
Basic O/R Mapping Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel

Table of contents

1 Mapping 1:1 associations...2

1.1 1:1 auto-xxx setting... 4

2 Mapping 1:n associations...4

2.1 1:n auto-xxx setting... 6

3 Mapping m:n associations..7

3.1 Manual decomposition into two 1:n associations..7

3.2 Support for Non-Decomposed m:n Mappings.. 9

3.3 m:n auto-xxx setting.. 11

4 Setting Load, Update, and Delete Cascading...12

4.1 auto-retrieve setting... 12

4.2 Link references.. 13

5 Using Proxy Classes...14

5.1 Using Dynamic Proxies...17

5.2 Using a Single Proxy for a Whole Collection... 18

5.3 Using a Proxy for a Reference...19

5.4 Customizing the proxy mechanism... 19

6 Type and Value Conversions... 20

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Mapping 1:1 associations

As a sample for a simple association we take the reference from an article to its productgroup.
This association is navigable only from the article to its productgroup. Both classes are modelled in
the following class diagram. This diagram does not show methods, as only attributes are relevant
for the O/R mapping process.

1:1 association

The association is implemented by the attribute productGroup. To automatically maintain this
reference OJB relies on foreignkey attributes. The foreign key containing the groupId of the
referenced productgroup is stored in the attribute productGroupId. To avoid FK attribute
in persistent object class see section about anonymous keys.

This is the DDL of the underlying tables:

CREATE TABLE Artikel
(

Artikel_Nr INT NOT NULL PRIMARY KEY,
Artikelname VARCHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit VARCHAR(30),
Einzelpreis FLOAT,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

CREATE TABLE Kategorien
(

Kategorie_Nr INT NOT NULL PRIMARY KEY,
KategorieName VARCHAR(20),
Beschreibung VARCHAR(60)

)

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

• The attribute implementing the association (name="productGroup") is productGroup.
• The referenced object is of type (

class-ref="org.apache.ojb.broker.ProductGroup")
org.apache.ojb.broker.ProductGroup.

• A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

<foreignkey field-ref="productGroupId"/>
contains the name of the field-descriptor describing the foreignkey fields. The FieldDescriptor
with the name "productGroupId" describes the foreignkey attribute productGroupId:

Basic O/R Mapping Technique

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#anonymous-keys

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
...

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

This example provides unidirectional navigation only. Bidirectional navigation may be added by
including a reference from a ProductGroup to a single Article (for example, a sample article for the
productgroup). To accomplish this we need to perform the following steps:

1. Add a private Article attribute named sampleArticle to the class ProductGroup.
2. Add a private int attribute named sampleArticleId to the ProductGroup class representing

the foreign key. To avoid FK attribute in persistent object class see section about anonymous
keys.

3. Add a column SAMPLE_ARTICLE_ID INT to the table Kategorien.
4. Add a FieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class

ProductGroup:

<field-descriptor
name="sampleArticleId"
column="SAMPLE_ARTICLE_ID"
jdbc-type="INTEGER"

/>
1. Add a ReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

Basic O/R Mapping Technique

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/guides/advanced-technique.html#anonymous-keys

<reference-descriptor
name="sampleArticle"
class-ref="org.apache.ojb.broker.Article"

>
<foreignkey field-ref="sampleArticleId""/>

</reference-descriptor>

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

1.1. 1:1 auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will NOT be updated by
default.The reference will not be inserted or updated, the link to the reference (foreign key
value to the reference) on the main object will not be assigned automatically. The user has to
link the main object and to store the reference before the main object to avoid violation of
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the FK assignment on the main object was done
automatic. OJB reads the PK from the referenced object and sets these values as FK in main
object. But the referenced object remains untouched. If no referenced object is found, the FK
will be nullified. (On insert it is allowed to set the FK without populating the referenced object)

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will be stored first, then OJB
does the same as in link.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced
object will NOT be touched.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced

object will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only from the
ProductGroup to its Article instances. Both classes are modelled in the following class diagram.
This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

Basic O/R Mapping Technique

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/faq.html#primitiveNull

1:n association

The association is implemented by the Vector attribute allArticlesInGroup on the
ProductGroup class. As in the previous example, the Article class contains a foreignkey attribute
named productGroupId that identifies an Article's ProductGroup. The Database table are the same
as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor contains the
following information:

1. The attribute implementing the association (name="allArticlesInGroup")
2. The class of the elements in the collection (

element-class-ref="org.apache.ojb.broker.Article")
3. The name of field-descriptor of the element class used as foreign key attributes are defined in

inverse-foreignkey elements:

<inverse-foreignkey field-ref="productGroupId"/>
This is again pointing to the field-descriptor for the attribute productGoupId in class
Article.

