
The Object Cache

by Armin Waibel, Thomas Mahler

Table of contents

1 Introduction..2

2 Why a cache and how it works?...2

3 How to declare and change the used ObjectCache implementation.. 3

3.1 Priority of Cache Level... 3

3.2 Exclude classes from being cached... 4

3.3 Exclude packages from being cached..4

3.4 Turn off caching.. 4

4 Shipped cache implementations:..4

4.1 ObjectCacheDefaultImpl...5

4.2 ObjectCacheTwoLevelImpl.. 6

4.3 ObjectCachePerBrokerImpl.. 8

4.4 ObjectCacheEmptyImpl.. 8

4.5 ObjectCacheJCSImpl.. 8

4.6 ObjectCacheOSCacheImpl..9

4.7 More implementations ..11

5 Distributed ObjectCache?.. 11

6 Implement your own cache.. 11

7 Future prospects... 11

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

OJB supports several caching strategies and allow to pluggin own caching solutions by
implementing the ObjectCache interface. All implementations shipped with OJB can be found in
package org.apache.ojb.broker.cache. The naming convention of the implementation
classes is ObjectCacheXXXImpl.

To classify the different implementations we differ local/session cache and
shared/global/application cache implementations (we use the different terms synonymous). The
ObjectCacheTwoLevelImpl use both characteristics.

• Local cache implementation mean that each instance use its own map to manage cached
objects.

• Shared/global cache implementations share one (in most cases static) map to manage cached
objects.

A distributed object cache implementation supports caching of objects across different JVM.

2. Why a cache and how it works?

OJB provides a pluggable object cache provided by the ObjectCache interface:

public interface ObjectCache
{

/**
* Write to cache.
*/
public void cache(Identity oid, Object obj);

/**
* Lookup object from cache.
*/
public Object lookup(Identity oid);

/**
* Removes an Object from the cache.
*/
public void remove(Identity oid);

/**
* Clear the ObjectCache.
*/
public void clear();

}

Each PersistenceBroker instance (PersistenceBroker is a standalone api and the basic layer for all
top-level api's like ODMG) use it's own ObjectCache instance. The ObjectCache instances
are created by the ObjectCacheFactory class on PersistenceBroker instantiation.

Each cache implementation holds objects previously loaded or stored by the
PersistenceBroker - dependend on the implementation.
Using a Cache has several advantages:

• It increases performance as it reduces database lookups or/and object materialization. If an
object is looked up by Identity the associated PersistenceBroker instance does not perform a
SELECT against the database immediately but first looks up the cache if the requested object is
already loaded. If the object is cached it is returned as the lookup result. If it is not cached a
SELECT is performed.
Other queries were performed against the database, but before an object from the ResultSet was
materialized the object identity was looked up in cache. If not found the whole object was
materialized.

The Object Cache

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../docu/howtos/howto-work-with-clustering.html
../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../api/org/apache/ojb/broker/PersistenceBroker.html

• It allows to perform circular lookups (as by crossreferenced objects) that would result in
non-terminating loops without such a cache (Note: Since OJB 1.0.2 this is handled internally by
OJB and does not depend on the used cache implementation).

3. How to declare and change the used ObjectCache implementation

The object-cache element can be used to specify the ObjectCache implementation used by
OJB. If no object-cache is declared in configuration files (see below), OJB use by default a
noop-implementation of the ObjectCache interface.
There are two levels of declaration:

• jdbc-connection-descriptor level
• class-descriptor level

and the possibility to exclude all persistent objects of specified package names.

Use a jdbc-connection-descriptor level declaration to declare ObjectCache implementation on a
per connection/user level. Additional configuration properties can be passed by using custom
attributes entries:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="useAutoSync" attribute-value="true"/>

</object-cache>
...
</jdbc-connection-descriptor>

Set an object-cache tag on class-descriptor level , to declare ObjectCache implementation on a per
class level:

<class-descriptor
class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>

...
</class-descriptor>

Additional configuration properties can be passed by using custom attributes entries.

Note:
If polymorphism was used it's only possible to declare the object-cache element in the class-descriptor of the top-level class/interface
(root class), all object-cache declarations in the sub-classes will be ignored by OJB.

3.1. Priority of Cache Level

Since it is possible to mix the different levels of object-cache element declaration a ordering of
priority is needed:

Note:
The order of priority of declared object-cache elements in metadata are:
per class > excluded packages > per jdbc-connection-descriptor

E.g. if you declare ObjectCache 'OC1' on connection level and set ObjectCache 'OC2' in
class-descriptor of class A. Then OJB use 'OC2' as ObjectCache for class A instances and 'OC1' for
all other classes.

