
Deployment

by Thomas Mahler, Armin Waibel, Stephen Ting, Christophe Lombart, Lucy Zhao

Table of contents

1 Introduction..3

2 Things needed for deploying OJB... 3

2.1 1. The OJB binary jar archive..3

2.2 2. Configuration data... 3

2.3 3. External dependencies that do not come with OJB... 3

2.4 4. Optional jar archives that come with OJB...3

2.5 5. Don't forget the JDBC driver...4

3 Deployment in standalone applications... 4

4 Deployment in servlet based applications..4

5 Deployment in managed environment (e.g. EJB based)..5

5.1 Configure OJB for managed environments considering as JBoss example............................ 5

5.1.1 1. Adapt OJB.properties file .. 5

5.1.2 2. Declare datasource in the repository (repository_database) file and do additional
configuration ..6

5.1.3 [2b. How to deploy ojb test hsqldb database to jboss] ...7

5.1.4 3. Include all OJB configuration files in classpath .. 7

5.1.5 4. Enclose all libraries OJB depend on .. 8

5.1.6 5. Take care of caching .. 8

5.1.7 6. Take care of locking ...8

5.1.8 7. Put all together ... 8

5.1.9 7b. Example: Deployable jar ..9

5.1.10 8. How to access OJB API? ..9

5.1.11 9. OJB logging within JBoss .. 10

5.2 Example Session Beans...10

5.2.1 Introduction...10

5.2.2 Generate the sample session beans .. 10

5.2.3 How to run test clients for PB / ODMG - api .. 11

5.3 Packing an .ear file.. 11

5.3.1 The Package Structure.. 11

5.3.2 Make OJB API Resources available... 12

5.4 Make OJB accessible via JNDI... 13

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

5.4.1 JBoss .. 13

5.4.2 Other Application Server ... 13

5.5 Instructions for Weblogic.. 13

Deployment

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

This section enumerates all things needed to deploy OJB in standalone or servlet based applications
and j2ee-container.

2. Things needed for deploying OJB

2.1. 1. The OJB binary jar archive

You need a db-ojb-<version>.jar file containing the compiled OJB library.
This jar files contains all OJB code neccessary in production level environments. It does not
contain any test code. It also does not contain any configuration data. You'll find this file in the lib
directory of the binary distribution. If you are working with the source distribution you can
assemble the binary jar archive By calling

ant jar

This ant task generates the binary jar to the dist directory.

2.2. 2. Configuration data

OJB needs two kinds of configuration data:

1. Configuration of the OJB runtime environment. This data is stored in a file named
OJB.properties . Learn more about this file here.

2. Configuration of the MetaData layer. This data is stored in file named repository.xml
(and several included files). Learn more about this file here.

Note:
These configuration files are read in through ClassLoader resource lookup and must therefore be placed on the classpath.

2.3. 3. External dependencies that do not come with OJB

Some components of OJB depend on external libraries and components that cannot be shipped with
OJB. You'll also need these if you want to compile OJB from source. Here is a list of these
dependencies:

j2ee.jar
This is the main archive of the J2EE SDK.
jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

2.4. 4. Optional jar archives that come with OJB

Some of jar files in the lib folder are only used during build-time or are only required by certain
components of OJB, and so they might need not to be needed in runtime environments.
Apart from wasting disk space they do no harm. If you don't care about disk space you just take all
jars from the lib folder.
If you do care, here is the list of jars you might omit during runtime:

ant-*.jar
These are the Apache Ant 1.6 jars.
antlr-[version].jar
ANTLR is a parser generator which is used in the ODMG component of OJB. If you
only use the PB Api, then you don't need this.