4. optional attributes to define the sort order of the retrieved collection:
orderby="articleId" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

<!-- Definitions for org.apache.ojb.broker.ProductGroup -->
<class-descriptor

class="org.apache.ojb.broker.ProductGroup"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="Beschreibung"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
orderby="articleId"
sort="DESC"

>

Basic O/R Mapping Technique

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

</class-descriptor>

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup. This is
done with two SQL-calls: one for the ProductGroup and one for all Articles.

2. if Article is a proxy (using proxy classes), OJB will only load the keys of the Articles after the
ProductGroup. When accessing an Article-proxy OJB will have to materialize it with another
SQL-Call. Loading the ProductGroup and all it's Articles will thus produce n+2 SQL-calls: one
for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

• A. is suitable for a small number of related objects that are easily instantiated. It's efficient
regarding DB-calls. The major drawback is the amount of data loaded. For example to show a
list of ProductGroups the Articles may not be needed.

• B. is best used for a large number of related heavy objects. This solution loads the objects when
they are needed ("lazy loading"). The price to pay is a DB-call for each object.

Further down a third solution using a single proxy for a whole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. But in some cases the
default behaviour of OJB is undesired. Please read here for more information.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

2.1. 1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user has
to link and to store the referenced objects after storing the main object to avoid violation of
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and stored
automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

Basic O/R Mapping Technique

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#which-collection-type
../../docu/faq.html#primitiveNull

• none On deleting an object with PersistenceBroker.delete(...) the referenced
objects are NOT touched. This may lead to violation of referential integrity if the referenced
objects are childs of the main object. In this case the referenced objects have to be deleted
manually first.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced

objects will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated support
for non decomposed m:n associations.

3.1. Manual decomposition into two 1:n associations

Have a look at the following class diagram:

m:n association
We see a two classes with a m:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.
Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (
ID INT NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR(50),
LASTNAME VARCHAR(50)

);

CREATE TABLE PROJECT (
ID INT NOT NULL PRIMARY KEY,
TITLE VARCHAR(50),
DESCRIPTION VARCHAR(250)

);

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

This intermediary table allows to decompose the m:n association into two 1:n associations. The
intermediary table may also hold additional information. For example, the role a certain person
plays for a project:

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
ROLENAME VARCHAR(20),
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

Basic O/R Mapping Technique

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

The decomposition is mandatory on the ER model level. On the object model level it is not
mandatory, but may be a valid solution. It is mandatory on the object level if the association is
qualified (as in our example with a rolename). This will result in the introduction of a association
class. A class-diagram reflecting this decomposition looks like:

m:n association

A Person object has a Collection attribute roles containing Role entries. A Project has a
Collection attribute roles containing Role entries. A Role has reference attributes to its
Person and to its Project.
Handling of 1:n mapping has been explained above. Thus we will finish this section with a short
look at the repository entries for the classes org.apache.ojb.broker.Person,
org.apache.ojb.broker.Project and org.apache.ojb.broker.Role:

<!-- Definitions for org.apache.ojb.broker.Person -->
<class-descriptor

class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="person_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor

class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"

Basic O/R Mapping Technique

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="project_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Role -->
<class-descriptor

class="org.apache.ojb.broker.Role"
table="PERSON_PROJECT"

>
<field-descriptor

name="person_id"
column="PERSON_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="project_id"
column="PROJECT_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="roleName"
column="ROLENAME"
jdbc-type="VARCHAR"

/>
<reference-descriptor

name="person"
class-ref="org.apache.ojb.broker.Person"

>
<foreignkey field-ref="person_id"/>

</reference-descriptor>
<reference-descriptor

name="project"
class-ref="org.apache.ojb.broker.Project"

