
Connection Handling

by Armin Waibel, Martin Kalén

Table of contents

1 Introduction..2

2 ConnectionFactory... 2

2.1 ConnectionFactoryPooledImpl..2

2.2 ConnectionFactoryNotPooledImpl..2

2.3 ConnectionFactoryManagedImpl.. 3

2.4 ConnectionFactoryDBCPImpl.. 3

3 ConnectionManager... 3

4 Questions and Answers..4

4.1 How does OJB handle connection pooling?..4

4.2 Can I directly obtain a java.sql.Connection within OJB?... 4

4.3 When does OJB open/close a connection..5

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Introduction

In this section the connection handling within OJB is described. The connection management is
implemented through two OJB interfaces:

• org.apache.ojb.broker.accesslayer.ConnectionFactory
• org.apache.ojb.broker.accesslayer.ConnectionManagerIF

2. ConnectionFactory

The org.apache.ojb.broker.accesslayer.ConnectionFactory interface
implementation is a pluggable component (via the OJB.properties file - more about the
OJB.properties file here) responsible for creation/lookup and release of connections.

public interface ConnectionFactory
{

Connection lookupConnection(JdbcConnectionDescriptor jcd) throws
LookupException;

void releaseConnection(JdbcConnectionDescriptor jcd, Connection con);

void releaseAllResources();
}

To enable a specific ConnectionFactory implementation class in the OJB.properties file, set
property ConnectionFactoryClass. Default:

ConnectionFactoryClass=org.apache.ojb.broker.accesslayer.ConnectionFactoryPooledImpl

OJB is shipped with several different implementation classes for use in different situations. The
default implementation for example, will pool created Connection instances for increased
performance (since instance creation normally makes a database server roundtrip and thus is
costly).

To make it more easier to implement your own ConnectionFactory class, an abstract base class
called
org.apache.ojb.broker.accesslayer.ConnectionFactoryAbstractImpl
exists, most shipped implementation classes inherit from this class.

Note:
All shipped implementations of ConnectionFactory with support for connection pooling will only use object pools for connections
obtained directly from the JDBC DriverManager. If you are using a DataSource configuration, the JNDI DataSource is responsible for
pooling.

2.1. ConnectionFactoryPooledImpl

A ConnectionFactory implementation using commons-pool to pool the Connection instances. On
lookupConnection a Connection instance is borrowed from the object pool, and returned on the
releaseConnection call. This implementation is used as default setting in the OJB.properties file.

This implementation allows a wide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

2.2. ConnectionFactoryNotPooledImpl

Implementation that creates a new Connection instance on each lookupConnection call and closes
(destroys) it on releaseConnection. All connection-pool settings are ignored by this
implementation.

Connection Handling

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../OJB.properties.txt
../../docu/guides/ojb-properties.html
../../docu/guides/ojb-properties.html
http://jakarta.apache.org/commons/pool/
../../OJB.properties.txt
../../docu/guides/repository.html#connection-pool
../../docu/guides/repository.html#connection-pool

2.3. ConnectionFactoryManagedImpl

[@deprecated since OJB 1.0.4, now OJB automatic detect the running JTA-transaction and
suppress critical method calls on the used connection]
Implementation specifically for use in managed environments like J2EE conformant application
servers. In managed environments it is mandatory to use DataSource configuration, with
Connection objects provided by the application server. OJB will not control Connection properties
or transaction handling when using this implementation.

All connection-pool settings are ignored by this implementation.

2.4. ConnectionFactoryDBCPImpl

Implementation using commons-dbcp to pool the Connection instances. Since DBCP is using
commons-pool internally, this implementation is very similar to ConnectionFactoryPooledImpl,
but permits additional configuration for logging abandoned Connection instances (usable under
development for detecting bad programming patterns).

This implementation allows a wide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

3. ConnectionManager

The org.apache.ojb.broker.accesslayer.ConnectionManagerIF interface
implementation is a pluggable component (via the OJB.properties file - more about the
OJB.properties file here) responsible for managing the connection usage lifecycle and connection
status (commit/rollback of connections).

public interface ConnectionManagerIF
{

JdbcConnectionDescriptor getConnectionDescriptor();

Platform getSupportedPlatform();

boolean isAlive(Connection conn);

Connection getConnection() throws LookupException;

boolean isInLocalTransaction();

void localBegin();

void localCommit();

void localRollback();

void releaseConnection();

void setBatchMode(boolean mode);

boolean isBatchMode();

void executeBatch();

void executeBatchIfNecessary();

void clearBatch();
}

The ConnectionManager is used by the PersistenceBroker to handle connection usage lifecycle.