Deployment

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../OJB.properties.txt
../../docu/guides/ojb-properties.html
../../repository.xml.txt
../../docu/guides/repository.html
http://java.sun.com/j2ee/download.html#sdk
http://java.sun.com/products/jdo/
http://ant.apache.org/
http://www.antlr.org/

junit.jar
Junit for running the unit tests. You'll need this only if you're also writing unit tests for
you app.
xerces.jar, xml-apis.jar
The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely
that you do not need these files.
xalan.jar
Xalan is used to generate the unit test report, so you'll probably don't need this.
jakarta-regexp-[version].jar
The Jakarta Regular Expression library is only used when building OJB from source.
torque-xxx.jar, velocity-xxx.jar
Torque is used to generate concrete databases from database-independent schema
files. OJB uses it internally to setup databases for the unit tests.
xdoclet-[version].jar, xjavadoc-[version].jar,
xdoclet-ojb-module-[version].jar,
commons-collections-[version].jar
The XDoclet OJB module can be used to generate the repository metadata and
Torque schema files from Javadoc comments in the Java source files. It is however not
required at runtime, so you can safely ignore these files then.

2.5. 5. Don't forget the JDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the declared
JDBC drivers the respective jar archives must also be present in the classpath. Refer to the
documentation of your databases.

In the following sections I will describe how to deploy these items for specific runtime
environments.

3. Deployment in standalone applications

Deploying OJB for standalone applications is most simple. If you follow these four steps your
application will be up in a few minutes.

1. Add db-ojb-<version>.jar to the classpath
2. place OJB.properties and repository.xml files on the classpath
3. Add the additional runtime jar archives to the classpath.
4. Add your JDBC drivers jar archive to the classpath.

4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed also in
Servlet / JSP based environments.
The exact details may differ for your specific Servlet container, but the general concepts should be
quite similar.

1. Deploy db-ojb-<version>.jar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in a directory
WEB-INF/lib. Place db-ojb-<version>.jar to this directory.

2. Deploy OJB.properties and repository.xml with your servlet applications WAR file.
The WAR format specifies that Servlet classes are to be placed in a directory
WEB-INF/classes. The OJB configuration files have to be in this directory.

3. Add the additional runtime jar archives to WEB-INF/lib too.
4. Add your JDBC drivers jar archive to WEB-INF/lib.

By executing ant war you can generate a sample servlet application assembled to a valid WAR

Deployment

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://www.junit.org
http://xml.apache.org/xerces-j/
http://xml.apache.org/xalan-j/
http://jakarta.apache.org/regexp/index.html
http://db.apache.org/torque/
../../docu/guides/xdoclet-module.html
../../OJB.properties.txt
../../repository.xml.txt

file. The resulting ojb-servlet.war file is written to the dist directory. You can deploy this
WAR file to your servlet engine or unzip it to have a look at its directory structure.
you can also use the target war as a starting point for your own deployment scripts.

5. Deployment in managed environment (e.g. EJB based)

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the
repository.xml are valid for managed/EJB environments as well.
But apart from these basic steps you'll have to perform some additional configurations to integrate
OJB into a managed environment.

Managed environment: Using of OJB in a managed environment means primarily the cooperation
of OJB with the application server JTA service (via JCA or by using JTA classes).

The instructions to make OJB running within your application server should be similar for all
server. So the following instructions for JBoss should be useful for all user. E.g. most
OJB.properties file settings are the same for all application server.

There are some topics you should examine very carefully:

• Connection handling: Lookup DataSource from your AppServer, only these connections can
be enlisted in running transactions (JTA)

• Caching: Do you need caching? Do you need distributed caching?
• Locking: Do you need distributed locking (when using odmg-api in clustered environments)?

5.1. Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on a ejb
conform Application Server on the basis of the shipped ejb-examples. In managed environments
OJB needs some specific properties:

5.1.1. 1. Adapt OJB.properties file

If the PB-api is the only persistence API being used (no ODMG nor JDO) and it is only being used
in a managed environment, it is strongly recommended to use a special
PersistenceBrokerFactory class, which enables PersistenceBroker instances to
participate in the running JTA transaction - e.g. this makes PBStateListener proper work in
managed environments and enables OJB to synchronize the persistent caches (e.g. the two-level
cache):

PersistenceBrokerFactoryClass=org.apache.ojb.broker.core.PersistenceBrokerFactorySyncImpl

Note:
Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).
If no permanent caching (only the "empty" cache implementation or the "per broker cache") is used and the PBStateListener is
not used to detect tx demarcation, it's possible to use the default PersistenceBrokerFactory implementation, because OJB
doesn't need to synchronize anything.

