
Locking

by Thomas Mahler, Armin Waibel

Table of contents

1 Introduction..2

2 Optimistic Locking.. 2

3 Pessimistic-Locking... 3

3.1 Supported Isolation Levels.. 3

3.2 How to specify locking isolation level.. 5

3.3 Specify the LockManager Implementation... 6

3.4 The LockManager Implementations..6

3.4.1 LockManagerInMemoryImpl..6

3.4.2 LockManagerCommonsImpl.. 6

3.4.3 LockManagerRemoteImpl.. 6

4 ODMG-api Locking...7

4.1 What it does...7

5 Locking in distributed environment...8

6 Pluggin own locking classes.. 9

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple transactions
(possibly in clustered environments).

An example:
Assume there are two transactions tx1 and tx2 running. The first transaction tx1 modify object
A and perform an update. At the same time transaction tx2 modify an object A' with the same
identity oidA, so both objects represent the same row in DB table and both operate on the "same"
row at the same time, thus the state of object with identity oidA is inconsistent.
Assume that tx1 was committed, now the modified object A' in tx2 based on outdated data (state
before A changed). If now tx2 commits object A' the changes of tx1 will be overwritten with the
"illegal" object A'.

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't allow tx2 to
read or modify objects with identity oidA as long as tx1 commit or rollback (pessimistic locking).
In other words, if in a running transaction an object in a with identity oidA has a write lock, the
lock manager doesn't allow other transactions to acquire a read or write lock on the same identity
oidA objects (for the sake of completeness: dependent on the used locking isolation level).

OJB supports two kind of locking strategies:

• optimistic locking
• pessimistic locking

OJB provide an pluggable low-level locking-api (located in
org.apache.ojb.broker.locking) for pessimistic locking, which can be used by the
top-level api's like ODMG. The PB-api itself does not support pessimistic locking out of the box.

The base classes of the locking-api can be found in org.apache.ojb.broker.locking and
the entry point is class LockManager.

Object locking helps to guarantee data consistency without the need of database locks. During a
transaction objects can be locked without the use a database connection, e.g the ODMG
implementation lookup a database connection not until the transaction commit was called. If
database locks are used, a connection is needed during the whole transaction.

2. Optimistic Locking

To control concurrent access to objects optimistic locking uses a version field on each persistent
object.

Optimistic locking is supported by all API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long, Integer or
Timestamp) which is incremented each time changes are committed to the object, and is utilizied to
determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,
because it checks data integrity only at update time.

1. In your table you need a dedicated column of type BIGINT, INTEGER or TIMESTAMP. Say
the column is typed as INTEGER and named VERSION_MAINTAINED_BY_OJB.

2. You then need a (possibly private) attribute in your java class corresponding to the column. Say
the attribute is defined as:

private int versionMaintainedByOjb;
3. in repository.xml you need a field-descriptor for this attribute. This field-descriptor must

specify attribute locking="true"

Locking

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/tutorials/odmg-tutorial.html
../../docu/guides/repository.html#field-descriptor

4. The resulting field-descriptor will look as follows:

<field-descriptor
name="versionMaintainedByOjb"
column="VERSION_MAINTAINED_BY_OJB"
jdbc-type="INTEGER"
locking="true"

/>

Note:
Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and database
the precision of timestamp values differ (e.g. new value only after 10 ms or 1000 ms). In high concurrency applications this will cause
problems.

3. Pessimistic-Locking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks on
persistent object (more precisely, on the identity object of the persistent object).
Pessimistic locking is currently used by the ODMG-api implementation. The PB-api does not
support PL out of the box.

3.1. Supported Isolation Levels

The OJB locking package supports four different isolation level.

• read-uncommitted
• read-committed
• repeatable-read
• serializable
• (none)
• (optimistic)

The object locking isolation levels can be simply characterized as follows:

Uncommitted Reads
Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read
locks is allowed even if another transaction is writing to that object (case 13). (Thats why this level
is also called dirty reads, because you can read lock objects with an existing write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks is
allowed only if there is no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining a write lock on an object that has been locked for reading
by another transaction is not allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case
6).

The isolation level none and optimistic are self-explanatory:
none - don't lock objects associated with this isolation level
optimistic - don't lock objects associated with this isolation level, because optimistic locking was
used instead.
Thus the lock manager will ignore all objects associated with these isolation level.

Note:

Locking

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/tutorials/pb-tutorial.html
../../api/org/apache/ojb/broker/locking/IsolationLevels.html

It's not needed to declare the optimistic isolation level in all persistent objects class-descriptor using this isolation level, because OJB
will automatically detect an enabled optimistic locking and will bypass pessimistic locking.
Only the proper settings for optimistic locking are mandatory.

Note:
The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it, so take
care when comparing database transaction isolation level with object locking isolation level.

