
Advanced O/R Mapping Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel

Table of contents

1 Extents and Polymorphism.. 2

1.1 Polymorphism..2

1.2 Extents... 3

1.3 Performance Tip.. 4

2 Mapping Inheritance Hierarchies...4

2.1 Mapping Each Class of a Hierarchy to a Distinct Table (table per class)...............................5

2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy)....................................... 7

2.2.1 Implement your own Discriminator Handling.. 9

2.3 Mapping Each Subclass to a Distinct Table (table per subclass).. 10

2.3.1 Table Per Subclass via Foreign Key... 12

3 Using interfaces with OJB... 13

4 Change PersistentField Class... 17

5 How do anonymous keys work?.. 17

6 Using Rowreader..18

6.1 Rowreader Example.. 20

7 Nested Objects... 21

8 Instance Callbacks..22

9 Manageable Collection.. 23

9.1 Types Allowed for Implementing 1:n and m:n Associations..24

9.2 Which collection-class type should be used?.. 25

10 Customizing collection queries.. 26

11 Metadata runtime changes..26

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

1. Extents and Polymorphism

Working with inheritance hierarchies is a common task in object oriented design and programming.
Of course, any serious Java O/R tool must support inheritance and interfaces for persistent classes.
There are many example classes for polymorphism in OJB's JUnit TestSuite.

To demonstrate/explain Extents and Polymorphism we will look at a simple class hierarchy:
There is a primary interface InterfaceArticle. This interface is implemented by Article
and CdArticle. There is also a class BookArticle derived from Article. (See the
following class diagram for details)

polymorphism.gif

1.1. Polymorphism

OJB allows us to use interfaces, abstract or concrete base classes in queries, or in type definitions
of reference attributes. A Query against the interface InterfaceArticle must not only return
objects of type Article but also of CdArticle and BookArticle!
The following example method searches for all objects implementing InterfaceArticle with
an articleName equal to Hamlet (provided that the object mapping is correct, details will described
later). The Collection is e.g filled with one matching BookArticle object.

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();
crit.addEqualTo("articleName", "Hamlet");
Query q = QueryFactory.newQuery(InterfaceArticle.class, crit);

Advanced O/R Mapping Technique

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/testing/testsuite.html
../../docu/guides/basic-technique.html
../../docu/guides/basic-technique.html

Collection result = broker.getCollectionByQuery(q);
}

Of course it is also possible to define reference attributes of an interface or baseclass type. The
example class Article has a reference attribute (1:1 reference) of type ProductGroup and this
can be a concrete/abstract class or interface.

1.2. Extents

The query in the last example returned just one object. Now, imagine a query against the
InterfaceArticle interface with no selecting criteria. OJB returns all the objects
implementing InterfaceArticle. E.g. all Article, BookArticle and CdArticles
objects.
In the following example the method prints out the collection of all InterfaceArticle
objects:

public void testExtentByQuery() throws Exception
{

// no criteria signals to omit a WHERE clause
Query q = QueryFactory.newQuery(InterfaceArticle.class, null);
Collection result = broker.getCollectionByQuery(q);

System.out.println(
"The InterfaceArticle Extent objects: " +result);

}

Note:
The set of all instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG and JDO
terminology.
OJB extends this notion slightly, as all objects which are subclasses of a concrete/abstract base class or implementing a given interface
can be regarded as members of the base class or interface extent.

In our class diagram we find:

1. two simple one-class-only extents, BookArticle and CdArticle.
2. A compound extent Article containing all Article and BookArticle instances.
3. An interface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the metadata
mapping file. The classes from the above example require the following declarations:

1. one-class-only extents require no declaration
2. A declaration for the base class Article, defining which classes are subclasses of Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="false"
table="Artikel"
...

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />

...
</class-descriptor>

3. A declaration for InterfaceArticle, defining which classes implement this interface:

<!-- Definitions for org.apache.ojb.broker.InterfaceArticle -->
<class-descriptor class="org.apache.ojb.broker.InterfaceArticle">

<extent-class class-ref="org.apache.ojb.broker.Article" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<!-- not needed to declare -->
<!--<extent-class class-ref="org.apache.ojb.broker.BookArticle" />-->

</class-descriptor>

Advanced O/R Mapping Technique

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html
../../docu/guides/basic-technique.html#one-to-one
../../docu/guides/repository.html
../../docu/guides/repository.html

No need to declare BookArticle here, because it's a declared sub class of Article, so it's
implicit declared by Article extent.