Your OJB.properties file need the following additional settings to work within managed
environments (apply to all used api):

...
only needed when using OJB 1.0.3 or earlier in managed environments. Since
version
1.0.4 OJB detects datasources from managed environments automatically.
ConnectionFactoryClass=
org.apache.ojb.broker.accesslayer.ConnectionFactoryManagedImpl

Deployment

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../OJB.properties.txt
../../docu/guides/objectcache.html
../../OJB.properties.txt

...
set used application server TM access class
JTATransactionManagerClass=
org.apache.ojb.otm.transaction.factory.JBossTransactionManagerFactory

A specific ConnectionFactory implementation is used in version before 1.0.4 to by-pass all
forbidden method calls in managed environments. Since OJB 1.0.4 datasources from managed
environments are detected automatically by checking the JTA-TxManager.

The JTATransactionManagerClass property specify the used implementation class to lookup the
transaction manager used by the application server. The
javax.transaction.TransactionManager is needed to make it possible for OJB to
participate in running JTA transaction via javax.transaction.Synchronization
interface.

The ODMG-api needs some additional settings for use in managed environments (only needed
when odmg-api was used):

...
only needed for odmg-api
ImplementationClass=org.apache.ojb.odmg.ImplementationJTAImpl

...
only needed for odmg-api
OJBTxManagerClass=org.apache.ojb.odmg.JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed environments
a specific implementation is used, able to participate in JTA transactions.

The OJBTxManagerClass specify the used OJBTxManager implementation to manage the
transaction synchronization in managed enviroments.

Note:
Currently OJB integrate in managed environments via javax.transaction.Synchronization interface. When the JCA
adapter is finished (work in progress) integration will be more smooth.

5.1.2. 2. Declare datasource in the repository (repository_database) file and do additional
configuration

Do only use DataSource from the application server to connect to your database (Local used
connections can not participate in JTA transaction).

Note:
We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got
Statement/Connection resource problems when running some ejb stress tests. As workaround we introduce a jboss specific attribute
eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this problem seems to be fixed in
3.2.2.

Define OJB to use a DataSource:

<!-- Datasource example -->
<jdbc-connection-descriptor

jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="java:DefaultDS"
username="sa"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="0"

Deployment

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/connection.html

ignoreAutoCommitExceptions="false"
>

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

</sequence-manager>

</jdbc-connection-descriptor>

In OJB versions before 1.0.4 the attribute useAutoCommit="0" is mandatory in managed
environments, because it's in most cases not allowed to change the connection's autoCommit state.

Note:
In managed environments you can't use the default sequence manager implementation (SequenceManagerHighLowImpl) of OJB. For
alternative sequence manager implemetation see here.

5.1.3. [2b. How to deploy ojb test hsqldb database to jboss]

If you use hsql database for testing you can easy setup the DB on jboss. After creating the database
in OJB test directory with ant prepare-testdb, take the generated
.../target/test/OJB.script file and rename it to default.script. Then replace the
jboss default.script file in .../jboss-3.x.y/server/default/db/hypersonic with
this file.

5.1.4. 3. Include all OJB configuration files in classpath

Include the all needed OJB configuration files in your classpath:

- OJB.properties
- repository.dtd
- repository.xml
- repository_internal.xml
- repository_database.xml,
- repository_ejb.xml (if you want to run the ejb examples)

To deploy the ejb-examples beans we include all configuration files in a ejb jar file - more info
about this see below.