The Object Cache

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html#custom-attribute
../../docu/guides/repository.html#custom-attribute
../../docu/guides/repository.html#class-descriptor
../../docu/guides/repository.html#custom-attribute
../../docu/guides/advanced-technique.html#polymorhism
../../docu/guides/repository.html#class-descriptor

3.2. Exclude classes from being cached

If it's undesirable to cache an persistent object (e.g. persistent objects with BLOB fields or large
binary fields) declare an object-cache descriptor with the noop-cache implementation called
ObjectCacheEmptyImpl.

<class-descriptor
class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>

...
</class-descriptor>

Note:
If polymorphism was used and the class to exclude is part of an inheritance hierarchy and it's declared in in OJB metadata, it's not
possible to exclude it. Only for the top-level class/interface (root class) it's allowed to specify the object-cache element in metadata. So
it's only possible to exclude all sub-classes of the top-level class/interface (root class). More info see here.

3.3. Exclude packages from being cached

To exclude all persistent objects of a whole package from being cached use the custom attribute
cacheExcludes on connection level within the object-cache declaration. To declare several
packages use a comma seperated list.

<jdbc-connection-descriptor
jcd-alias="myDefault"
...>

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl">
<attribute attribute-name="cacheExcludes"

attribute-value="my.core, my.persistent.local"/>
... more attributes

</object-cache>
</jdbc-connection-descriptor

To include a persistent class of a excluded package, simply declare an object-cache descriptor on
class-descriptor level of the class to include, object cache declarations on class-descriptor level
have a higher priority as the excluded packages - see more.

3.4. Turn off caching

If you don't declare a object-cache element in configuration files (see here), OJB doesn't cache
persistent objects by default.
To explicitly turn off caching declare a no-op implementation of the ObjectCache interface as
caching implementation. OJB was shipped with such a class called ObjectCacheEmptyImpl. To
explicitly turn off caching for a used database look like this:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>
...

</jdbc-connection-descriptor>

To get more detailed info about the different level of cache declaration, please see here.

4. Shipped cache implementations:

The Object Cache

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#polymorhism
../../docu/guides/repository.html#custom-attribute
../../api/org/apache/ojb/broker/cache/ObjectCache.html

4.1. ObjectCacheDefaultImpl

Per default OJB use a shared reference based ObjectCache implementation -
ObjectCacheDefaultImpl. It's a really fast cache but there are a few drawbacks:

• There is no transaction isolation, when thread one modify an object, thread two will see the
modification when lookup the same object or use a reference of the same object, so
"dirty-reads" can happen.

• If you rollback/abort a transaction the modified/corrupted objects will not be removed from the
cache by default(when using PB-api, top-level api may support automatic cache
synchronization). You have to do this by your own using a service method to remove cached
objects or enable the autoSync property.

broker.removeFromCache(obj);

// or (using Identity object)
ObjectCache cache = broker.serviceObjectCache();
cache.remove(oid);
• This implementation cache full object graphs (the object with all referenced objects) and does

not synchronize the references. So if cached object ProductGroup has a 1:n reference to
Article, e.g. article1, article2, article3 and another thread delete article2, the ProductGroup still
has a reference to article2. To avoid such a behavior you can use the collection-descriptor
'refresh' attribute to force OJB to query the referenced objects when the main object is loaded
from cache or use another ObjectCache implementation supporting synchronization of
references (e.g. ObjectCacheTwoLevelImpl).

This implementation use by default SoftReference to wrap all cached objects. If the cached
object was not longer referenced by your application but only by the cache, it can be reclaimed by
the garbage collector.
As we don't know when the garbage collector reclaims the freed objects, it is possible to set a
timeout property. So an cached object was only returned from cache if it was not garbage
collected and was not timed out.

To enable this ObjectCache implementation declare

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="cacheExcludes" attribute-value=""/>
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>
<attribute attribute-name="cachingKeyType" attribute-value="0"/>
<attribute attribute-name="useSoftReferences" attribute-value="true"/>

</object-cache>

Implementation configuration properties:

Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object never expire.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads" by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync

The Object Cache

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../api/org/apache/ojb/broker/cache/ObjectCacheDefaultImpl.html
../../docu/guides/repository.html#collection-descriptor
../../docu/guides/repository.html#collection-descriptor

with DB but should do the job in most cases.
E.g. if OJB read 1000 objects from the database
within a transaction, one object was modified and the
transaction will be aborted, then 1000 objects will be
passed to the cache on lookup, 1000 objects will be
traced and all 1000 objects will be removed from
cache on abort.
Read these objects without running tx or in a former
tx and then modify one object in a tx and abort the tx,
only one object was traced/removed. Keep in mind
that this property counteract the useSoftReferences
property as long as the PB-transaction is running,
because all traced objects will have strong references.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor),
because different databases should use
separated caches (persistent object instances).
2 - Identity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there
was no synchronization between cached objects
with same Identity but different metadata model.
E.g. when the same database use different
metadata versions of the same persistent object
class.
3 - all together (Idenity + jcdAlias + model)
If possible '0' is recommended, because it will be
the best performing setting.

useSoftReferences If set true this class use {@link
java.lang.ref.SoftReference} to cache objects.
Default value is true. If set true and the cached
object was not longer referenced by your
application but only by the cache, it can be
reclaimed by the garbage collector. If set false
it's strongly recommended to the timeout
property to prevent memory problems of the
JVM.

Recommendation:
If you take care of cache synchronization (or use autoSync property) and be aware of dirty reads,
this implementation is useful for read-only or less update centric classes.

4.2. ObjectCacheTwoLevelImpl

ObjectCacheTwoLevelImpl is a two level ObjectCache implementation with a transactional
session- and a shared application-cache part.

The first level is a transactional session cache that cache objects till PersistenceBroker#close() or if
a PB-tx is running till #abortTransaction() or #commitTransaction() was called.
On commit all objects reside in the session cache will be pushed to the application cache.
If objects be new materialized from the database (e.g. when achieve a query), the full materialized

The Object Cache

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/cache/ObjectCacheTwoLevelImpl.html
../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../api/org/apache/ojb/broker/PersistenceBroker.html

objects will be pushed immediately to the application cache (more precisely, if the application
cache doesn't contain the "new materialized" objects).

The second level cache can be specified with the applicationCache property. Properties of the
specified application cache are allowed too. Here is an example how to use the two level cache with
ObjectCacheDefaultImpl as second level cache.

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl">
<!-- meaning of attributes, please see docs section "Caching" -->
<!-- common attributes -->
<attribute attribute-name="cacheExcludes" attribute-value=""/>

<!-- ObjectCacheTwoLevelImpl attributes -->
<attribute attribute-name="applicationCache"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl"/>
<attribute attribute-name="copyStrategy"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl$CopyStrategyImpl"/>
<attribute attribute-name="forceProxies" attribute-value="true"/>

<!-- ObjectCacheDefaultImpl attributes -->
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>
<attribute attribute-name="cachingKeyType" attribute-value="0"/>
<attribute attribute-name="useSoftReferences" attribute-value="true"/>

</object-cache>

The most important characteristic of the two-level cache is that all objects put to or read from the
application cache are copies of the target object, so the cached objects never could be corrupted by
the user when changing fields, because all operations done on copies of objects cached in the
application cache (in contrast to ObjectCacheDefaultImpl).

The strategy to make copies of the persistent objects is pluggable and can be specified by the
copyStrategy property which expects an implementation of the
ObjectCacheTwoLevelImpl.CopyStrategy interface.

The default ObjectCacheTwoLevelImpl.CopyStrategy implementation make copies
based on the field-descriptors of the cached object and set these values in a new instance of the
cached object. If you lookup a cached object with 1:n or m:n relation a query is needed to get the
ID's of the referenced objects, because in application cache only "flat" objects without
references/reference-info will be cached.

Note:
This two-level cache implementation does not guarantee that cache and persistent storage (e.g. database) are always consistent, because
the session cache push the persistent objects to application cache after the PB-tx was commited.
Let us assume that thread 1 (using broker 1) update objects A1, A2, ... within a transaction and does commit the tx. Now before OJB
could execute the after commit call on thread 1 to force session cache to push the objects to the application cache, thread 2 (using broker
2) lookup and update object A2 too (improbably but could happen, because thread 1 has already commited the objects A1, A2,... to the
persistent storage) and push A2 to application cache. After this thread 1 was able to perform the after commit call and the 'outdated'
version of A2 was pushed to the application cache overwriting the actual version of A2 in cache - cache and persistent storage are out of
synchronization.
To avoid writing of outdated data to the persistence storage optimistic locking can be used. OL will not prevent the above scenario, but
if it happens and e.g. broker 3 read the outdated object A1 from the cache and try to perform an update of A1, an optimistic locking
exception will be thrown. So it is guaranteed that the persistent storage is always consistent.
A possibility to completely prevent synchronization problems of cache and persistent storage is the usage of pessimistic locking (if the
used api supports it) with an adequate locking isolation level. If only one thread/broker could modify an object at the same time and the
lock will be released after all work is done, the above scenario can't happen.

