
OJB logging configuration

by Thomas Dudziak

Table of contents

1 Logging in OJB..2

2 Logging configuration within OJB.. 2

2.1 How and when OJB determines what kind of logging to use... 2

2.2 Configuration of logging for the individual components.. 3

3 Logging configuration via configuration files... 3

3.1 OJB-logging.properties... 3

3.2 commons-logging.properties... 4

3.3 log4j.properties..4

3.4 Where to put the configuration files..4

4 Logging configuration at runtime.. 5

5 Defining your own logger.. 5

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component
PoorMansLoggerImpl, but is also able to use the two most common Java logging libraries,
commons-logging (which is actually a wrapper around several logging components) and Log4j. In
addition, it is also possible to define your own logging implementation.

Per default, OJB uses its own PoorMansLoggerImpl which does not require configuration and
prints to stdout.

2. Logging configuration within OJB

2.1. How and when OJB determines what kind of logging to use

Logging is the first component of OJB that is initialized. If you access any component of OJB,
logging will be initialized first before that component is doing anything else. Therefore, you'll have
to provide for the configuration of logging before you access OJB in your program (this is mostly
relevant if you plan to initialize OJB at runtime as is described below). Please note that logging
configuration is independent of the configuration of other parts of OJB, namely the runtime (via
OJB.properties) and the database/repository (via repository.xml).

These are the individual steps OJB performs in order to initialize the logging component:

1. First, OJB checks whether the system property
org.apache.ojb.broker.util.logging.Logger.class is set. If specified, this
property gives the fully qualified class name of the logger class (a class implementing the
Logger interface). Along with this property, another property is then read which may specify a
properties file for this logger class,
org.apache.ojb.broker.util.logging.Logger.configFile.

2. If this property is not set, then OJB tries to read the file OJB-logging.properties. The
name and path of this file can be changed by setting the runtime property of the same name. See
below for the contents of this file.

3. For backwards compatibility, OJB next tries to read the logging settings from the file
OJB.properties which is the normal runtime configuration file of OJB. Again, the name and
path of this file can be changed by setting the runtime property of the same name. This file may
contain the same entries as the OJB-logging.properties file.

4. If the the OJB.properties file does not contain logging settings, next it is checked whether
the commons-logging log property org.apache.commons.logging.Log or the
commons-logging log factory system property
org.apache.commons.logging.LogFactory is set. If that's the case, OJB will use
commons-logging for its logging purposes.

5. Next, OJB checks for the presence of the Log4j properties file log4j.properties. If it is
found, the OJB uses Log4j directley (without commons-logging).

6. Finally, OJB tries to find the commons-logging properties file
commons-logging.properties which when found directs OJB to use commons-logging
for its logging.

7. If none of the above is true, or if the specified logger class could not be found or initialized,
then OJB defaults to its PoorMansLoggerImpl logger which simply logs to stdout.

The only OJB component whose logging is not initialized this way, is the boot logger which is used
by logging component itself and a few other core components. It will (for obvious reasons) always
use PoorMansLoggerImpl and therefore log to stdout. You can define the log level of the boot
logger via the OJB.bootLogLevel system property. Per default, WARN is used.

OJB logging configuration

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html
http://jakarta.apache.org/commons/logging/
http://logging.apache.org/log4j/
../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html
../../docu/guides/ojb-properties.html
../../docu/guides/repository.html
../../api/org/apache/ojb/broker/util/logging/Logger.html
../../docu/guides/ojb-properties.html
../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html

2.2. Configuration of logging for the individual components

Regardless of the logging implementation that is used by OJB, the configuration is generally
similar. The individual logging implementations mainly differ in the syntax and in the
configuration of the format of the output and of the output target (where to log to). See below for
specific details and examples.
In general, you specify a default log level and for every component (usually a class) that should log
differently, the amount and level of detail that is logged about that component. These are the levels:

DEBUG
Messages that express what OJB is currently doing. This is the most detailed
debugging level
INFO
Informational messages
WARN
Warnings that may denote potentional problems (this is the default level)
ERROR
As the name says, this level is for errors which means that some action could not be
completed successfully
FATAL
Fatal errors which usually prevent an application from continuing

The levels DEBUG and INFO usually result in a lot of log messages which will reduce the
performance of the application. Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger is the logger used by the logging
component itself as well as a few other core components. It will therefore always use the
PoorMansLoggerImpl logging implementation. You can configure its logging level via the
OJB.bootLogLevel system property.
The default logger is denoted in the OJB-logging.properties file by the keyword
DEFAULT instead of the class name. It is used by components that don't require their own logging
configuration (usually because they are rather small components).

3. Logging configuration via configuration files

3.1. OJB-logging.properties

This file usually specifies which logging implementation to use using the
org.apache.ojb.broker.util.logging.Logger.class property, and which
properties file this logger has (if any) using the
org.apache.ojb.broker.util.logging.Logger.configFile property. You should
also use this file to specify log levels for OJB's components if you're not using Log4j or
commons-logging (which have their own configuration files).