The repository.xml for the ejb-example beans look like:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a sample metadata repository for the ObJectBridge
System. Use this file as a template for building your own
mappings-->

<!-- defining entities for include-files -->
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd" [
<!ENTITY database SYSTEM "repository_database.xml">
<!ENTITY internal SYSTEM "repository_internal.xml">
<!ENTITY ejb SYSTEM "repository_ejb.xml">
]>

<descriptor-repository version="1.0"
isolation-level="read-uncommitted">

<!-- include all used database connections -->
&database;

Deployment

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/sequencemanager.html

<!-- include ojb internal mappings here -->
&internal;

<!-- include mappings for the EJB-examples -->
&ejb;

</descriptor-repository>

5.1.5. 4. Enclose all libraries OJB depend on

In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar
or ejb .jar file to make OJB run and (re-)deployable. Here are the libraries needed to make the ojb
sample session beans run on JBoss:

• The jakarta commons libraries files (all commons-xxx.jar) from OJB /lib directory
• The antlr jar file (antlr-xxx.jar) from OJB /lib directory
• jakarta-regexp-xxx.jar from OJB /lib directory
• [jakarta turbine jcs.jar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

(This was tested with jboss 3.2.2)

5.1.6. 5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODMG-api or
PB-api (with special PBF (see 1.) setting) it's possible to use all ObjectCache implementations
as long as OJB doesn't run in a clustered mode. When the ObjectCacheDefaultImpl cache
implementation was used it's recommended to enable the autoSync mode.
In clustered environments (OJB run on different AppServer nodes) you need a distributed
ObjectCache or you should use a local/empty cache like

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl

or

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCacheEmptyImpl

The cache is pluggable, so you can write your own ObjectCache implementation to accomplish
your expectations.

More info you can find in clustering and ObjectCache topic.

5.1.7. 6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered
environments (OJB run on different AppServer nodes) a distributed lock management is
mandatory.

5.1.8. 7. Put all together

Now put all files together. We keep the examples as simple as possible, thus we deploy only a ejb
.jar file. Below you can find a short instruction how to pack an ejb application .ear file including
OJB.

Generate the ejb-examples described below or build your own ejb .jar file including all beans,
ejb-jar.xml and appServer dependend files. Then add all OJB configuration files, the db-ojb jar file
and all libraries OJB depends on into this ejb .jar file.
The structure of the ejb .jar file should now look like this:

/OJB.properties
/repository.dtd

Deployment

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/objectcache.html
../../docu/howtos/howto-work-with-clustering.html
../../docu/howtos/howto-work-with-clustering.html
../../docu/howtos/howto-work-with-clustering.html
../../docu/guides/objectcache.html
../../docu/guides/lockmanager.html

/repository.xml
/all used repository-XYZ.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml
.../jboss.xml

/all ejb classes

/db-ojb-1.X.jar
/all used libraries

5.1.9. 7b. Example: Deployable jar

For example the jar-file used to test the ejb-examples shipped with OJB, base on the
db-ojb-XY-beans.jar file. This jar was created when the ejb-examples target was called.

The generated jar contains only the ejb-classes and the deployment-descriptor. We have to add
additional jars (all libraries used by OJB) and files (all configuration files) to make it deployable.
The deployable db-ojb-XY-beans.jar should look like this:

/OJB.properties
/repository.dtd
/repository.xml
/repository_database.xml
/repository_ejb.xml
/repository_internal.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml
.../jboss.xml

/org
.../apache (all ejb classes)

/db-ojb-1.X.jar

/antlr-XXX.jar
/commons-beanutils-XXX.jar
/commons-collections-XXX.jar
/commons-dbcp-XXX.jar
/commons-lanf-XXX.jar
/commons-logging-XXX.jar
/commons-pool-XXX.jar
/jakarta-regexp-XXX.jar

Please pay attention on the configuration settings to make OJB work in managed environments
(especially the OJB.properties settings).

Note:
This example isn't a real world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle
one or more complete J2EE (web) applications. More about how to build an J2EE application using OJB see here.

The described example should be re-deployable/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions are welcome!

5.1.10. 8. How to access OJB API?