>
<foreignkey field-ref="project_id"/>

</reference-descriptor>
</class-descriptor>

3.2. Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a Person
does not have a collection of Role objects but only a Collection of Project objects (held in the
attribute projects). Projects also are expected to contain a collection of Person objects (hold
in attribute persons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes projects and roles need additional information on the intermediary table and the
foreign key columns pointing to the PERSON table and the foreign key columns pointing to the
PROJECT table:

Note:

Basic O/R Mapping Technique

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

OJB supports a multiplicity of collection implementations, inter alia
org.apache.ojb.broker.util.collections.RemovalAwareCollection and
org.apache.ojb.broker.util.collections.RemovalAwareList. By default the removal aware collections were used.
This cause problems in m:n relations when auto-update="true" or "object" and auto-delete="false" or "none"
is set, because objects deleted in the collection will be deleted on update of main object. Thus it is recommended to use a NOT removal
aware collection class in m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

An full example for a non-decomposed m:n relation looks like:

<class-descriptor
class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="projects"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Project"
auto-retrieve="true"
auto-update="true"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PERSON_ID"/>
<fk-pointing-to-element-class column="PROJECT_ID"/>

</collection-descriptor>
</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor
class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

Basic O/R Mapping Technique

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/repository.html#collection-descriptor

/>
...
<collection-descriptor

name="persons"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Person"
auto-retrieve="true"
auto-update="false"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PROJECT_ID"/>
<fk-pointing-to-element-class column="PERSON_ID"/>

</collection-descriptor>
</class-descriptor>

That is all that needs to be configured! See the code in class
org.apache.ojb.broker.MtoNMapping for JUnit testmethods using the classes Person,
Project and Role.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

3.3. m:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entries in the indirection table) automatically. The user has to store the main
object, the referenced objects and to link the m:n relation after storing of all objects.
establishing the m:n relationship before storing main and referenced objects may violate
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entries in the indirection table).

Note:
Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of
referential integrity.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and stored
automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced
objects are NOT touched. The corresponding entries of the main object in the indirection table
will not be removed. This may lead to violation of referential integrity depending on the
definition of the indirection table.

Basic O/R Mapping Technique

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/faq.html#primitiveNull

• link On deleting an object with PersistenceBroker.delete(...) the m:n relation
will be unlinked (all entries of the main object in the indirection table will be removed).

• object On deleting an object with PersistenceBroker.delete(...) all referenced
objects will be deleted too.

• false Is equivalent to link.
• true Is equivalent to object.

4. Setting Load, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Java terminology) by declaring special Reference and Collection Descriptors. These
Descriptor may contain some additional information that modifies OJB's behaviour on object
materialization, updating and deletion.
The behaviour depends on specific attributes

• auto-retrieve - possible settings are false, true. If not specified in the descriptor the default
value is true

• auto-update - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

• auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

Warning:
When using a top-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.
For OTM- and JDO-api the settings are:
- auto-retrieve="true"
- auto-update="false"
- auto-retrieve="false"
This are at the same time the default auto-XXX settings (so don't specify any of this attributes will have the same effect).
For the ODMG-api the mandatory settings are (since OJB 1.0.2):
- auto-retrieve="true"
- auto-update="none"
- auto-retrieve="none"

The attribute auto-update and auto-delete are described in detail in the corresponding sections for
1:1, 1:n and m:n references. The auto-retrieve setting is described below:

4.1. auto-retrieve setting

The auto-retrieve attribute used in reference-descriptor or
collection-descriptor elements handles the loading behaviour of references (1:1, 1:n and
m:n):

• false If set false the referenced objects will not be materialized on object materialization. The
user has to materialize the n-side objects (or single object for 1:1) by hand using one of the
following service methods of the PersistenceBroker class:

PersistenceBroker.retrieveReference(Object obj, String attributeName);
// or
PersistenceBroker.retrieveAllReferences(Object obj);
The first method load only the specified reference, the second one loads all references declared
for the given object.

Note:
Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or
"true" or "link").
Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an
nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference was
removed.