A typical OJB-logging.properties file looks like this:

Which logger to use
org.apache.ojb.broker.util.logging.Logger.class=org.apache.ojb.broker.util.logging.PoorMansLoggerImpl

Configuration file of the logger
#org.apache.ojb.broker.util.logging.Logger.configFile=

Global default log level used for all logging entities if not specified
ROOT.LogLevel=ERROR

The log level of the default logger
DEFAULT.LogLevel=WARN

OJB logging configuration

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/PoorMansLoggerImpl.html

Logger for PersistenceBrokerImpl class
org.apache.ojb.broker.core.PersistenceBrokerImpl.LogLevel=WARN

Logger for RepositoryXmlHandler, useful for debugging parsing of
repository.xml!
org.apache.ojb.broker.metadata.RepositoryXmlHandler.LogLevel=WARN

3.2. commons-logging.properties

This file is used by commons-logging. For details on its structure see here.

An example commons-logging.properties file would be:

Use Log4j
org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

Configuration file of the log
log4j.configuration=log4j.properties

Note:
Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging
component in the near future.

3.3. log4j.properties

The commons-logging configuration file. Details can be found here.

A sample log4j configuration is:

Root logging level is WARN, and we're using two logging targets
log4j.rootCategory=WARN, A1, A2

A1 is set to be ConsoleAppender sending its output to System.out
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Appender A2 writes to the file "org.apache.ojb.log".
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.File=org.apache.ojb.log

Truncate the log file if it aleady exists.
log4j.appender.A2.Append=false

A2 uses the PatternLayout.
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Special logging directives for individual components
log4j.logger.org.apache.ojb.broker.metadata.RepositoryXmlHandler=DEBUG
log4j.logger.org.apache.ojb.broker.accesslayer.ConnectionManager=INFO
log4j.logger.org.apache.ojb.odmg=INFO

3.4. Where to put the configuration files

OJB and the different logging implementations usually look up their configuration files in the
classpath. So for instance, OJB searches for the OJB-logging.properties file directly in
any of the entries of the classpath, directories and jar files. If the classpath contains in that order
some-library.jar, db-ojb.jar, and ., then it will first search in the two jars (which
themselves contain a directory structure in which OJB will search only in the root), and lastly in the
current directory (which only happens if . is part of the classpath) but not in sub directories of it.

OJB logging configuration

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/guide.html
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/docs/manual.html

For applications, this classpath can easily be set either as an environment variable CLASSPATH or
by using the commandline switch -classpath when invoking the java executable.

For web applications however, the server will define the classpath. There are specific folders in the
webapp structure that are always part of the webapp's classpath. The one that is normally used to
store configuration files, is the classes folder:

[folder containing webapps]\
mywebapp\

WEB-INF\
lib\
classes\ <-- Put your configuration files here

4. Logging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to do
that for logging depends on the used logging implementation, but you can usually configure them
via system properties. The only thing to keep in mind is that logging in OJB is initialized as soon as
you use one of its components, so you'll have to define the properties prior to using any OJB parts.

With system properties (which are accessible via System.getProperty() from within a Java
program) you can always define the following OJB logging settings:

org.apache.ojb.broker.util.logging.Logger.class
Which logger OJB shall use
org.apache.ojb.broker.util.logging.Logger.configFile
The config file of the logger
OJB-logging.properties
The path to the logging properties file, default is OJB-logging.properties
OJB.properties
The path to the OJB properties file (which may contain logging settings), default is
OJB.properties
org.apache.commons.logging.Log
Use commons-logging with the specified log implementation
org.apache.commons.logging.LogFactory
Use commons-logging with the specified log factory
log4j.configuration
When using Log4j directly or via commons-logging, this is the Log4j configuration file
(default is log4j.properties)

In addition, all Log4j properties (e.g. log4j.rootCategory) can be specified as system
properties.

5. Defining your own logger

It is rather easy to use your own logger. All you need to do is to provide a class that implements the
interface Logger. Besides the actual log methods (debug, info, warn, error, fatal)
this interface defines a method void configure(Configuration) which is used to
initialize the logger with the logging properties (as contained in OJB-logging.properties).

Note:
Because commons-logging performs a similar function to the OJB logging component, it is likely that it will be used as such in the near
future. Therefore you're encouraged to also implement the Log interface which is nearly the same as the Logger interface.

OJB logging configuration

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/util/logging/Logger.html
http://jakarta.apache.org/commons/logging/api/org/apache/commons/logging/Log.html
../../api/org/apache/ojb/broker/util/logging/Logger.html

	1 Logging in OJB
	2 Logging configuration within OJB
	2.1 How and when OJB determines what kind of logging to use
	2.2 Configuration of logging for the individual components

	3 Logging configuration via configuration files
	3.1 OJB-logging.properties
	3.2 commons-logging.properties
	3.3 log4j.properties
	3.4 Where to put the configuration files

	4 Logging configuration at runtime
	5 Defining your own logger

