the Implementation instance, use method
Implementation.getDatabase(null)

Implementation odmg =
// get current used database
Database database = odmg.getDatabase(null);

Or share the open Database instance as well.

See further in FAQ "Needed to put user/password of database connection in repository file?".

4. Configuration Properties

The OJB ODMG-api implementation has some adjustable properties and pluggable components.
All configuration properties can be set in the OJB.properties file.

Here are all properties used by OJB's ODMG-api implementation:

Property Name Description

OqlCollectionClass This entry defines the collection type returned
from OQL queries. By default this value is set to
a List implementation. This will be suffice in
most situations.

If you want to use the additional features of the
DList interface (DList itself is persistable,
support of predicates) directly on query results,
change setting to the DList implementation (See
also property 'DListClass' entry).
But this will affect the performance - especially
for large result sets. So recommended way is
create DCollection instances only when
needed (e.g. by converting a List result set to a

ODMG-api Guide

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html#jdbc-connection-descriptor
../../api/org/odmg/Implementation.html
../../api/org/odmg/Implementation.html
../../docu/faq.html#userPasswordNeeded
../../OJB.properties.txt
../../docu/guides/query.html#odmg-oql

DList).
Important note: The collection class to be used
MUST implement the interface
org.apache.ojb.broker.ManageableCollection.
More info about implementing OJB collection
types here.

ImplementationClass Specifies the used base class for the ODMG API
implementation. In managed environments a
specific class is needed to potentiate JTA
integration of OJB's ODMG implementation.

OJBTxManagerClass Specifies the class for transaction management.
In managed environments a specific class is
needed to potentiate JTA integration of OJB's
ODMG implementation.

ImplicitLocking This property defines the implicit locking
behavior. If set to true OJB implicitely locks
objects to ODMG transactions after performing
OQL queries or when do a single lock on an
object using Transaction#lock(...)
method.
If implicit locking is used locking objects is
recursive, that is associated objects are also
locked.

If ImplicitLocking is set to false, no locks are
obtained in OQL queries and there is also no
recursive locking when do single lock on an
object.

LockAssociations This property was only used when
ImplicitLocking is enabled. It defines the
behaviour for the OJB implicit locking feature. If
set to true acquiring a write-lock on a given
object x implies write locks on all objects
associated to x.

If set to false, in any case implicit read-locks are
acquired. Acquiring a read- or write lock on x
thus allways results in implicit read-locks on all
associated objects.

Ordering Enable/Disable OJB's persistent object ordering
algorithm on commit of a transaction. If enabled
OJB try to calculate a valid order for all
new/modified objects (and referenced objects).

If the used databases support 'deferred checks'
it's recommended to use this feature and to
disable OJB's object ordering.

Note:
This setting can be changed at runtime using OJB's
ODMG extensions.

ImplicitLockingBackward A @deprecated property only for backward
compatibility with older versions (before 1.0.4).
If set true the behavior of method
ImplementationImpl#setImplicitLocking(...) will
be the same as in OJB in 1.0.3 or earlier (set the
implicit locking behavior of the current used

ODMG-api Guide

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/advanced-technique.html#manageable-collection

transaction) and disable the new possibility of
global 'implicit locking' setting at runtime with
ImplementationExt#setImplicitLocking. This is
only for backward compatibility and will be
removed at a later date.

DListClass The used org.odmg.DList implementation
class.

DArrayClass The used org.odmg.DArray implementation
class.

DMapClass The used org.odmg.DMap implementation
class.

DBagClass The used org.odmg.DBag implementation
class.

DSetClass The used org.odmg.DSet implementation
class.

5. OJB Extensions of ODMG

This section describes the propietary extension of the ODMG-api provided by OJB.

5.1. The ImplementationExt Interface

The OJB extension of the odmg Implementation interface is called ImplementationExt and provide
additional methods missed in the standard class definition.

• get/setOqlCollectionClass
Use this methods to change the used OQL query result class at runtime. Description can be
found in Configuration Properties section and in javadoc of ImplementationExt.