Why is it necessary to explicitely declare which classes implement an interface and which classes
are derived from a base class?
Of course it is quite simple in Java to check whether a class implements a given interface or
extends some other class. But sometimes it may not be appropiate to treat special implementors
(e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but is only allowed
to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as
derived from a base even if they are not (we don't recommend to use this feature it's bad design, but
if you don't have an alternative...).
As an example, you will find that the ClassDescriptor of abstract test class
org.apache.ojb.broker.CollectionTest$BookShelfItem in the OJB's Test Suite
contains an entry declaring class org.apache.ojb.broker.CollectionTest$Candie
as a derived class:

<class-descriptor class="org.apache.ojb.broker.CollectionTest$BookShelfItem">
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$Book"/>
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$DVD"/>
<!-- This class isn't a subclass of Book or DVD or a implementation of
BookShelfItem, anyway it's possible to declare it as extent (but not

recommended) -->
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$Candie"/>

</class-descriptor>

1.3. Performance Tip

When using extents OJB will produce some overhead for each declared extent (e.g. execute a
separate select-query for each extent or using complex table joins).
Thus it's important to avoid unnecessary extent declarations. If in the above example class
InterfaceArticle is never used in queries, don't declare the extents for the implementing
classes (Article, CdArticle). It's always possible to add additional extents in mapping files.

2. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies to
RDBMS has been widely covered. In the following sections we will use a simple inheritance
example to show the different inheritance mapping strategies.

Assume we have a base class Employee and class Executive extends Employee. Further on
class Manager extends Executive.

mapping-inheritance.png

If we have to define database tables that have to contain these classes we have to choose one of the
following solutions:

1. Map each class of a hierarchy to a distinct table and have all attributes from the base class in the
derived class.

2. Map class hierarchy onto one table.

3. Map subclass fields of a hierarchy to a distinct table, but do not map super class fields to
derived classes. Use joins to materialize over all tables to materialize objects.

OJB provides direct support for all three approaches.

Advanced O/R Mapping Technique

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html
../../docu/guides/repository.html

Note:
But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by using
OJB.

2.1. Mapping Each Class of a Hierarchy to a Distinct Table (table per class)

This is the most simple solution. Just write a complete ClassDescriptor with FieldDescriptors for all
of the attributes, including inherited attributes.

The classes of our mapping example would look like:

public class Employee implements Serializable
{

private Integer id;
private String name;

public Employee()
{
}

....
// getter/setter for id and ojbConcreteClass
}

public class Executive extends Employee
{

private String department;
....
// getter/setter
}

public class Manager extends Executive
{

private int consortiumKey;
....
// getter/setter
}

The ClassDescriptors include all fields of the representing java-class and each descriptor points to a
different table:

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<extent-class class-ref="Executive" />
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>

Advanced O/R Mapping Technique

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor
../../docu/guides/repository.html#field-descriptor
../../docu/guides/repository.html#class-descriptor

<extent-class class-ref="Manager" />
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Manager"
table="MANAGER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>
</class-descriptor>

The extent-class element is needed to declare the inheritance between the classes.

The DDL for the tables would look like:

CREATE TABLE EMPLOYEE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150)

)
CREATE TABLE EXECUTIVE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150)

)
CREATE TABLE MANAGER
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150),
CONSORTIUM_KEY INT

Advanced O/R Mapping Technique

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#extent-class

)

2.2. Mapping Class Hierarchy on the Same Table (table per hierarchy)

Mapping several classes on one table works well under OJB. There is only one special situation
that needs some attention:

Storing Employee, Executive and Manager objects to this table works fine. But now
consider a Query against the baseclass Employee. How can the correct type of the stored objects
be determined?

OJB needs a discriminator column of type CHAR or VARCHAR that contains the class name to be
used for instantiation. This column must be mapped on a special attribute ojbConcreteClass.
On loading objects from the table, OJB checks this attribute and instantiates objects of this type.

Note:
The criterion for ojbConcreteClass is statically added to the query in class QueryFactory and it therefore appears in the
select-statement for each extent. This means that mixing mapping strategies should be avoided.

The classes of our mapping example would look like:

public class Employee implements Serializable
{

private Integer id;
/**
* This special attribute telling OJB which concrete class
* this Object has.
* NOTE: this attribute MUST be called ojbConcreteClass
*/
private String ojbConcreteClass;
private String name;

public Employee()
{

// this guarantee that always the correct class name will be set
this.ojbConcreteClass = this.getClass().getName();

}
....
// getter/setter for id and ojbConcreteClass
}

public class Executive extends Employee
{

private String department;

public Executive()
{

super();
}

....
// getter/setter
}

public class Manager extends Executive
{

private int consortiumKey;

public Manager()
{

super();
}

....
// getter/setter
}

Note:

Advanced O/R Mapping Technique

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/query/QueryFactory.html

Getter/setter for attribute ojbConcreteClass in base class Employee are only needed if OJB is forced to use getter/setter for field
access.