The proper behaviour of the different locking isolation level is checked by JUnit TestCases that
implement test methods for each of the 17 cases specified in the above table. (See code for classes
in package org.apache.ojb.broker.locking in OJB test suite).

The semantics of the strategies are defined by the following table:

Case Name of
TestCase

Transaction Transaction-Isolationlevel

Tx1 Tx2 ReadUncommitedReadCommitedRepeatableReadsSerializable

1 SingleReadlockR True True True True

18 ReadThenReadR True True True True

R

2 UpgradeReadlockR True True True True

U

3 ReadThenWriteR True True True True

W

4 SingleWritelockW True True True True

5 WriteThenReadW True True True True

R

6 MultipleReadlockR R True True True False

7 UpgradeWithExistingReaderR U True True False False

8 WriteWithExistingReaderR W True True False False

9 UpgradeWithMultipleReadersR R True True False False

U

10 WriteWithMultipleReadersR R True True False False

W

11 UpgradeWithMultipleReadersOn1R R True True False False

W

Locking

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html

12 WriteWithMultipleReadersOn1R R True True False False

W

13 ReadWithExistingWriterW R True False False False

14 MultipleWritelocksW W False False False False

15 ReleaseReadLockR True True True True

Rel W

16 ReleaseUpgradeLockU True True True True

Rel W

17 ReleaseWriteLockW True True True True

Rel W

Acquire
ReadLock

R

Acquire
WriteLock

W

Upgrade
Lock

U

Release
Lock

Rel

The table is to be read as follows. The acquisition of a single read lock on a given object (case 1) is
allowed (returns True) for all isolationlevels. To upgrade a single read lock (case 2) is also allowed
for all isolationlevels. If there is already a write lock on a given object for tx1, it is not allowed
(returns False) to obtain a write lock from tx2 for all isolationlevels (case 14).

Note:
If the low-level locking api was used by hand:
Not all LockManager implementation support the LockManager#upgrade(...) method (e.g. upgrade was delegated to write
lock) or behavior of this method is a wee bit other than shown above. More detail see javadoc comment of the used LockManager
implementation.

3.2. How to specify locking isolation level

The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository element:

<descriptor-repository version="1.0" isolation-level="read-uncommitted"
proxy-prefetching-limit="50">

...
</descriptor-repository>

The isolation level of a class can be configured with the following attribute to a class-descriptor:

Locking

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/guides/repository.html#descriptor-repository
../../docu/guides/repository.html#class-descriptor

<ClassDescriptor isolation-level="read-uncomitted" ...>
...

</ClassDescriptor>

If no isolation-level was specified a default isolation level was used - see interface IsolationLevels.
The semantics of isolation levels are described in isolation level section.

3.3. Specify the LockManager Implementation

To specify the used lock manager implementation set the LockManagerClass property in
OJB.properties file. By default an in memory lock manager is enabled.

LockManagerClass=org.apache.ojb.broker.locking.LockManagerInMemoryImpl
...

3.4. The LockManager Implementations

Below all LockManager implementations shipped with OJB are listed.

The LockManager implementation can optionally support

• lock timeout: The locked objects of an owner will be released after a specified time
• block timeout: The maximal time to wait for acquire a lock (e.g. when an object was locked by

another thread). Implementations which do not support this feature are called non-blocking

3.4.1. LockManagerInMemoryImpl

A non-blocking, single JVM, in-memory LockManager implementation. All
LockManager.upgradeLock(...) calls are delegated to write locks. It's a simple and fast
implementation.

The timeout of locks is supported. The block timeout is ignored, because it's non-blocking.

3.4.2. LockManagerCommonsImpl

This implementation use the locking part of apache's commons-transaction api. The timeout of
locks is currently (OJB 1.0.2) not supported, maybe in further versions. This implementation
supports blocking (with deadlock detection) and non-blocking of acquired locks.

3.4.3. LockManagerRemoteImpl

Supports locking in distributed environments based on a servlet. The LockManagerRemoteImpl
class delegates all locking calls to a remote servlet (LockManagerServlet). The URL to
contact the servlet have to be set in OJB.properties file using the LockServletUrl property, e.g.

LockServletUrl=http://127.0.0.1:8080/ojb-lockserver

To make deployment of the LockManagerServlet on a servlet container easier an Ant target
lockservlet-war exist, which will build an example .war file containing all needed files (maybe
some useless files) for deployment.
The generated web.xml file look like:

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>OJB ODMG Lock Server</display-name>
<description>

Locking

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/locking/IsolationLevels.html
../../OJB.properties.txt
../../api/org/apache/ojb/broker/locking/LockManager.html
http://jakarta.apache.org/commons/transaction/
../../OJB.properties.txt

OJB ODMG Lock Server
</description>

<servlet>
<servlet-name>lockserver</servlet-name>

<servlet-class>org.apache.ojb.broker.locking.LockManagerServlet</servlet-class>
<init-param>