• is/setImpliciteWriteLocks
Use this methods to global change the associated locking type at runtime when implicit locking
is used. Description can be found in Configuration Properties section and in javadoc of
ImplementationExt.

• is/setOrdering
Use this methods to global enable/disable OJB's object ordering algorithm. Description can be
found in Configuration Properties section and in javadoc of ImplementationExt.

5.2. The TransactionExt Interface

The OJB extension of the odmg Transaction interface is called TransactionExt and provide
additional methods missed in the standard class definition.

• markDelete
Description can be found in javadoc of TransactionExt.

• markDirty
Description can be found in javadoc of TransactionExt.

• flush
Description can be found in javadoc of TransactionExt.

• is/setImplicitLocking
Description can be found in javadoc of TransactionExt.

• is/setOrdering
Description can be found in javadoc of TransactionExt.

• setCascadingDelete
Description can be found in javadoc of TransactionExt.

ODMG-api Guide

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/odmg/Implementation.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/odmg/Transaction.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html

• getBroker()
Returns the current used broker instance. Usage example is here.

5.3. The EnhancedOQLQuery Interface

The OJB extension of the odmg OQLQuery interface is called EnhancedOQLQuery and provide
additional methods missed in the standard class definition.

• create(String queryString, int startAtIndex, int endAtIndex)
Description can be found in javadoc of EnhancedOQLQuery.

5.4. Access the PB-api within ODMG

As the PB-api was used by OJB's ODMG-api implementation, thus it is possible to get access of
the used PersistenceBroker instance using the extended Transaction interface class
TransactionExt:

Implementation odmg = ...;
TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
...
PersistenceBroker broker = tx.getBroker();
// do work with broker
...
tx.commit();

It's mandatory that the used PersistenceBroker instance never be closed with a
PersistenceBroker.close() call or be committed with
PersistenceBroker.commitTransaction(), this will be done internally by the ODMG
implementation.

6. Notes on Using the ODMG API

6.1. Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level
transactions. An ODMG Transaction instance contains all of the changes made to the object
model within the context of that transaction, and will not commit them to the database until the
ODMG Transaction is committed. At that point it will use a database transaction (the
underlying PB-api) to ensure atomicity of its changes.

6.2. Locks

The ODMG specification includes several levels of locks and isolation. These are explained in
much more detail in the Locking documentation.

In the ODMG API, locks obtained on objects are locked within the context of a transaction. Any
object modified within the context of a transaction will be stored with the transaction, other
changes made to the same object instance by other threads, ignoring the lock state of the object,
will also be stored - so take care of locking conventions.
The ODMG locking conventions (obtain a write lock before do any modifications on an object)
ensure that an object can only be modified within the transaction.

It's possible to configure OJB's ODMG implementation to support implicit locking with WRITE
locks. Then a write lock on an object forces OJB to obtain implicit write locks on all referenced
objects. See configuration properties.

ODMG-api Guide

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/odmg/OQLQuery.html
../../api/org/apache/ojb/odmg/oql/EnhancedOQLQuery.html
../../api/org/apache/ojb/odmg/oql/EnhancedOQLQuery.html
../../docu/guides/pb-guide.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/odmg/Transaction.html
../../docu/guides/lockmanager.html

6.3. Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data
access object in a web application. In those cases a persistent object can still be modified, but not
directly through the OMG ODMG specification. OJB provides an extension to the ODMG
specification for instances such as this. Examine this code:

public static void persistChanges(Product product)
{

Implementation impl = OJB.getInstance();
TransactionExt tx = (TransactionExt) impl.newTransaction();

tx.begin();
tx.markDirty(product);
tx.commit();

}

In this function the product is modified outside the context of the transaction, and is then the
changes are persisted within a transaction. The TransactionExt.markDirty() method
indicates to the Transaction that the passed object has been modified, even if the Transaction itself
sees no changes to the object.