Here are the metadata mappings of our mapping example:

<class-descriptor
class="Employee"
table="MANPOWER"

>
<extent-class class-ref="Executive" />

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="MANPOWER"

>
<extent-class class-ref="Manager" />

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Manager"
table="MANPOWER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

Advanced O/R Mapping Technique

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/advanced-technique.html#persistent-field

autoincrement="true"
/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>
</class-descriptor>

The column CLASS_NAME is used to store the concrete type of each object.

The extent-class element is needed to declare the inheritance between the classes.

The DDL for the table would look like:

CREATE TABLE MANPOWER
(

ID INT NOT NULL PRIMARY KEY,
CLASS_NAME VARCHAR(150)
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150),
CONSORTIUM_KEY INT

)

2.2.1. Implement your own Discriminator Handling

If you cannot provide such an additional column, but need to use some other means of indicating
the type of each object you will require some additional programming:

You have to derive a Class from
org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl and override the
method RowReaderDefaultImpl.selectClassDescriptor() to implement your
specific type selection mechanism. The code of the default implementation looks like follows:

protected ClassDescriptor selectClassDescriptor(Map row)
throws PersistenceBrokerException

{
// check if there is an attribute which tells us
// which concrete class is to be instantiated
ClassDescriptor result = m_cld;
Class ojbConcreteClass = (Class) row.get(OJB_CONCRETE_CLASS_KEY);
if(ojbConcreteClass != null)
{

result = m_cld.getRepository().getDescriptorFor(ojbConcreteClass);
// if we can't find class-descriptor for concrete
// class, something wrong with mapping
if (result == null)
{

throw new PersistenceBrokerException(
"Can't find class-descriptor for ojbConcreteClass '"
+ ojbConcreteClass + "', the main class was "
+ m_cld.getClassNameOfObject());

}

Advanced O/R Mapping Technique

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#extent-class

}
return result;

}

After implementing your own RowReader you must edit the ClassDescriptor for the respective
class in the XML repository to specify the usage of your RowReader Implementation:

<class-descriptor
class="my.Object"
table="MY_OBJECT"
...
row-reader="my.own.RowReaderImpl"
...

>
...

You will learn more about RowReaders in this section.

2.3. Mapping Each Subclass to a Distinct Table (table per subclass)

This mapping strategy maps all subclass fields of a hierarchy to a distinct table (but do not map
super class fields to derived class tables - except the primary key fields) and use joins to materialize
over all tables to materialize the objects.

The classes of the inheritance hierarchy don't need any specific fields or settings, thus our mapping
example java-classes look would look like the classes for the table-per-class mapping.

The next code block contains the class-descriptors of our mapping example.

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>

<reference-descriptor name="super"
class-ref="Employee"

>
<foreignkey field-ref="id"/>

</reference-descriptor>

Advanced O/R Mapping Technique

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#primary-key
../../docu/guides/repository.html#class-descriptor

</class-descriptor>

<class-descriptor
class="Manager"
table="MANAGER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="Executive"

>
<foreignkey field-ref="id"/>

</reference-descriptor>
</class-descriptor>

The mapping for base class Employee is ordinary and we using a autoincrement primary key
field.
In the subclasses Executive and Manager it's not allowed to use autoincrement primary keys,
because OJB will automatically copy the primary keys of the base class to all subclasses.

As you can see this mapping needs a special reference-descriptor in the subclasses Executive
and Manager that advises OJB to load the values for the inherited attributes from the super-class
by a JOIN using the foreign key reference.
The name="super" attribute is not used to address an actual attribute of the super-class but as a
marker keyword defining the JOIN to the super-class.

Note:
1. The auto-xxx attributes and the proxy attribute will be ignored when using the super keyword.
2. Be aware that this sample does not declare Executive or Manager to be an extent of Employee. Using extents here will lead to
problems (instatiating the wrong class) because the primary key is not unique within the hierarchy defined in the repository.

The DDL for the tables would look like:

CREATE TABLE EMPLOYEE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150)

)
CREATE TABLE EXECUTIVE
(

ID INT NOT NULL PRIMARY KEY,
DEPARTMENT VARCHAR(150)

)
CREATE TABLE MANAGER
(

ID INT NOT NULL PRIMARY KEY,
CONSORTIUM_KEY INT

)

Attributes from the base- or superclasses can be used the same way as attributes of the target class
when querying - e.g. for Executive or Manager. No path-expression is needed in this case. The
following examples returns all Executive and Manager matching the criteria:

Criteria c = new Criteria();
// attribute defined in base class Employee
c.addEqualTo("name", "Kent");

Advanced O/R Mapping Technique

11
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#autoincrement
../../docu/guides/repository.html#reference-descriptor
../../docu/guides/basic-technique.html#cascading
../../docu/guides/basic-technique.html#reference-proxy
../../docu/guides/repository.html
../../docu/guides/query.html#joins

// attribute defined in Executive
c.addEqualTo("department", "press");
Query q = QueryFactory.newQuery(Executive.class, c);
// returns all matching Executive and Manager instances
Collection result = broker.getCollectionByQuery(q);

2.3.1. Table Per Subclass via Foreign Key

The above example is based on the assumption that the primary key attribute Employee.id and
its underlying column EMPLOYEE.ID is also used as the foreign key attribute in the the
subclasses.