In managed environments it is possible to access OJB in same way used in non-managed
environments:

// PB-api
PersistenceBroker broker = PersistenceBrokerFactory.create...;

Deployment

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

//ODMG-api
Implementation odmg = OJB.getInstance();

But it is recommended to bind OJB api access classes to JNDI and lookup the the api entry classes
via JNDI.

5.1.11. 9. OJB logging within JBoss

Jboss use log4j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

LoggerClass=org.apache.ojb.broker.util.logging.Log4jLoggerImpl

There is no need for a separate log4j.properties file of OJB-specific log4j settings (in fact the
OJB.properties setting LoggerConfigFile is ignored). Instead, the jBoss log4j configuration file
must be used:

2) in JBOSS_HOME/server/default/conf/log4j.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the
numerous examples in that file. For example,

<category name="org.apache.ojb">
<priority value="DEBUG" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

<category name="org.apache.ojb.broker.metadata.RepositoryXmlHandler">
<priority value="ERROR" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

5.2. Example Session Beans

5.2.1. Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes
for testing. Please recognize that we don't say that these examples show "best practices" of using
OJB within enterprise java beans - it's only one way to make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static lookup
or helper classes on each ejbCreate() call. But we recommend to bind the OJB main classes in
JNDI instead of direct use in the session beans.

5.2.2. Generate the sample session beans

The source code of the sample beans is stored in directory
[db-ojb]/src/ejb/org/apache/ojb/ejb
To generate the sample beans call

ant ejb-examples

This ant target copies the bean sources to [db-ojb]/target/srcejb generates all needed
bean classes and deployment descriptor (by using xdoclet) to the same directory, compiles the
sources and build an ejb .jar file called [db-ojb]/dist/db-ojb-XXX-beans.jar. Test
clients for the generated beans included in the [db-ojb]/dist/db-ojb-XXX-client.jar.

To run xdoclet properly the following xdoclet jar files needed in [db-ojb]/lib directory

Deployment

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://logging.apache.org/log4j/
http://xdoclet.sourceforge.net/

(xdoclet version 1.2xx or higher):

xdoclet-xxx.jar
xdoclet-ejb-module-xxx.jar
xdoclet-jboss-module-xxx.jar
xdoclet-jmx-module-xxx.jar
xdoclet-web-module-xxx.jar
xdoclet-xjavadoc-module-xxx.jar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db-ojb]/build-ejb-examples.xml to force xdoclet to generate the appServer specific
files. See xdoclet documentation for further information.

5.2.3. How to run test clients for PB / ODMG - api

If the "extended ejb .jar" file was successfully deployed we need a test client to invoke the
ejb-examples. As said above, the ejb-examples target generates a test client jar too. It's called
[db-ojb]/dist/db-ojb-XXX-client.jar and contains junit based test clients for the
PB-/ODMG-api.
The main test classes are:

• org.apache.ojb.ejb.AllODMGTests
• org.apache.ojb.ejb.AllPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer libraries in
[db-ojb]/lib (e.g. for JBoss jbossall-client.jar do the job, beside the "j2ee jars"). To run the
PB-api test clients (access running JBoss server with default settings) call

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests

To run the test clients on an arbitrary appServer pass the JNDI properties for naming context
initalisation too, e.g.

• -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
• -Djava.naming.provider.url="jnp://localhost:1099"
• -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Then the target call may looks like

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests
-Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
-Djava.naming.provider.url="jnp://localhost:1099"
-Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

5.3. Packing an .ear file

Here is an example of the .ear package structure. It is redeployable without having to restart JBoss.