Connection Handling

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#connection-pool
http://jakarta.apache.org/commons/dbcp/
http://jakarta.apache.org/commons/pool/
../../docu/guides/repository.html#connection-pool
../../OJB.properties.txt
../../docu/guides/ojb-properties.html
../../docu/guides/ojb-properties.html

4. Questions and Answers

4.1. How does OJB handle connection pooling?

OJB does connection pooling per default, except for datasources that are never pooled internally by
OJB. Pooling of Connection instances when configuring OJB with DataSource lookup must be
configured and performed in the DataSource provider.

The implementations of the
org.apache.ojb.broker.accesslayer.ConnectionFactory.java interface are
responsible for managing the connections in OJB. There are several implementations shipped with
OJB called
org.apache.ojb.broker.accesslayer.ConnectionFactoryImpl.java. There is,
among others, a non-pooling implementation and an implementation using Commons DBCP API.

Configuration of the connection pooling is specified using the connection-pool element for each
jdbc-connection-descriptor. The connection-pool element can be configured with properties for the
specific ConnectionFactory implementation or JDBC driver used. For general information about
the configuration, see the repository section or read the comments in repository.dtd.

4.2. Can I directly obtain a java.sql.Connection within OJB?

It is possible to obtain a Connection using the PB API and a PersistenceBroker instance.
Example:

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myKey);
broker.beginTransaction();
// do something

Connection con = broker.serviceConnectionManager().getConnection();
// perform your connection action and do more
// close the created statement and result set

broker.commitTransaction();
broker.close();

After obtaining a Connection with
broker.serviceConnectionManager().getConnection(), the connection can be
used for any JDBC operations (except for transaction handling, more on this below). The user is
responsible for cleanup of created Statement and ResultSet instances, so be sure to guard your call
with a finally clause and close resources after use.

For read-only operations there is no need to start a PB transaction as in the example.

Note:
Do not commit any transactions on the Connection level, this should be left to OJB's PB API and will be performed automatically by
calling PersistenceBroker commit-/abortTransaction methods.

Note:
Do not call Connection.close() on the obtained Connection, this should be left to OJB's ConnectionFactory and will be
performed automatically when calling broker.close().

If no transaction is running, it is possible to release a connection "by hand" after use by calling:

broker.serviceConnectionManager().releaseConnection();

Connection Handling

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#connection-pool
../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html
../../repository.dtd.txt

This call performs cleanup operations on the used connection and pass the instance to the release
method of ConnectionFactory (this will e.g. return the connection to pool or close it).

If you do not do any connection cleanup, the connection will at the latest be released when calling
broker.close().

Users who are interested in this section might also be interested in 'Is it possible to perform my own
sql-queries in OJB?'.

4.3. When does OJB open/close a connection

This is dependent on the used OJB api. Generally OJB try to obtain a connection as late as possible
and close (if a connection pool was used, OJB return the connection to the pool) the connection as
soon as possible.

Using the PB-api the connection is obtained when
PersistenceBroker.beginTransaction() was called or a query is executed.
On PersistenceBroker.commitTransaction() or
PersistenceBroker.abortTransaction() call the connection was released. If no PB-tx
is running, the connection will be released on PersistenceBroker.close() call.

Using the ODMG-api the connection is obtained when a query is executed or when the transaction
commit. On leaving the commit method, the connection will be released.
All other top-level API should behave similar.

Connection Handling

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/faq.html#performSQL
../../docu/faq.html#performSQL
../../docu/guides/pb-guide.html
../../api/org/apache/ojb/broker/PersistenceBroker.html
../../docu/guides/odmg-guide.html

	1 Introduction
	2 ConnectionFactory
	2.1 ConnectionFactoryPooledImpl
	2.2 ConnectionFactoryNotPooledImpl
	2.3 ConnectionFactoryManagedImpl
	2.4 ConnectionFactoryDBCPImpl

	3 ConnectionManager
	4 Questions and Answers
	4.1 How does OJB handle connection pooling?
	4.2 Can I directly obtain a java.sql.Connection within OJB?
	4.3 When does OJB open/close a connection