Now let us consider a case where this is not possible, then it's possible to use an additional foreign
key field/column in the subclass referencing the base-/superclass.

In this case the layout for class Executive would need an additional field employeeFk to store
the foreign key reference to Employee.
To avoid the additional field in the subclass (if desired) we can use OJB's anonymous field feature
to get everything working without the employeeFk attribute in subclass Employee (thus the
java classes of our mapping example). We keep the field-descriptor for employeeFk, but declare
it as an anonymous field. We just have to add an attribute access="anonymous" to the new
field-descriptor employeeFk:.

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="employeeFk"
column="EMPLOYEE_FK"
jdbc-type="INTEGER"
access="anonymous"

/>
<reference-descriptor name="super"

class-ref="Employee"
>

Advanced O/R Mapping Technique

12
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#primary-key
../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/guides/repository.html#field-descriptor

<foreignkey field-ref="employeeFk"/>
</reference-descriptor>

</class-descriptor>

<class-descriptor
class="Manager"
table="MANAGER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>

<field-descriptor
name="executiveFk"
column="EXECUTIVE_FK"
jdbc-type="INTEGER"
access="anonymous"

/>

<reference-descriptor name="super"
class-ref="Executive"

>
<foreignkey field-ref="executiveFk"/>

</reference-descriptor>
</class-descriptor>

Now it's possible to use autoincrement primary key fields in all classes of the hierarchy (because
they are decoupled from the inheritance references).
The foreignkey-element have to refer the new (anomymous) foreign-key field.

Warning:
The used primary keys (compound or single) have to unique over the mapped class hierarchy to avoid object identity conflicts. Else it
could happen e.g. when searching for a Employee with id="42" OJB maybe find a Employee and a Executive object with
id="42"!.
Thus it's problematic to use a database idenity columns based sequence-manager. In this case it's mandatory to use a different value
scope (start index of identity column) for each class in hierarchy (e.g. 1 for Employee, 1000000000 for Executive, ...).

3. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes.
With OJB this is no problem, but there are a couple of things to be aware of, which are detailed in
this section.

Consider this example hierarchy :

public interface A
{

String getDesc();
}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

Advanced O/R Mapping Technique

13
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/sequencemanager.html#identity-columns
../../docu/guides/sequencemanager.html

public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

Here, class C references the interface A rather than B. In order to make this work with OJB, four
things must be done:

• All features common to all implementations of A are declared in the class descriptor of A. This
includes references (with their foreignkeys) and collections.

• Since interfaces cannot have instance fields, it is necessary to use bean properties instead. This
means that for every field (including collection fields), there must be accessors (a get method
and, if the field is not marked as access="readonly", a set method) declared in the
interface.

• Since we're using bean properties, the appropriate
org.apache.ojb.broker.metadata.fieldaccess.PersistentField
implementation must be used (see below). This class is used by OJB to access the fields when
storing/loading objects. Per default, OJB uses a direct access implementation
(org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectImpl)
which requires actual fields to be present.
In our case, we need an implementation that rather uses the accessor methods. Since the
PersistentField setting is (currently) global, you have to check whether there are
accessors defined for every field in the metadata. If yes, then you can use the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl,
otherwise you'll have to resort to the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl,
which determines for every field what type of field it is and then uses the appropriate strategy.

• If at some place OJB has to create an object of the interface, say as the result type of a query,
then you have to specify factory-class and factory-method for the interface. OJB
then uses the specified class and (static) method to create an uninitialized instance of the
interface.

In our example, this would result in:

public interface A
{

void setId(Integer id);
Integer getId();
void setDesc(String desc);
String getDesc();

}

public class B implements A

Advanced O/R Mapping Technique

14
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

{
/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getId()
{

return id;
}
public void setId(Integer id)
{

this.id = id;
}
public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

public class AFactory
{

public static A createA()
{

return new B();
}

}

The class descriptors would look like:

<class-descriptor
class="A"
table="A_TABLE"
factory-class="AFactory"
factory-method="createA"

>
<extent-class class-ref="B"/>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

Advanced O/R Mapping Technique

15
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

<class-descriptor
class="B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="aId"
column="A_ID"
jdbc-type="INTEGER"