To avoid corrupted data, all objects cached by users (using the methods of the ObjectCache
interface) will never be pushed to the application cache, they will be buffered in the session cache
till it was cleared.

Implementation configuration properties:

Property Key Property Values

The Object Cache

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#field-descriptor
../../docu/guides/lockmanager.html#optimistic-locking
../../docu/guides/lockmanager.html#pessimistic-locking

applicationCache Specifies the ObjectCache implementation used
as application cache (second level cache). By
default ObjectCacheDefaultImpl was used. It's
recommended to use a shared cache
implementation (all used PB instances should
access the same pool of objects - e.g. by using
a static Map in cache implementation).

copyStrategy Specifies the implementation class of the
ObjectCacheTwoLevelImpl.CopyStrategy
interface, which was used to copy objects on
read and write operations to application cache. If
not set, a default implementation was used
(ObjectCacheTwoLevelImpl.CopyStrategyImpl
make field-descriptor based copies of the
cached objects).

forceProxies If true on materialization of cached objects, all
referenced objects will be represented by proxy
objects (independent from the proxy settings in
reference- or collection-descriptor).

Note: To use this feature all persistence capable
objects have to be interface based or the
ProxyFactory and IndirectionHandler
implementation classes supporting dynamic
proxy enhancement for all classes (see
OJB.properties, find more information about
proxy settings here).

4.3. ObjectCachePerBrokerImpl

ObjectCachePerBrokerImpl is a local/session cache implementation allows to have dedicated
caches per PersistenceBroker instance.

Note: When the used broker instance was closed (returned to pool) the cache was cleared.

This cache implementation is not synchronized with the other ObjectCache instances, there will
be no automatic refresh of objects modified/updated by other threads (PersistenceBroker
instances).

So, objects modified by other threads will not influence the cached objects, because for each broker
instance the objects will be cached separately and each thread should use it's own
PersistenceBroker instance.

4.4. ObjectCacheEmptyImpl

This is an no-op ObjectCache implementation. Useful when caching was not desired.

Note:
This implementaion supports circular references as well (since OJB 1.0.2, materialization of object graphs with circular references will
be handled internally by OJB).

4.5. ObjectCacheJCSImpl

A shared ObjectCache implementation using a JCS region for each classname. More info see
turbine-JCS.

The Object Cache

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../docu/guides/repository.html#reference-descriptor
../../docu/guides/repository.html#collection-descriptor
../../OJB.properties.txt
../../docu/guides/basic-technique.html#proxy-customization
../../api/org/apache/ojb/broker/cache/ObjectCachePerBrokerImpl.html
../../api/org/apache/ojb/broker/PersistenceBroker.html
http://jakarta.apache.org/turbine/jcs/index.html

4.6. ObjectCacheOSCacheImpl

You're basically in good shape at this point. Now you've just got to set up OSCache to work with
OJB. Here are the steps for that:

• Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that it is in
your classpath (for Servlet/J2EE users place in your WEB-INF/lib directory).

• Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath (for
Servlet/J2EE users place in your WEB-INF/lib directory).

• Add oscache.properties from your OSCache distribution to your project so that it is in the
classpath (for Servlet/J2EE users place in your WEB-INF/classes directory). Open the file and
make the following changes:
1. Add the following line to the CACHE LISTENERS section of your oscache.properties file:

cache.event.listeners=com.opensymphony.oscache.plugins.clustersupport.JavaGroupsBroadcastingListener
2. Add the following line at the end of the oscache.properties file (your network must support

multicast):
cache.cluster.multicast.ip=231.12.21.132

• Add the following class to your project (feel free to change package name, but make sure that
you specify the full qualified class name in configuration files). You can find source of this
class under db-ojb/contrib/src/ObjectCacheOSCacheImpl or copy this source:

public class ObjectCacheOSCacheImpl implements ObjectCacheInternal
{

private Logger log = LoggerFactory.getLogger(ObjectCacheOSCacheImpl.class);
private static GeneralCacheAdministrator admin = new

GeneralCacheAdministrator();
private static final int REFRESH_PERIOD =

com.opensymphony.oscache.base.CacheEntry.INDEFINITE_EXPIRY;

public ObjectCacheOSCacheImpl()
{
}

public ObjectCacheOSCacheImpl(PersistenceBroker broker, Properties prop)
{
}

public void cache(Identity oid, Object obj)
{

try
{

/*
Actually, OSCache sends notifications (Events) only on flush
events. The putInCache method do not flush the cache, so no event is

sent.
The ObjectCacheOSCacheInternalImpl should force OSCache to flush the

entry
in order to generate an event. This guarantee that other nodes

always
in sync with the DB.
Alternative a non-indefinite refresh-period could be used in

conjunction
with optimistic-locking for persistent objects.
*/
remove(oid);
admin.putInCache(oid.toString(), obj);