Basic O/R Mapping Technique

12
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

• true If set true the referenced objects (single reference or all n-side objects) will be automatic
loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but
lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to
use cascading retrieval (auto-retrieve="true"), cascading insert/update (
auto-update="object" or auto-update="true") and cascading delete (
auto-delete="object" or auto-delete="true") operations:

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
>
<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
orderby="articleId"
sort="DESC"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

4.2. Link references

If in reference-descriptor or collection-descriptor the auto-update or
auto-delete attributes are set to none, OJB does not touch the referenced objects on insert, update or
delete operations of the main object. The user has to take care of the correct handling of referenced
objects. When using referential integrity (who does not ?) it's essential that insert and delete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK values is transcribed with
link references in OJB. In 1:1 references the main object has a FK to the referenced object, in 1:n
references the referenced objects have FK pointing to the main object and in non-decomposed m:n
relations a indirection table containing FK values from both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK) in
org.apache.ojb.broker.util.BrokerHelper class.

public void link(Object obj, boolean insert)
public void unlink(Object obj)
public boolean link(Object obj, String attributeName, boolean insert)
public boolean unlink(Object obj, String attributeName)

These methods are accessible via org.apache.ojb.broker.PersistenceBroker:

BrokerHelper bh = broker.serviceBrokerHelper();

Note:
The link/unlink methods are only useful if you set auto-update/-delete to none. In all other cases OJB handles the link/unlink of
references internally. It is also possible to set all FK values by hand without using the link/unlink service methods.

Basic O/R Mapping Technique

13
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

Examples
Now we prepared for some example. Say class Movie has an m:n reference with class Actor and
we want to store an Movie object with a list of Actor objects. The auto-update setting of
collection-descriptor for Movie is none:

broker.beginTransaction();
// store main object first
broker.store(movie);
//now we store the right-side objects
Iterator it = movie.getActors().iterator();
while(it.hasNext())
{

Object actor = it.next();
broker.store(actor);

}
// now both side exist and we can link the references
broker.serviceBrokerHelper().link(movie, "actors", true);
/*
alternative call
broker.serviceBrokerHelper().link(movie, true);
*/
broker.commitTransaction();

First store the main object and the references, then use
broker.serviceBrokerHelper().link(movie, "actors", true) to link the
main object with the references. In case of a m:n relation linking create all FK entries in the
indirection table.

In the next examples we want to manually delete a Project object with a 1:n relation to class
SubProject. In the example, the Project object has load all SubProject objects and we want to
delete the Project but don't want to delete the referenced SubProjects too (don't ask if this make
sense ;-)). SubProject has an FK to Project, so we first have to unlink the reference from the main
object to the references to avoid integrity constraint violation. Then we can delete the main object:

broker.beginTransaction();
// first unlink the n-side references
broker.serviceBrokerHelper().unlink(project, "subProjects");

// update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();
while(it.hasNext())
{

SubProject subProject = (SubProject) it.next();
broker.store(subProject);

}

// now delete the main object
broker.delete(project);
broker.commitTransaction();

5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can
help you in reducing unneccessary database lookups.
There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switches in
repository.xml. This is the solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy implementations.

As it is important to understand the mechanics of the proxy mechanism I highly recommend to read
this section before turning to the next sections "using dynamic proxies", "using a single proxy for a
whole collection" and "using a proxy for a reference", covering dynamic proxies.

Basic O/R Mapping Technique

14
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

As a simple example we take a ProductGroup object pg which contains a collection of fifteen
Article objects. Now we examine what happens when the ProductGroup is loaded from the
database:

Without using proxies all fifteen associated Article objects are immediately loaded from the db,
even if you are not interested in them and just want to lookup the description-attribute of the
ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same
interface as the "real objects" but contain only an OID and a void reference. The fifteen article
objects are not instantiated when the ProductGroup is initially materialized. Only when a method is
invoked on such a proxy object will it load its "real subject" and delegate the method call to it.
Using this dynamic delegation mechanism instantiation of persistent objects and database lookups
can be minimized.

To use proxies, the persistent class in question (in our case the Article class) must implement an
interface (for example InterfaceArticle). This interface is needed to allow replacement of the proper
Article object with a proxy implementing the same interface. Have a look at the code:

public class Article implements InterfaceArticle
{

/** maps to db-column "Artikel-Nr"; PrimaryKey*/
protected int articleId;
/** maps to db-column "Artikelname"*/
protected String articleName;
...

public int getArticleId()
{

return articleId;
}

public java.lang.String getArticleName()
{

return articleName;
}
...