/>
<reference-descriptor name="obj"

class-ref="A">
<foreignkey field-ref="aId" />

</reference-descriptor>
</class-descriptor>

One scenario where you might run into problems is the use of interfaces for nested objects. In the
above example, we could construct such a scenario if we remove the descriptors for A and B, as
well as the foreign key field aId from class C and change its class descriptor to:

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="obj::desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

The access to desc will work because of the usage of bean properties, but you will get into trouble
when using dynamic proxies for C. Upon materializing an object of type C, OJB will try to create
the instance for the field obj which is of type A. Of course, this is an interface but OJB won't
check whether there is class descriptor for the type of obj (in fact there does not have to be one,
and usually there isn't) because obj is not defined as a reference. As a result, OJB tries to

Advanced O/R Mapping Technique

16
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#dynamic-proxy

instantiate an interface, which of course fails.
Currently, the only way to handle this is to write a custom invocation handler that knows how to
create an object of type A.

4. Change PersistentField Class

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence capable
classes. All strategy implementation classes have to implement the interface
org.apache.ojb.broker.metadata.fieldaccess.PersistentField. OJB
provide a few implementation classes which can be set in OJB.properties file:

The PersistentFieldClass property defines the implementation class
for PersistentField attributes used in the OJB MetaData layer.
By default the best performing attribute/refection based implementation
is selected (PersistentFieldDirectAccessImpl).
#
- PersistentFieldDirectAccessImpl
is a high-speed version of the access strategies.
It does not cooperate with an AccessController,
but accesses the fields directly. Persistent
attributes don't need getters and setters
and don't have to be declared public or protected
- PersistentFieldPrivilegedImpl
Same as above, but does cooperate with AccessController and do not
suppress the java language access check (but is slow compared with direct
access).
- PersistentFieldIntrospectorImpl
uses JavaBeans compliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be
public getXxx() and setXxx() methods.
- PersistentFieldDynaBeanAccessImpl
implementation used to access a property from a
org.apache.commons.beanutils.DynaBean.
- PersistentFieldAutoProxyImpl
for each field determines upon first access how to access this particular
field
(directly, as a bean, as a dyna bean) and then uses that strategy
#
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldPrivilegedImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDynaBeanImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl
#(DynaBean implementation does not support nested fields)
#

E.g. if the PersistentFieldDirectImpl is used there must be an attribute in the persistent class with
this name, if the PersistentFieldIntrospectorImpl is used there must be a JavaBeans compliant
property of this name. More info about the individual implementation can be found in javadoc.

5. How do anonymous keys work?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys.

All involved classes can be found in org.apache.ojb.broker.metadata.fieldaccess
package. The classes used for anonymous keys start with a AnonymousXYZ.java prefix.
Main class used for provide anonymous keys is
org.apache.ojb.broker.metadata.fieldaccess.AnonymousPersistentField.
Current implementation use an object identity based weak HashMap. The persistent object identity
is used as key for the anonymous key value. The (Anonymous)PersistentField instance is associated
with the FieldDescriptor declared in the repository.

Advanced O/R Mapping Technique

17
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#proxy-customization
../../OJB.properties.txt
../../api/index.html
../../docu/howtos/howto-use-anonymous-keys.html

This means that all anonymous key information will be lost when the object identity change, e.g.
the persistent object will be de-/serialized or copied. In conjuction with 1:1 references this will be
no problem, because OJB can use the referenced object to re-create the anonymous key information
(FK to referenced object).

Warning:
The use of anonymous keys in 1:n references (FK to main object) or for PK fields is only valid when object identity does not change,
e.g. use in single JVM without persistent object serialization and without persistent object copying.

6. Using Rowreader

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism.
All implementation classes have to implement interface RowReader.

You can specify the RowReader implementation in

• the OJB.properties file to set the standard used RowReader implementation

#---
RowReader
#---
Set the standard RowReader implementation. It is also possible to specify the
RowReader on class-descriptor level.
RowReaderDefaultClass=org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl
• within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
OJB.properties file. If neither a RowReader was set in OJB.properties file nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To
materialize objects from a rdbms OJB uses RsIterators, that are essentially wrappers to JDBC
ResultSets. RsIterators are constructed from queries against the Database.

The method RsIterator.next() is used to materialize the next object from the underlying
ResultSet. This method first checks if the underlying ResultSet is not yet exhausted and then
delegates the construction of an Object from the current ResultSet row to the method
getObjectFromResultSet():

protected Object getObjectFromResultSet() throws PersistenceBrokerException
{

if (getItemProxyClass() != null)
{

// provide m_row with primary key data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readPkValuesFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled with primary key values from db
return getProxyFromResultSet();

}
else
{

// 0. provide m_row with data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readObjectArrayFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled from db

// 1.read Identity
Identity oid = getIdentityFromResultSet();
Object result = null;

// 2. check if Object is in cache. if so return cached version.

