
Getting Started

by Brian McCallister

Table of contents

1 Acquiring ojb-blank... 2

2 Contents of ojb-blank...2

2.1 Sample project... 3

3 The build files.. 3

3.1 Configuration via build.properties...3

3.2 Building via build.xml...5

3.3 Sample project... 6

4 The runtime configuration files..8

4.1 Configuring the OJB runtime.. 8

4.2 Configuring the database connection.. 8

4.3 Configuring the repository.. 8

4.4 Sample project... 9

5 Learning More..10

Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

This document will guide you through the very first steps of setting up a project with OJB. To
make this easier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. You can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for a simple
application that handles products and uses MySQL. This is continued later on in the next tutorial
parts.

1. Acquiring ojb-blank

First off, OJB uses Ant to build, so please install it prior to using OJB. In addition, please make
sure that the environment variables ANT_HOME and JAVA_HOME are correctly set to the top-level
folders of your Ant distribution and your JDK installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. You can also start with the source
distribution rather than the binary as the unit tests provide excellent sample code and you can build
the ojb-blank project on your own with it.

The ojb-blank project contains all libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See here for a list of
additional libraries.
Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use
the embedded Hsqldb database for which the ojb-blank project is pre-configured (including all
necessary jars).

2. Contents of ojb-blank

Copy the ojb-blank.jar file to your project directory and unpack it via the command

jar xvf ojb-blank.jar

This will unpack it into the ojb-blank directory under wherever you unpacked it from. You can
move things out of that directory into your project directory, or, more simply, rename the
ojb-blank directory to be whatever you want your project directory to be named.
After you unpacked the jar, you'll get the following directory layout:

\ojb-blank
.classpath
.project
build.properties
build.xml
\lib
\src

\java
\resources
\schema
\test

Here's a quick rundown on what the individual directories and files are:

.classpath, .project
An Eclipse project for your convenience. You can simply import it into Eclipse via File
-> Import... -> Existing Project into Workspace.
build.xml, build.properties
The Ant build script and the build properties. These are described in more detail below.
lib
Contains the libraries necessary to compile and run your project. If you want to use a
different database than Hsqldb, then put the jars of your jdbc driver in here.
src/java

Getting Started

2
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/tutorials/summary.html
../docu/tutorials/summary.html
http://ant.apache.org/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/guides/deployment.html#additional-jars
http://hsqldb.sourceforge.net/
http://www.eclipse.org/

Put your java source code here.
src/resources
Contains the runtime configuration files for OJB. For more detail see below.
src/schema
Here you will find a schema containing tables that are required by certain components
of OJB such as clustered locking and OJB managed sequences. More information on
these tables is available in the platform documentation. The schema is in a
database-independent format that can be used by Torque or commons-sql to create
the database.
The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build
target that can be invoked on your schema (see below for details). Therefore, this
directory also contains the build script of Torque, but you won't need to invoke it
directly.
src/java
Place your unit tests in here.

2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
productmanager.

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver, which is called
something like mysql-connector-java-[version]-stable-bin.jar, into the lib
subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing
with, we will silently assume that it is already present in the src/java subdirectory.
If you don't want to write the code yourself, you can use the code from one of the tutorials which
you can download here.

Warning:
Note that if you do not intent to use JDO, then you should delete the files in the ojb.apache.ojb.tutorial5, otherwise you'll
get compilation errors.

3. The build files

3.1. Configuration via build.properties

The next step is to adapt the build files, especially the build.properties file to your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably need to
be adapted to suit your needs:

Property Purpose

jcdAlias The name of the connection. You should leave
the default value, which is default.

databaseName This is the name of the database, per default
ojb_blank.

databaseUser The user name for accessing the database
(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.

Getting Started

3
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../docu/guides/platforms.html
http://db.apache.org/torque/
http://jakarta.apache.org/commons/sandbox/sql/
http://dev.mysql.com/downloads/connector/j/
../docu/tutorials/summary.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

dbmsName The type of database, which is one of the
following:
Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.
Please note that this setting is case-sensitive.
Per default, Hsqldb is used, which is an
embedded database. All files required for this
database come with the ojb-blank project.

jdbcRuntimeDriver The fully-qualified classname of the jdbc driver.
For Hsqldb this is org.hsqldb.jdbcDriver.

jdbcLevel The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.
For the Hsqldb jdbc driver this is 2.0.

urlProtocol The protocol of the database url (see below),
usually jdbc.

urlSubprotocol The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsqldb.

urlDbalias This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

torque.database If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbmsName which defines the database for OJB.
Currently, these values are defined:
axion, cloudscape, db2, db2400, hypersonic
(which is Hsqldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.
Default value is hypersonic for use with
Hsqldb.

torque.database.createUrl This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database looks like, then you can derive the
settings databaseName, databaseName, databaseName and databaseName easily:
Assume this url is given as:
jdbc:mysql://localhost:3306/myDatabase

then these properties are

Property Value

databaseName myDatabase

urlProtocol jdbc

Getting Started

4
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

http://hsqldb.sourceforge.net/

urlSubprotocol mysql

urlDbalias //localhost/myDatabase

3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the actions that
you can perform using the Ant build file build.xml:

Action (target in the build.xml file) What it does

clean Cleans up all files from the previous build.

compile Compiles your java source files to
build/classes. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the build.properties file, most
notably the repository_database.xml
which will be located in the build/resources
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torque homepage.