<param-name>lockManager</param-name>
<param-value>org.apache.ojb.broker.locking.LockManagerInMemoryImpl</param-value>

</init-param>
<init-param>

<param-name>lockTimeout</param-name>
<param-value>80000</param-value>

</init-param>
<init-param>

<param-name>blockTimeout</param-name>
<param-value>1000</param-value>

</init-param>

<!--load-on-startup>1</load-on-startup-->
</servlet>

<!-- The mapping for the webdav servlet -->
<servlet-mapping>

<servlet-name>lockserver</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<!-- Establish the default list of welcome files -->
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>

</welcome-file-list>
</web-app>

It's possible to use each LockManager implementation as backend of the lock manager servlet -
only adapt the lockManager init-param entry in the web.xml file.

4. ODMG-api Locking

The OJB ODMG implementation provides object level transactions as specified by the ODMG.
This includes features like registering objects to transactions, persistence by reachability (a toplevel
object is registered to a transaction, and also all its associated objects become registered
implicitely) and as a very important aspect: object level locking.

The ODMG locking implementation is located in org.apache.ojb.odmg.locking and base
on the OJB kernel locking code in org.apache.ojb.broker.locking. The odmg
implementation use it's own internal locking interface
org.apache.ojb.odmg.locking.LockManager with specific methods to handle
transactions as owner of a lock and persistent object Identity objects as resources to lock..

4.1. What it does

The ODMG-Api allows transactions to lock an object obj as follows:

org.odmg.Transaction.lock(Object obj, int lockMode)

where lockMode defines the locking modes:

org.odmg.Transaction.READ
org.odmg.Transaction.UPGRADE
org.odmg.Transaction.WRITE

A sample session could look as follows:

Locking

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/Identity.html

// get odmg facade instance
Implementation odmg = ...

//get open database
Database db = ...

// start a transaction
Transaction tx = odmg.newTransaction();
tx.begin();

MyClass myObject = ... ;

// lock object for write access
tx.lock(myObject, Transaction.WRITE);

// now perform write access on myObject ...

// finally commit transaction to make changes to myObject persistent
tx.commit();

The ODMG specification does not say if locks must be acquired explicitely by client applications
or may be acquired implicitely. OJB provides implicit locking for the application programmers
convenience: On commit of a transaction all read-locked objects are checked for modifications. If a
modification is detected, a write lock is acquired for the respective object. If automatic acquisition
of read- or write-lock failes, the transaction is aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part of the
persistence by reachability feature) with the same locking level. If application use large object nets
which are shared among several transactions acquisition of write-locks may be very difficult. Thus
OJB can be configured to aquire only read-locks for associated objects.
You can change this behaviour by modifying the file OJB.properties and changing the entry
LockAssociations=WRITE to LockAssociations=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies to be
used. Thus there are no API calls for setting isolation levels. OJB provides four different isolation
levels that can be configured global or for each persistent class in the configuration files.

5. Locking in distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) have to be
consistent over several JVM. The optimistic locking works in clustered/distributed environments
without any modifications.

Currently OJB was shipped was simple servlet based LockManager implementation called
LockManagerRemoteImpl.

Here is a description how to use it:

1. Change LockManagerClass entry in OJB.properties file to the remote implementation:
org.apache.ojb.broker.locking.LockManagerRemoteImpl and the
LockServletUrl to the servelt engine where the lock-server servlet will be deployed:

LockManagerClass=org.apache.ojb.broker.locking.LockManagerRemoteImpl
...
LockServletUrl=http://127.0.0.1:8080/ojb-lockserver

2. Run the ant lockservlet-war target to generate the lock-server servlet .war application
file. The generated file will be found in [db-ojb]/dist.

3. Check that all needed libraries be copied in lockservlet-war file.

Locking

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/ojb-properties.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the LockMap
servlet.

A much better solution will be a JMS- or JavaGroups-based LockManager implementation (hope
we can start working on such a implementation some day).

6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.
This may not be viable in some environments. Thus OJB allows to plug in user defined
LockManager implementations.
To specify specific implementations change the following entry in the OJB.properties configuration
file:

LockManagerClass=my.ojb.LockManagerMyImpl

Note:
Of course we are interested in your solutions! If you have implemented something interesting, just contact us.

Locking

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/locking/LockManager.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt

	1 Introduction
	2 Optimistic Locking
	3 Pessimistic-Locking
	3.1 Supported Isolation Levels
	3.2 How to specify locking isolation level
	3.3 Specify the LockManager Implementation
	3.4 The LockManager Implementations
	3.4.1 LockManagerInMemoryImpl
	3.4.2 LockManagerCommonsImpl
	3.4.3 LockManagerRemoteImpl

	4 ODMG-api Locking
	4.1 What it does

	5 Locking in distributed environment
	6 Pluggin own locking classes