Advanced O/R Mapping Technique

18
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/accesslayer/RowReader.html
../../OJB.properties.txt
../../docu/guides/repository.html#class-descriptor

result = getCache().lookup(oid);
if (result == null)
{

// 3. If Object is not in cache
// materialize Object with primitive attributes filled from
// current row
result = getQueryObject().getClassDescriptor()

.getRowReader().readObjectFrom(getRow());
// result may still be null!
if (result != null)
{

synchronized (result)
{

getCache().enableMaterializationCache();
getCache().cache(oid, result);
// fill reference and collection attributes
ClassDescriptor cld = getQueryObject().getClassDescriptor()

.getRepository().getDescriptorFor(result.getClass());
// don't force loading of reference
final boolean unforced = false;
// Maps ReferenceDescriptors to HashSets of owners
getBroker().getReferenceBroker().retrieveReferences(result,

cld, unforced);
getBroker().getReferenceBroker().retrieveCollections(result,

cld, unforced);
getCache().disableMaterializationCache();

}
}

}
else // Object is in cache
{

ClassDescriptor cld = getQueryObject().getClassDescriptor()
.getRepository().getDescriptorFor(result.getClass());

// if refresh is required, update the cache instance from the db
if (cld.isAlwaysRefresh())
{

getQueryObject().getClassDescriptor()
.getRowReader().refreshObject(result,

getRow());
}
getBroker().refreshRelationships(result, cld);

}
return result;

}
}

This method first uses a RowReader to instantiate a new object array and to fill it with primitive
attributes from the current ResultSet row.
The RowReader to be used for a Class can be configured in the XML repository with the attribute
row-reader. If no RowReader is specified, the standard RowReader is used. The method
readObjectArrayFrom(...) of this class looks like follows:

public void readObjectArrayFrom(ResultSet rs, ClassDescriptor cld, Map row)
{

try
{

Collection fields = cld.getRepository().
getFieldDescriptorsForMultiMappedTable(cld);

Iterator it = fields.iterator();
while (it.hasNext())
{

FieldDescriptor fmd = (FieldDescriptor) it.next();
FieldConversion conversion = fmd.getFieldConversion();
Object val = JdbcAccess.getObjectFromColumn(rs, fmd);
row.put(fmd.getColumnName() , conversion.sqlToJava(val));

}
}
catch (SQLException t)
{

Advanced O/R Mapping Technique

19
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/repository.html#class-descriptor

throw new PersistenceBrokerException("Error reading from result set",t);
}

}

In the second step OJB checks if there is already a cached version of the object to materialize. If so
the cached instance is returned. If not, the object is fully materialized by first reading in primary
attributes with the RowReader method readObjectFrom(Map row, ClassDescriptor
descriptor) and in a second step by retrieving reference- and collection-attributes. The fully
materilized Object is then returned.

public Object readObjectFrom(Map row, ClassDescriptor descriptor)
throws PersistenceBrokerException

{
// allow to select a specific classdescriptor
ClassDescriptor cld = selectClassDescriptor(row, descriptor);
return buildWithReflection(cld, row);

}

By implementing your own RowReader you can hook into the OJB materialization process and
provide additional features.

6.1. Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with a foreign key
relationship to a different database table but read the associated object 'inline' from some columns
of the master object's table. This approach is also called 'nested objects'. The section nested objects
contains a different and much simpler approach to implement nested fields.

The class org.apache.ojb.broker.ArticleWithStockDetail has a stockDetail
attribute, holding a reference to a StockDetail object. The class StockDetail is not declared in
the XML repository. Thus OJB is not able to fill this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
org.apache.ojb.broker.RowReaderTestImpl extends the RowReaderDefaultImpl and
overrides the readObjectFrom(...) method as follows:

public Object readObjectFrom(Map row, ClassDescriptor cld)
{

Object result = super.readObjectFrom(row, cld);
if (result instanceof ArticleWithStockDetail)
{

ArticleWithStockDetail art = (ArticleWithStockDetail) result;
boolean sellout = art.isSelloutArticle;
int minimum = art.minimumStock;
int ordered = art.orderedUnits;
int stock = art.stock;
String unit = art.unit;
StockDetail detail = new StockDetail(sellout, minimum,

ordered, stock, unit, art);
art.stockDetail = detail;
return art;

}
else
{

return result;
}

}

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the
following entry:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithStockDetail"
table="Artikel"

Advanced O/R Mapping Technique

20
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

row-reader="org.apache.ojb.broker.RowReaderTestImpl"
>

7. Nested Objects

In the last section we discussed the usage of a user written RowReader to implement nested objects.
This approach has several disadvantages.