5.3.1. The Package Structure

The package structure of the .ear file should look like:

/ejb.jar/
...EJBs
...META-INF/
......ejb-jar.xml
......jboss.xml
......MANIFEST.MF

/web-app.war/
...JSP
...WEB-INF/

Deployment

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

......web.xml

/META-INF/
...application.xml
/ojb.jar
/[ojb required runtime jar]

/OJB.properties
/OJB-logging.properties
/repository.dtd
/respository_internal.xml
/repository.xml
/repository_database1.xml
/repository_app1.xml
/repository_database2.xml
/repository_app2.xml

5.3.2. Make OJB API Resources available

There are two approaches to use OJB api in the ejb.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by
OJB (Very important to include all required jar). The sample below works fine (replace [version]
with distributed JAR versions):

Class-Path: db-ojb-[version].jar antlr-[version].jar
commons-beanutils-[version].jar
commons-collections-[version].jar commons-dbcp-[version].jar
commons-lang-[version].jar
commons-logging-[version].jar commons-pool-[version].jar
jakarta-regexp-[version].jar

Note:
If you to include the jar file under a directory of the ear file, says /lib/db-ojb-[version].jar and etc. At the classpath attribute
it will be something like: Class-Path: ./lib/db-ojb-[version].jar and etc (The "." in front is important)

2. To add the required jar file as a "java" element in the application.xml file:

<module>
<java>antlr-[version].jar</java>

</module>
<module>

<java>commons-beanutils-[version].jar</java>
</module>
<module>

<java>commons-collections-[version].jar</java>
</module>
<module>

<java>commons-dbcp-[version].jar</java>
</module>
<module>

<java>commons-lang-[version].jar</java>
</module>
<module>

<java>commons-logging-[version].jar</java>
</module>
<module>

<java>commons-pool-[version].jar</java>
</module>
<module>

<java>db-ojb-[version].jar</java>
</module>

Note:
To use this approach, all the library had to be in the root of the ear.

Deployment

12
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

(This was tested on Jboss 3.2.3)

5.4. Make OJB accessible via JNDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB
accessible via JNDI and use a JNDI-lookup to access OJB api's in your beans.
To make the OJB api's accessible via JNDI, bind main/access classes to JNDI. How to do this
depends on the used environment. The main classes/methods to bind are:

• PB-api:
Method
org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory#instance()
returns the used
org.apache.ojb.broker.core.PersistenceBrokerFactoryIF. Make this
instance accessible via JNDI.

• ODMG-api:
Method org.apache.ojb.odmg.OJB#getInstance() returns a new instance of the
org.odmg.Implementation instance. Open a new Databaseand make this instance and
the Database instance accessible via JNDI.

5.4.1. JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the
Weblogic example below.
Let JBoss know about the new mbeans, so declare them in a jboss-service.xml file. Please
see JBoss documentation how to write mbeans and bind objects to JNDI.

5.4.2. Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For
example in Weblogic you can use startup class implementation to bind OJB main/access classes to
JNDI (see below).

5.5. Instructions for Weblogic

1. Add the OJB jar files and depedencies into the Weblogic classpath

2. As usual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

...
Weblogic Transaction Manager Factory
JTATransactionManagerClass=
org.apache.ojb.broker.transaction.tm.WeblogicTransactionManagerFactory

4. Modify the connection information in the repository.xml (specify the datasource name).
SequenceManager implementation depends on the used DB, more info see here:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="datasource_demodb"
eager-release="false"
batch-mode="false"
useAutoCommit="0"
ignoreAutoCommitExceptions="false"

Deployment

13
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/sequencemanager.html

>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="grabSize" attribute-value="20"/>
</sequence-manager>
</jdbc-connection-descriptor>

Note:
The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic
classpath. This allows to access the PB-api via JNDI lookup. Register via the weblogic console the
startup class (see OjbPbStartup class below). The JNDI name and the OJB.properties file path
can be specified as parameters in this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too complicated.
Take a look in org.apache.ojb.jboss package (dir src/connector/main). Here you
could find the jboss mbeans. All you have to do is bound a similar class to JNDI in weblogic.
Implement ODMGJ2EEFactory Interface in your class bound this class to JNDI (in the
ejb-examples the beans try to lookup the Implementation instance via
"java:/ojb/defaultODMG"). Your ODMGFactory class should implement this method

public Implementation getInstance()
{

return OJBJ2EE_2.getInstance();
}

Write a session bean similar to those provided for the JBOSS samples. It is also possible to use the
ejb-example beans (doing minor modifications when the JNDI lookup should be used).