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Product
class from the JDO tutorial (tutorial 5).

So, a typical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source code that
describe the repository, then you would call Ant this way:
ant build setup-db

This will perform in that order the actions build, xdoclet (invoked automatically from the next
action) and setup-db.
Of course, you do not need to use Torque to setup your database, but it is a convenient way to do
so.

Getting Started

5
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../repository_database.xml.txt
../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html
../docu/guides/xdoclet-module.html
http://db.apache.org/torque/
http://java.sun.com/products/jdo/
http://java.sun.com/products/jdo/
../docu/tutorials/jdo-tutorial.html

3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to setup
the database):

Property Value

jcdAlias We leave the default value of default.

databaseName Since the application manages products, we call
the database productmanager.

databaseUser This depends on your setup. For the purposes of
this guide, let's call him steve.

databasePassword Again depending on your setup. How about
secret (you know that you should not use this
password in reality ?!).

dbmsName MySQL

jdbcRuntimeDriver Its called com.mysql.jdbc.Driver.

jdbcLevel For the newer Mysql drivers this is 3.0.

urlProtocol The default of jdbc will do.

urlSubprotocol For MySQL, we're using mysql.

urlDbalias Assuming that the database runs locally on the
default port, we have
//localhost/${databaseName}.

torque.database We want to use Torque, so we put mysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${urlProtocol}:${urlSubProtocol}://localhost/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. The build.properties file now looks
like this (the comments have been removed for brevity):

jcdAlias=default
databaseName=productmanager
databaseUser=steve
databasePassword=secret

dbmsName=MySQL
jdbcLevel=3.0
jdbcRuntimeDriver=com.mysql.jdbc.Driver
urlProtocol=jdbc
urlSubprotocol=mysql
urlDbalias=//localhost/${databaseName}

torque.database=mysql
torque.database.createUrl=${urlProtocol}:${urlSubprotocol}://localhost/

jar.name=projectmanager.jar

source.dir=src
source.java.dir=${source.dir}/java
source.resource.dir=${source.dir}/resources
source.test.dir=${source.dir}/test

Getting Started

6
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

source.schema.dir=${source.dir}/schema

build.dir=build
build.lib.dir=lib
build.classes.dir=${build.dir}/classes/
build.resource.dir=${build.dir}/resources/

target.dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already present.
So we're invoking Ant now in the top-level folder productmanager:

ant build setup-db

which should (assuming five java classes) produce an output like this

Buildfile: build.xml

compile:
[mkdir] Created dir: /home/steve/projects/productmanager/build
[mkdir] Created dir: /home/steve/projects/productmanager/build/classes
[javac] Compiling 5 source files to

/home/steve/projects/productmanager/build/classes

build:
[copy] Copying 10 files to

/home/steve/projects/productmanager/build/resources

xdoclet:
[ojbdoclet] (XDocletMain.start 47) Running <ojbrepository/>
[ojbdoclet] Generating ojb repository descriptor
(build/resources//repository_user.xml)
[ojbdoclet] Type test.Project
[ojbdoclet] Processed 5 types
[ojbdoclet] Processed 5 types
[ojbdoclet] (XDocletMain.start 47) Running <torqueschema/>
[ojbdoclet] Generating torque schema (build/resources//project-schema.xml)
[ojbdoclet] Processed 5 types

setup-db:

check-use-classpath:

check-run-only-on-schema-change:

sql-check:

sql:
[echo] +--+
[echo] | |
[echo] | Generating SQL for YOUR Torque project! |
[echo] | Woo hoo! |
[echo] | |
[echo] +--+

sql-classpath:
[torque-sql] Using contextProperties file:

/home/steve/projects/productmanager/build.properties
[torque-sql] Using classpath
[torque-sql] Generating to file
/home/steve/projects/productmanager/build/resources/report.productmanager.sql.generation
[torque-sql] Parsing file: 'ojbcore-schema.xml'
[torque-sql] (transform.DTDResolver 128) Resolver: used
database.dtd from

org.apache.torque.engine.database.transform package
[torque-sql] Parsing file: 'project-schema.xml'
[torque-sql] (transform.DTDResolver 140) Resolver: used

http://jakarta.apache.org/turbine/dtd/database.dtd

sql-template:

Getting Started

7
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

create-db-check:

create-db:
[torque-data-model] Using classpath
[torque-data-model] Generating to file
/home/steve/projects/productmanager/build/resources/create-db.sql
[torque-data-model] Parsing file: 'ojbcore-schema.xml'
[torque-data-model] (transform.DTDResolver 128) Resolver: used
database.dtd from

org.apache.torque.engine.database.transform package
[torque-data-model] Parsing file: 'project-schema.xml'
[torque-data-model] (transform.DTDResolver 140) Resolver: used

http://jakarta.apache.org/turbine/dtd/database.dtd
[echo]
[echo] Executing the create-db.sql script ...
[echo]
[sql] Executing file:

/home/steve/projects/productmanager/build/resources/create-db.sql
[sql] 2 of 2 SQL statements executed successfully

insert-sql:
[torque-sql-exec] Our new url -> jdbc:mysql://localhost/productmanager
[torque-sql-exec] Executing file:
/home/steve/projects/productmanager/build/resources/project-schema.sql
[torque-sql-exec] Executing file:
/home/steve/projects/productmanager/build/resources/ojbcore-schema.sql
[torque-sql-exec] 50 of 50 SQL statements executed successfully

BUILD SUCCESSFUL

That was it. You now have your database setup properly. Go on, have a look:

mysql -u steve productmanager

mysql> show tables;

There, all tables for your project, as well as the tables required for some OJB functionality which
we also used in the above process (you can recognize them by their names which start with ojb_).

4. The runtime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files
used by OJB. There are basically three sets of configuration that need to be provided: configuration
of the OJB runtime, description of the database connection, and description of the repository.

4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logging.properties (both located in src/resources), you
configure and finetune the runtime aspects of OJB. For a simple application you'll probably won't
have to change anything in them, though.

4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors. These are usually defined in a file called repository_database.xml (located in
src/resources). In the ojb-blank project, the build file will setup this file for you and place it
in the build/resources directory.

4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java classes
are mapped in what way to which database tables, and it is typically contained in the

Getting Started

8
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../docu/guides/ojb-properties.html
../docu/guides/logging.html
../docu/guides/repository.html#jdbc-connection-descriptor
../docu/guides/repository.html#jdbc-connection-descriptor

repository_user.xml file. This is the most complicated configuration part which will be
explained in much more detail in the rest of the tutorials.
An convenient way of creating the repository metadata is to use the XDoclet OJB module.
Basically, you put specific Javadoc comments into your source code, which are then processed by
the build file (xdoclet and setup-db targets) and the repository metadata and the database
schema are generated.

4.4. Sample project

Actually, there is not much to do here. For our simple sample application the default properties of
OJB work just fine, so we leave OJB.properties and OJB-logging.properties
untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB
module and Torque to generate the repository metadata and database for us. For instance, the
processed connection descriptor (file build/resources/repository_database.xml)
looks like this:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="MySQL"
jdbc-level="3.0"
driver="com.mysql.jdbc.Driver"
protocol="jdbc"
subprotocol="mysql"
dbalias="//localhost/productmanager"
username="steve"
password="secret"
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>
<connection-pool

maxActive="21"
validationQuery="" />

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>
<attribute attribute-name="globalSequenceId" attribute-value="false"/>
<attribute attribute-name="globalSequenceStart"

attribute-value="10000"/>
</sequence-manager>

</jdbc-connection-descriptor>

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (file build/resources/repository_user.xml) starts like:

<class-descriptor
class="productmanager.Product"
table="Product"

>
<field-descriptor

name="name"
column="name"
jdbc-type="VARCHAR"
length="32"

>

Getting Started

9
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html
../docu/guides/repository.html#jdbc-connection-descriptor

</field-descriptor>
<field-descriptor

name="price"
column="price"
jdbc-type="FLOAT"

>
</field-descriptor>
<field-descriptor

name="stock"
column="stock"
jdbc-type="INTEGER"

>
</field-descriptor>
<field-descriptor

name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"

>
</field-descriptor>

</class-descriptor>
...

Now you should be able to run your application:

cd build/resources

java productmanager.Main

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add
all jars from the lib folder except the ones for Torque (torque-[version].jar,
velocity-[version].jar and commons-collections-[version].jar) and for the
XDoclet OJB module (xdoclet-[version].jar, xjavadoc-[version].jar and
xdoclet-ojb-module-[version].jar).

It is important to note that OJB per default assumes the OJB.properties and
OJB-logging.properties files in the directory where you're starting the application. Hence,
we changed to the build/resources directory before running the application. This of course
requires the compiled classes to be on the classpath, as well (directory build/classes).

Per default, the same applies to the other configuration files (repository*.xml) but you can
change this in the OJB.properties file.

5. Learning More

After you've have learned about building and configuring projects that use OJB, you should check
out the tutorials to learn how to specify your persistent classes and how to use OJB's APIs to
perform database operations. The Mapping Tutorial in particular shows you how to map your
classes to tables in an RDBMS.

Getting Started

10
Copyright © 2002-2006 The Apache Software Foundation. All rights reserved.

../docu/tutorials/summary.html
../docu/tutorials/mapping-tutorial.html

	1 Acquiring ojb-blank
	2 Contents of ojb-blank
	2.1 Sample project

	3 The build files
	3.1 Configuration via build.properties
	3.2 Building via build.xml
	3.3 Sample project

	4 The runtime configuration files
	4.1 Configuring the OJB runtime
	4.2 Configuring the database connection
	4.3 Configuring the repository
	4.4 Sample project

	5 Learning More