1. It is necessary to write code and to have some understanding of OJB internals.
2. The user must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without any
further trouble just by a few settings in the repository.xml file.

The class org.apache.ojb.broker.ArticleWithNestedStockDetail has a
stockDetail attribute, holding a reference to a StockDetail object. The class StockDetail is
not declared in the XML repository as a first class entity class.

public class ArticleWithNestedStockDetail implements java.io.Serializable
{

/**
* this attribute is not filled through a reference lookup
* but with the nested fields feature
*/
protected StockDetail stockDetail;

...
}

The StockDetail class has the following layout:

public class StockDetail implements java.io.Serializable
{

protected boolean isSelloutArticle;

protected int minimumStock;

protected int orderedUnits;

protected int stock;

protected String unit;

...
}

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithNestedStockDetail"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"

Advanced O/R Mapping Technique

21
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

jdbc-type="INTEGER"
/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::unit"
column="Liefereinheit"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="price"
column="Einzelpreis"
jdbc-type="FLOAT"

/>
<field-descriptor

name="stockDetail::stock"
column="Lagerbestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::orderedUnits"
column="BestellteEinheiten"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::minimumStock"
column="MindestBestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
/>

</class-descriptor>

That's all! Just add nested fields by using :: to specify attributes of the nested object. All aspects
of storing and retrieving the nested object are managed by OJB.

8. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an
interface or extent a persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. This is
supported by a simple instance callback mechanism.

The interface org.apache.ojb.PersistenceBrokerAware provides a set of methods that
are invoked from the PersistenceBroker during operations on persistent instances:

Example

If you want that all persistent objects take care of CRUD operations performed by the
PersistenceBroker you have to do the following steps:

1. let your persistent entity class implement the interface PersistenceBrokerAware.
2. provide empty implementations for all required mthods.
3. implement the method afterUpdate(PersistenceBroker broker),

afterInsert(PersistenceBroker broker) and
afterDelete(PersistenceBroker broker) to perform your intended logic.

In the following "for demonstration only code" you see a class BaseObject (all persistent objects

Advanced O/R Mapping Technique

22
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../api/org/apache/ojb/broker/PersistenceBrokerAware.html

extend this class) that does send a notification using a messenger object after object state change.

public abstract class BaseObject implements PersistenceBrokerAware
{

private Messenger messenger;

public void afterInsert(PersistenceBroker broker)
{

if(messenger != null)
{

messenger.send(this.getClass + " Object insert");
}

}
public void afterUpdate(PersistenceBroker broker)
{

if(messenger != null)
{

messenger.send(this.getClass + " Object update");
}

}
public void afterDelete(PersistenceBroker broker)
{

if(messenger != null)
{

messenger.send(this.getClass + " Object deleted");
}

}

public void afterLookup(PersistenceBroker broker){}
public void beforeDelete(PersistenceBroker broker){}
public void beforeStore(PersistenceBroker broker){}

public void setMessenger(Messenger messenger)
{

this.messenger = messenger;
}

}

9. Manageable Collection

In 1:n or m:n relations, OJB can handle java.util.Collection as well as user defined
collection classes as collection attributes in persistent classes. See
collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by this interface
org.apache.ojb.broker.ManageableCollection.

public interface ManageableCollection extends java.io.Serializable
{

/**
* add a single Object to the Collection. This method is used during reading
* Collection elements from the database. Thus it is is save to cast

anObject
* to the underlying element type of the collection.
*/
void ojbAdd(Object anObject);

/**
* adds a Collection to this collection. Used in reading Extents from the
* Database. Thus it is save to cast otherCollection to this.getClass().
*/
void ojbAddAll(ManageableCollection otherCollection);

/**
* returns an Iterator over all elements in the collection. Used during

store and

Advanced O/R Mapping Technique

23
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/repository.html#collection-descriptor

* delete Operations.
* If the implementor does not return an iterator over ALL elements, OJB

cannot
* store and delete all elements properly.
*/
Iterator ojbIterator();

/**
* A callback method to implement 'removal-aware' (track removed objects and

delete
* them by its own) collection implementations.
*/
public void afterStore(PersistenceBroker broker) throws

PersistenceBrokerException;
}

The methods have a prefix "ojb" that indicates that these methods are "technical" methods, required
by OJB and not to be used in business code.

In package org.apache.ojb.broker.util.collections can be found a bunch of
pre-defined implementations of org.apache.ojb.broker.ManageableCollection.

More info about which collection class to used here.

9.1. Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. There is also no
additional programming required. The following types are supported:

1. java.util.Collection, java.util.List, java.util.Vector as in the
example above. Internally OJB uses java.util.Vector to implement collections.