Webolgic startup class
Write an OJB startup class to make OJB accessible via JNDI can look like (I couldn't test this
sample class, so don't know if it will work ;-)):

package org.apache.ojb.weblogic;

import javax.naming.*;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory;
import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

import weblogic.common.T3ServicesDef;
import weblogic.common.T3StartupDef;
import java.util.Hashtable;

/**
* This startup class created and binds an instance of a
* PersistenceBrokerFactoryIF into JNDI.
*/
public class OjbPbStartup

implements T3StartupDef, OjbPbFactory, Serializable
{

private String defaultPropsFile = "org/apache/ojb/weblogic/OJB.properties";

public void setServices(T3ServicesDef services)
{
}

public PersistenceBrokerFactoryIF getInstance()
{

return PersistenceBrokerFactoryFactory.instance();
}

public String startup(String name, Hashtable args)

Deployment

14
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

throws Exception
{

try
{

String jndiName = (String) args.get("jndiname");
if(jndiName == null || jndiName.length() == 0)

jndiName = OjbPbFactory.DEFAULT_JNDI_NAME;

String propsFile = (String) args.get("propsfile");
if(propsFile == null || propsFile.length() == 0)
{

System.setProperty("OJB.properties", defaultPropsFile);
}
else
{

System.setProperty("OJB.properties", propsFile);
}

InitialContext ctx = new InitialContext();
bind(ctx, jndiName, this);

// return a message for logging
return "Bound OJB PersistenceBrokerFactoryIF to " + jndiName;

}
catch(Exception e)
{

e.printStackTrace();
// return a message for logging
return "Startup Class error: impossible to bind OJB PB factory";

}
}

private void bind(Context ctx, String name, Object val)
throws NamingException

{
Name n;
for(n = ctx.getNameParser("").parse(name); n.size() > 1; n =

n.getSuffix(1))
{

String ctxName = n.get(0);
try
{

ctx = (Context) ctx.lookup(ctxName);
}
catch(NameNotFoundException namenotfoundexception)
{

ctx = ctx.createSubcontext(ctxName);
}

}
ctx.bind(n.get(0), val);

}
}

The used OjbPbFactory interface:

package org.apache.ojb.weblogic;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

public interface OjbPbFactory
{

public static String DEFAULT_JNDI_NAME = "PBFactory";
public PersistenceBrokerFactoryIF getInstance();

}

Deployment

15
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

	1 Introduction
	2 Things needed for deploying OJB
	2.1 1. The OJB binary jar archive
	2.2 2. Configuration data
	2.3 3. External dependencies that do not come with OJB
	2.4 4. Optional jar archives that come with OJB
	2.5 5. Don't forget the JDBC driver

	3 Deployment in standalone applications
	4 Deployment in servlet based applications
	5 Deployment in managed environment (e.g. EJB based)
	5.1 Configure OJB for managed environments considering as JBoss example
	5.1.1 1. Adapt OJB.properties file
	5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	5.1.4 3. Include all OJB configuration files in classpath
	5.1.5 4. Enclose all libraries OJB depend on
	5.1.6 5. Take care of caching
	5.1.7 6. Take care of locking
	5.1.8 7. Put all together
	5.1.9 7b. Example: Deployable jar
	5.1.10 8. How to access OJB API?
	5.1.11 9. OJB logging within JBoss

	5.2 Example Session Beans
	5.2.1 Introduction
	5.2.2 Generate the sample session beans
	5.2.3 How to run test clients for PB / ODMG - api

	5.3 Packing an .ear file
	5.3.1 The Package Structure
	5.3.2 Make OJB API Resources available

	5.4 Make OJB accessible via JNDI
	5.4.1 JBoss
	5.4.2 Other Application Server

	5.5 Instructions for Weblogic