7. ODMG Named Objects

Using named objects allows to persist all serializable objects under a specified name. The methods
to handle named objects are:

/**
* Associate a name with an object and make it persistent.
* An object instance may be bound to more than one name.
* Binding a previously transient object to a name makes that object persistent.
* @param object The object to be named.
* @param name The name to be given to the object.
* @exception org.odmg.ObjectNameNotUniqueException
* If an attempt is made to bind a name to an object and that name is already
bound
* to an object.
*/
public void bind(Object object, String name) throws
ObjectNameNotUniqueException;

/**
* Lookup an object via its name.
* @param name The name of an object.
* @return The object with that name.
* @exception ObjectNameNotFoundException There is no object with the specified
name.
* @see ObjectNameNotFoundException
*/
public Object lookup(String name) throws ObjectNameNotFoundException;

/**
* Disassociate a name with an object
* @param name The name of an object.
* @exception ObjectNameNotFoundException No object exists in the database with
that name.
*/
public void unbind(String name) throws ObjectNameNotFoundException;

To use this feature a internal table and metadata mapping is madatory (by default these settings are
enabled in OJB). More information about the needed internal tables see in Platform Guide.

If the object to bind is a persistence capable object (the object class is declared in OJB metadata
mapping), then the object will be persisted (if needed) dependent on the declared metadata mapping

ODMG-api Guide

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/platforms.html#internal-tables
../../docu/tutorials/mapping-tutorial.html
../../docu/tutorials/mapping-tutorial.html
../../docu/tutorials/mapping-tutorial.html

and the named object will be a link to the real persisted object.
On unbind of the named object only the link of the persistent object will be removed, the
persistent object itself will be untouched.

If the object to bind is a serializable non-persistence cacpable object, the object will be serialized
and persisted under the specified name.
On unbind the serialized object will be removed.

7.1. Examples

In OJB test-suite is a test case called org.apache.ojb.odmg.NamedRootsTest which
shown similar examples as below, but more detailed.

1. Persist a serializable object as named object

We want to persist a name list of all planets:

Transaction tx = odmg.newTransaction();
tx.begin();
List planets = new ArrayList();
example.add("Mercury");
example.add("Venus");
example.add("Earth");
...
database.bind(planets, "planet-list");
tx.commit();

The specified List with all planet names will be serialized and persisted as VARBINARY object.

To lookup the persisted list of the solar system planets:

Transaction tx = odmg.newTransaction();
tx.begin();
List planets = (List) database.lookup("planet-list");
tx.commit();

To remove the persistent list do:

Transaction tx = odmg.newTransaction();
tx.begin();
database.unbind("planet-list");
tx.commit();

2. Persist a persistence capable object as named object

We want to create a named object representing a persistence capable Article object (Article
class is declared in OJB metadata mapping):

Transaction tx = odmg.newTransaction();
tx.begin();
// get existing or a new Article object
Article article =
database.bind(article, "my-article");
tx.commit();

OJB first checks if the specified Article object is already persisted - if not it will be persisted.
Then based on the Article object Identity the named object will be persisted. So the
persistent named object is a link to the persistent real Article object.

On lookup of the named object the real Article instance will be returned:

Transaction tx = odmg.newTransaction();
tx.begin();
Article article = (Article) database.lookup("my-article");
tx.commit();

ODMG-api Guide

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/testing/testsuite.html
../../docu/tutorials/mapping-tutorial.html
../../api/org/apache/ojb/broker/Identity.html

On unbind of the named object only the link to the real Article object will be removed, the
Article itself will not be touched.
To remove the named object and the Article instance do:

tx.begin();
// this only remove the named object link, the Article object
// itself will not be touched
database.unbind("my-article");
// thus delete the object itself too
database.deletePersistent(article);
tx.commit();

3. Persist a collection of persistence capable object as named object

We want to persist a list of the last shown Article objects. The Article class is a persistence
capable object (declared in OJB metadata mapping). Thus we don't want to persist a serialized List
of Article objects (because the real Article object may change), as shown in example 1,
rather we want to persist a List that links to the real persistent Article objects.
This is possible when the ODMG DCollections are used:

// get the list with last shown Article objects
List lastArticles = ...
Transaction tx = odmg.newTransaction();
tx.begin();
// obtain new DList instance from Implementation class
DList namedArticles = odmg.newDList();
// push Articles to DList
namedArticles.addAll(lastArticles);
database.bind(namedArticles, "last-shown");
tx.commit();

In this case OJB first checks for transient Article objects and make these new objects persistent,
then based on the Article object Identity the named object will be persisted. So the
persistent named object is in this case a list of links to persistent Article objects.

On database.lookup("last-shown") the DList will be returned and when access the
list entries the Article objects will be materialized.

To remove the named object some more attention is needed:

tx.begin();
DList namedArticles = ...
// we want to completely remove the named object
// the persisted DList with all DList entries,
// but the Article objects itself shouldn't be deleted:
// 1. mandatory, clear the list to remove all entries
namedArticles.clear();
// 2. unbind named object
database.unbind("last-shown");
tx.commit();

After this the named object will be completely removed, but all Article object will be
untouched.

8. ODMG's DCollections

The ODMG api declare some specific extensions of the java.util.Collection interface:

• org.odmg.DList
• org.odmg.DSet
• org.odmg.DBag
• org.odmg.DMap

ODMG-api Guide

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/mapping-tutorial.html
../../api/org/apache/ojb/broker/Identity.html

• org.odmg.DArray

The ODMG Implementation class provide methods to get new instances of these classes.

In OJB all associations between persistence capable classes are declared in the mapping files and
1:n and m:n relations can use any collection type class which implement the specific interface
ManageableCollection.
So there is no need to use the ODMG specific collection classes in object relations or when
oql-queries are performed (more detailed info see 'oql collection class setting').

One difference to normal collection classes is that DCollection implementation classes are
persistence capable classes itself. This means that they can be persisted - e.g. see named objects
example. Mandatory is that all containing objects are persistence capable itself.

When persisting a DCollection object OJB first lock the collection entries, then the collection
itself was locked. On commit the collection entries will be handled in a normal way and for each
entry a link object (containing the Identity of the persistence capable object) is persisted.

When lookup the persisted DCollection object the link objects are materialized and on access
the collection entry will be materialized by the identity.

9. Foreign Keys Constraints and ODMG-api

If cross-referenced database tables are used it's recommended to set foreign key constraints to
guarantee database consistency. The consequence of using foreign key constraints is that the order
of the persistence capable objects on insert and delete operations will become cruical.

Some databases support deferred constraint checks, this can help to avoid foreign key issues.

On transaction commit (using standard settings) OJB try to order the objects by itself. If this doesn't
suffice it's possible to determine the object order "by hand".

If foreign key constraint violations arise when using 1:1 references and circular/bidirectional 1:1
references it's possible to use a workaround introduced in version 1.0.4 to specify the database FK
constraint in OJB using a custom attribute named 'constraint':

<reference-descriptor name="refAA"
class-ref="org.apache.ojb.odmg.CircularTest$ObjectAA"
proxy="false"
auto-retrieve="true"
auto-update="none"
auto-delete="none"

>
<foreignkey field-ref="fkId"/>
<attribute attribute-name="constraint" attribute-value="true"/>

</reference-descriptor>

10. Questions and Tips

10.1. Disable OJB's object ordering, determine object order "by hand"

By default OJB try to order all persistent objects on transaction commit call to avoid ordering
problems. If this is not needed or helpful it can be disabled in two ways.
In most cases it's needed to disable implicite locking too, because it will lock/register dependend
objects (e.g. 1:n references) automatically. First in OJB.properties file:

Enable/Disable OJB's persistent object ordering algorithm on commit
of a transaction. If enabled OJB try to calculate a valid order for
all new/modified objects (and referenced objects).