2. Arrays (see the file ProductGroupWithArray).
3. User-defined collections (see the file ProductGroupWithTypedCollection). A typical

application for this approach are typed Collections.
Here is some sample code from the Collection class ArticleCollection. This Collection
is typed, i.e. it accepts only InterfaceArticle objects for adding and will return InterfaceArticle
objects with get(int index). To let OJB handle such a user-defined Collection it must
implement the callback interface ManageableCollection and the typed collection class
must be declared in the collection-descriptor using the collection-class attribute.
ManageableCollection provides hooks that are called by OJB during object
materialization, updating and deletion.

public class ArticleCollection implements ManageableCollection,
java.io.Serializable

{
private Vector elements;

public ArticleCollection()
{

super();
elements = new Vector();

}

public void add(InterfaceArticle article)
{

elements.add(article);
}

public InterfaceArticle get(int index)
{

return (InterfaceArticle) elements.get(index);
}

/**

Advanced O/R Mapping Technique

24
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

* add a single Object to the Collection. This method is
* used during reading Collection elements from the
* database. Thus it is is save to cast anObject
* to the underlying element type of the collection.
*/
public void ojbAdd(java.lang.Object anObject)
{

elements.add((InterfaceArticle) anObject);
}

/**
* adds a Collection to this collection. Used in reading
* Extents from the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
public void ojbAddAll(

ojb.broker.ManageableCollection otherCollection)
{

elements.addAll(
((ArticleCollection) otherCollection).elements);

}

/**
* returns an Iterator over all elements in the collection.
* Used during store and delete Operations.
*/
public java.util.Iterator ojbIterator()
{

return elements.iterator();
}

}

And the collection-descriptor have to declare this class:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"
auto-update="false"
auto-delete="true"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

9.2. Which collection-class type should be used?

Earlier in this section the org.apache.ojb.broker.ManageableCollection was
introduced. Now we talk about which type to use.

By default OJB use a removal-aware collection implementation. These implementations (classes
prefixed with Removal...) track removal and addition of elements.
This tracking allow the PersistenceBroker to delete elements from the database that have been
removed from the collection before a PB.store() operation occurs.

This default behaviour is undesired in some cases:

• In m:n relations, e.g. between Movie and Actor class. If an Actor was removed from the Actor
collection of a Movie object expected behaviour was that the Actor be removed from the
indirection table, but not the Actor itself. Using a removal aware collection will remove the
Actor too. In that case a simple manageable collection is recommended by set e.g.
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
in collection-descriptor.

• In 1:n relations when the n-side objects be removed from the collection of the main object, but
we don't want to remove them itself (be careful with this, because the FK entry of the main
object still exists - more info about linking here).

Advanced O/R Mapping Technique

25
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#linking

10. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of
collection mechanism. For example only children having a certain attribute should be loaded. This
is achieved by a QueryCustomizer defined in the collection-descriptor of a relationship:

<collection-descriptor
name="allArticlesInGroup"
...

>
<inverse-foreignkey field-ref="productGroupId"/>

<query-customizer
class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">

<attribute
attribute-name="attr1"
attribute-value="value1"

/>
</query-customizer>

</collection-descriptor>

The query customizer must implement the interface
org.apache.ojb.broker.accesslayer.QueryCustomizer. This interface defines
the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

/**
* Return a new Query based on the original Query, the
* originator object and the additional Attributes
*
* @param anObject the originator object
* @param aBroker the PersistenceBroker
* @param aCod the CollectionDescriptor
* @param aQuery the original 1:n-Query
* @return Query the customized 1:n-Query
*/
public Query customizeQuery(Object anObject,

PersistenceBroker aBroker,
CollectionDescriptor aCod, Query aQuery);

The class org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl
provides a default implentation without any functionality, it simply returns the query.

11. Metadata runtime changes

This was described in metadata section.

Advanced O/R Mapping Technique

26
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../../docu/guides/metadata.html

	1 Extents and Polymorphism
	1.1 Polymorphism
	1.2 Extents
	1.3 Performance Tip

	2 Mapping Inheritance Hierarchies
	2.1 Mapping Each Class of a Hierarchy to a Distinct Table (table per class)
	2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy)
	2.2.1 Implement your own Discriminator Handling

	2.3 Mapping Each Subclass to a Distinct Table (table per subclass)
	2.3.1 Table Per Subclass via Foreign Key

	3 Using interfaces with OJB
	4 Change PersistentField Class
	5 How do anonymous keys work?
	6 Using Rowreader
	6.1 Rowreader Example

	7 Nested Objects
	8 Instance Callbacks
	9 Manageable Collection
	9.1 Types Allowed for Implementing 1:n and m:n Associations
	9.2 Which collection-class type should be used?

	10 Customizing collection queries
	11 Metadata runtime changes