}

public interface InterfaceArticle
{

public int getArticleId();
public java.lang.String getArticleName();
...

}

public class ArticleProxy extends VirtualProxy implements InterfaceArticle
{

public ArticleProxy(ojb.broker.Identity uniqueId, PersistenceBroker broker)
{

super(uniqueId, broker);
}

public int getArticleId()
{

return realSubject().getArticleId();
}

public java.lang.String getArticleName()
{

return realSubject().getArticleName();
}

private InterfaceArticle realSubject()
{

Basic O/R Mapping Technique

15
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

try
{

return (InterfaceArticle) getRealSubject();
}
catch (Exception e)
{

return null;
}

}
}

The proxy is constructed from the identity of the real subject. All method calls are delegated to the
object returned by realSubject().
This method uses getRealSubject() from the base class VirtualProxy:

public Object getRealSubject() throws PersistenceBrokerException
{

return indirectionHandler.getRealSubject();
}

The proxy delegates the the materialization work to its IndirectionHandler. If the real
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

public synchronized Object getRealSubject()
throws PersistenceBrokerException

{
if (realSubject == null)
{

materializeSubject();
}
return realSubject;

}

private void materializeSubject()
throws PersistenceBrokerException

{
realSubject = broker.getObjectByIdentity(id);

}

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the
following section to the XML repository file:

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="org.apache.ojb.broker.ArticleProxy"
table="Artikel"

>
...

The following class diagram shows the relationships between all above mentioned classes:

Basic O/R Mapping Technique

16
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

proxy image

5.1. Using Dynamic Proxies

The implementation of a proxy class is a boring task that repeats the same delegation scheme for
each new class. To liberate the developer from this unproductive job OJB provides a dynamic
proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK1.2 we ship a replacement
for the required java.lang.reflect classes. Credits for this solution to ObjectMentor.) The
basic idea of the dynamic proxy concept is to catch all method invocations on the not-yet
materialized (loaded from database) object. When a method is called on the object, Java directs this
call to the invocation handler registered for it (in OJB's case a class implementing the
org.apache.ojb.broker.core.proxy.IndirectionHandler interface). This
handler then materializes the object from the database and replaces the proxy with the real object.
By default OJB uses the class
org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl. If
you are interested in the mechanics have a look at this class.

To use a dynamic proxy for lazy materialization of Article objects we have to declare it in the
repository.xml file.

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...

Basic O/R Mapping Technique

17
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

Just as with normal proxies, the persistent class in question (in our case the Article class) must
implement an interface (for example InterfaceArticle) to be able to benefit from dynamic proxies.

Note:
As of OJB 1.0.4, a facility is now present to allow the generation of dynamic proxies that do not require the persistent class to
implement an interface. Previous versions generated Proxies using the JDK proxy pattern. That has been extracted into a new
configuration setting named 'ProxyFactoryClass'.
Two implementations of this ProxyClass have been provided: the previous JDK-based version (default), and a new CGLIB-based
implementation. Since the CGLIB version does byte-code manipulation to generate the proxy, your class is not required to implement
any interface. All generated Proxies will automatically be sub-classes of your persistent class.
See below in the section "Customizing the proxy mechanism" for how to enable the new CGLIB Proxy generation.

5.2. Using a Single Proxy for a Whole Collection

A collection proxy represents a whole collection of objects, where as a proxy class represents a
single object.
The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A
collection proxy only needs a single db-call to materialize all it's objects. This happens the first
time its content is accessed (ie: by calling iterator();). An additional db-call is used to calculate the
size of the collection if size() is called before loading the data. So collection proxy is mainly used
as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxies are specific java.util.List implementations that are used by OJB to replace
lists. The default set proxy class is
org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl

2. Set proxies are specific java.util.Set implementations that are used by OJB to replace
sets. The default set proxy class is
org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl

3. Collection proxies are collection classes implementing the more generic
java.util.Collection interface and are used if the collection is neither a list nor a set.
The default collection proxy class is
org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl

Which of these proxy class is actually used, is determined by the collection-class setting of
this collection. If none is specified in the repository descriptor, or if the specified class does not
implement java.util.List nor java.util.Set, then the generic collection proxy is used.