}
catch(Exception e)
{

log.error("Error while try to cache object: " + oid, e);
}

}

public void doInternalCache(Identity oid, Object obj, int type)

The Object Cache

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://www.opensymphony.com/oscache/
http://www.jgroups.org/javagroupsnew/docs/index.html

{
cache(oid, obj);

}

public boolean cacheIfNew(Identity oid, Object obj)
{

boolean result = false;
Cache cache = admin.getCache();
try
{

cache.getFromCache(oid.toString());
}
catch(NeedsRefreshException e)
{

try
{

cache.putInCache(oid.toString(), obj);
result = true;

}
catch(Exception e1)
{

cache.cancelUpdate(oid.toString());
log.error("Error while try to cache object: " + oid, e);

}
}
return result;

}

public Object lookup(Identity oid)
{

Cache cache = admin.getCache();
try
{

return cache.getFromCache(oid.toString(), REFRESH_PERIOD);
}
catch(NeedsRefreshException e)
{

// not found in cache
if(log.isDebugEnabled()) log.debug("Not found in cache: " + oid);
cache.cancelUpdate(oid.toString());
return null;

}
catch(Exception e)
{

log.error("Unexpected error when lookup object from cache: " + oid,
e);

cache.cancelUpdate(oid.toString());
return null;

}
}

public void remove(Identity oid)
{

try
{

if(log.isDebugEnabled()) log.debug("Remove from cache: " + oid);
admin.flushEntry(oid.toString());

}
catch(Exception e)
{

throw new RuntimeCacheException("Unexpected error when remove object
from cache: " + oid, e);

}
}

public void clear()
{

try
{

if(log.isDebugEnabled()) log.debug("Clear cache");
admin.flushAll();

The Object Cache

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

}
catch(Exception e)
{

throw new RuntimeCacheException("Unexpected error while clear
cache", e);

}
}

}

To allow usage of this implementation as application cache level in the two-level cache implement
the internal object cache interface instead of the standard one.

Now OSCache can be used by OJB as standalone cache (by declaring the implementation class on
connection- or class-level) or as application cache in the two-level cache.

4.7. More implementations ...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects
across different JVM. OJB does not support distributed caching "out of the box", to do this a
external caching library is needed, e.g. the OSCache implementation supports distributed caching.
More information how to setup OJB in clustered enviroments see clustering howto.

6. Implement your own cache

The OJB cache implementations are quite simple but should do a good job for most scenarios. If
you need a more sophisticated cache or need to pluggin a proprietary caching library you'll write
your own implementation of the ObjectCache interface.
Integration of your implementation in OJB is easy since the object cache is a pluggable component.
All you have to do, is to declare it on connection- or class-level. Here an example howto declare the
new implementation on connection level:

<jdbc-connection-descriptor
jcd-alias="myDefault"
...

>
<object-cache class="my.ObjectCacheMyImpl">

<attribute attribute-name="cacheExcludes" attribute-value=""/>
... additional attributes of the cache

</object-cache>
</jdbc-connection-descriptor

If interested to get more detailed information about the "type" of the objects to cache (objects
written to DB, new materialized objects,...) implement the ObjectCacheInternal interface (For an
implementation example see source for ObjectCacheTwoLevelImpl).

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

7. Future prospects

In OJB 1.1 the caching part will be rewritten to get rid of static classes, factories and member
variables.

The Object Cache

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/howtos/howto-work-with-clustering.html
../../api/org/apache/ojb/broker/cache/ObjectCache.html
../../api/org/apache/ojb/broker/cache/ObjectCacheInternal.html
../../api/org/apache/ojb/broker/cache/ObjectCacheTwoLevelImpl.html

	1 Introduction
	2 Why a cache and how it works?
	3 How to declare and change the used ObjectCache implementation
	3.1 Priority of Cache Level
	3.2 Exclude classes from being cached
	3.3 Exclude packages from being cached
	3.4 Turn off caching

	4 Shipped cache implementations:
	4.1 ObjectCacheDefaultImpl
	4.2 ObjectCacheTwoLevelImpl
	4.3 ObjectCachePerBrokerImpl
	4.4 ObjectCacheEmptyImpl
	4.5 ObjectCacheJCSImpl
	4.6 ObjectCacheOSCacheImpl
	4.7 More implementations ...

	5 Distributed ObjectCache?
	6 Implement your own cache
	7 Future prospects