ODMG-api Guide

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/odmg/Implementation.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/advanced-technique.html#manageable-collection
../../api/org/apache/ojb/broker/Identity.html
../../docu/guides/basic-technique.html#one-to-one
../../docu/guides/repository.html#custom-attribute
../../docu/guides/ojb-properties.html

If the used databases support 'deferred checks' it's recommended to use this
feature and to disable OJB's object ordering.
This setting can be changed at runtime using OJB's ODMG extensions.
Ordering=false

Second at runtime, using OJB's ODMG extension classes ImplementationExt (global setting) and
TransactionExt (per tx setting).

TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
...
/*
we want to manually insert new object, so we disable
OJB's ordering and implicit object locking
*/
tx.setOrdering(false);
tx.setImplicitLocking(false);
...
tx.commit();

10.2. Circular- and Bidirectional References

The good news, OJB can handle bidirectional- and circular- references. When using foreign key
constraints for referential integrety in these cases you have to pay attention.

In OJB test-suite a unit test called org.apache.ojb.odmg.CircularTest can be found.
The tests show the handling of circular/bidirectional references and the possibilities how to handle
object insert/update/delete ordering on transaction commit.

10.3. I don't like OQL, can I use the PersistenceBroker Queries within ODMG

Yes you can! The ODMG implementation relies on PB Queries internally! Several users (including
myself) are doing this.

If you have a look at the simple example below you will see how OJB Query objects can be used
withing ODMG transactions.
The most important thing is to lock all objects returned by a query to the current transaction before
starting manipulating these objects.
Further on do not commit or close the obtained PB-instance, this will be done by the ODMG
transaction on tx.commit() / tx.rollback().

TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
....
// cast to get intern used PB instance
PersistenceBroker broker = tx.getBroker();
...
// build query
QueryByCriteria query = ...
// perform PB-query
Collection result = broker.getCollectionByQuery(query);
// use result
...

tx.commit();
...

Note: Don't close or commit the used broker instance, this will be done by the odmg-api.

10.4. How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

ODMG-api Guide

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/testing/testsuite.html
../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/faq.html#multipleDB

Now it is possible to

• access the databases one after another, by closing the current used Database instance and by
open a new one.

// get current used database instance
Database database = ...;
// close it
database.close();
// open a new one
database = odmg.newDatabase();
database.open("jcdAliasName#user#password", Database.OPEN_READ_WRITE);
...

The Database.close() call close the current used Database instance, after this it is
possible to open a new database instance.

• use multiple databases in parallel, by creating a separate Implementation and Database
instance for each jdbc-connection-descriptor defined in the mapping metadata.

Implementation odmg_1 = OJB.getInstance();
Database database_1 = odmg.newDatabase();
database.open("db_1#user#password", Database.OPEN_READ_WRITE);

Implementation odmg_2 = OJB.getInstance();
Database database_2 = odmg.newDatabase();
database.open("db_2#user#password", Database.OPEN_READ_WRITE);

Now it's possible to use both databases in parallel.

Note:
OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

ODMG-api Guide

12
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/deployment.html#j2ee-server
../../docu/guides/deployment.html#j2ee-server

	1 Introduction
	2 Specific Metadata Settings
	3 How to access ODMG-api
	4 Configuration Properties
	5 OJB Extensions of ODMG
	5.1 The ImplementationExt Interface
	5.2 The TransactionExt Interface
	5.3 The EnhancedOQLQuery Interface
	5.4 Access the PB-api within ODMG

	6 Notes on Using the ODMG API
	6.1 Transactions
	6.2 Locks
	6.3 Persisting Non-Transactional Objects

	7 ODMG Named Objects
	7.1 Examples

	8 ODMG's DCollections
	9 Foreign Keys Constraints and ODMG-api
	10 Questions and Tips
	10.1 Disable OJB's object ordering, determine object order "by hand"
	10.2 Circular- and Bidirectional References
	10.3 I don't like OQL, can I use the PersistenceBroker Queries within ODMG
	10.4 How to use multiple Databases