The following mapping shows how to use a collection proxy for a relationship:

<!-- Definitions for
org.apache.ojb.broker.ProductGroupWithCollectionProxy -->
<class-descriptor
class="org.apache.ojb.broker.ProductGroupWithCollectionProxy"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"

/>
...
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
proxy="true"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>

Basic O/R Mapping Technique

18
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

</class-descriptor>

The classes participating in this relationship do not need to implement a special interface to be used
in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not
recommended because it increases the number of database calls.

5.3. Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that the
ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.
In the following mapping the class ProductGroup is not defined to be a proxy class in its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

<!-- Definitions for org.apache.ojb.broker.ArticleWithReferenceProxy -->
<class-descriptor

class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

proxy="true"
>

<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

</class-descriptor>

Because a proxy reference is only about the location of the definition, the referenced class must
implement a special interface (see using proxy classes).

5.4. Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies, you can select a ProxyFactory, as well as provide your own indirection
handler. Two default indirection handler implementations have been provided that coorespond to
the apporpriate ProxyFactory (IndirectionHandlerJDKImpl and IndirectionHandlerCGLIBImpl).

Note: All indirection handlers must implement the appropriate base indirection handler class,
depending on what ProxyFactory is being used. For example: when using ProxyFactoryJDKImpl,
the specified indirection handler must implement the IndirectionHandlerJDK interface.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(java.util.Collection, java.util.List, or java.util.Set) as well as the
org.apache.ojb.broker.ManageableCollection interface.

Proxy implementations are configured in the ojb properties file. These are the relevant settings:

...
#--

ProxyFactory and IndirectionHandler

Basic O/R Mapping Technique

19
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

#--
The ProxyFactoryClass entry defines which ProxyFactory implementation

is to be used.
By default, a 1.0 compatiable, JDK-based version is used. However, a

the CGLIB
based entry is available.
#
- ProxyFactoryCGLIBImpl: Refernece proxies are generated using

bytecode manipulation
from the CGLIB library. Any class can become a dynamic

proxy, and not
just ones that implement an interface.
- ProxyFactoryJDKImpl: OJB 1.0 compatiable Proxy implementation.

Proxies in this method
can only be generated from classes that implement an

interface, and
the generated Proxy will implement all methods of that

interface.
#
NOTE: The appropriate cooresponding IndirectionHandler must be choosen

as well
#

#ProxyFactoryClass=org.apache.ojb.broker.core.proxy.ProxyFactoryCGLIBImpl
ProxyFactoryClass=org.apache.ojb.broker.core.proxy.ProxyFactoryJDKImpl
#
The IndirectionHandlerClass entry defines the class to be used by

OJB's proxies to
handle method invocations
#

#IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerCGLIBImpl
IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerJDKImpl

#
#--

ListProxy
#--

The ListProxyClass entry defines the proxy class to be used for
collections that

implement the java.util.List interface.
#
ListProxyClass=org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl
#

#--
SetProxy

#--
The SetProxyClass entry defines the proxy class to be used for

collections that
implement the java.util.Set interface.
#
SetProxyClass=org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl
#

#--
CollectionProxy

#--
The CollectionProxyClass entry defines the proxy class to be used for

collections that
do not implement java.util.List or java.util.Set.
#

CollectionProxyClass=org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl
...

6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your
Domain objects. You need a type and value mapping described by a FieldConversion!

Basic O/R Mapping Technique

20
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/jdbc-types.html

	1 Mapping 1:1 associations
	1.1 1:1 auto-xxx setting

	2 Mapping 1:n associations
	2.1 1:n auto-xxx setting

	3 Mapping m:n associations
	3.1 Manual decomposition into two 1:n associations
	3.2 Support for Non-Decomposed m:n Mappings
	3.3 m:n auto-xxx setting

	4 Setting Load, Update, and Delete Cascading
	4.1 auto-retrieve setting
	4.2 Link references

	5 Using Proxy Classes
	5.1 Using Dynamic Proxies
	5.2 Using a Single Proxy for a Whole Collection
	5.3 Using a Proxy for a Reference
	5.4 Customizing the proxy mechanism

	6 Type and Value Conversions

