
Table of Contents

Table of Contents...i

Chapter 1
Introduction ...1

Chapter 2
Getting Started..2

Chapter 3
Architecture.. 12

Chapter 4
Enterprise Integration Patterns.. 19

Chapter 5
Pattern Appendix... 23

Chapter 6
Component Appendix ... 55

Index ..0

TABLE OF CONTENTS i

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

C H A P T E R 1

° ° ° °

Introduction

Apache Camel is a powerful Spring based Integration Framework.
Camel implements the Enterprise Integration Patterns allowing you to configure routing and
mediation rules in either a Java based Domain Specific Language (or Fluent API) or via Spring
based Xml Configuration files. Either approaches mean you get smart completion of routing
rules in your IDE whether in your Java or XML editor.

Apache Camel uses URIs so that it can easily work directly with any kind of Transport or
messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF Bus API together with
working with pluggable Data Format options. Apache Camel is a small library which has minimal
dependencies for easy embedding in any Java application.

Apache Camel can be used as a routing and mediation engine for the following projects:
• Apache ActiveMQ which is the most popular and powerful open source message

broker
• Apache CXF which is a smart web services suite (JAX-WS)
• Apache MINA a networking framework
• Apache ServiceMix which is the most popular and powerful distributed open source

ESB and JBI container

So don't get the hump, try Camel today!

1 CHAPTER 1 - INTRODUCTION

http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Transport
http://cwiki.apache.org/confluence/display/CAMEL/HTTP
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JBI
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://cwiki.apache.org/confluence/display/CAMEL/What+are+the+dependencies
http://activemq.apache.org/
http://activemq.apache.org/
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://mina.apache.org/
http://mina.apache.org/
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://activemq.apache.org/
http://incubator.apache.org/cxf/
http://mina.apache.org/
http://incubator.apache.org/servicemix/

C H A P T E R 2

° ° ° °

Getting Started with Apache
Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK

The purpose of a "patterns" book is not to advocate new techniques that the authors have
invented, but rather to document existing best practices within a particular field. By doing this,
the authors of a patterns book hope to spread knowledge of best practices and promote a
vocabulary for discussing architectural designs.
One of the most famous patterns books is Design Patterns: Elements of Reusable Object-oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Some people refer
to this as the "gang of four" book, partly to distinguish this book from other books that use
"Design Patterns" in their titles and, perhaps, partly because they cannot remember the names
of all four authors.
Since the publication of Design Patterns, many other patterns books, of varying quality, have been
written. One famous patterns book is called Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions by Gregor Hohpe and Bobby Woolfe. It is common for people to
refer to this book as EIP, which is an acronym of its title. As the subtitle of EIP suggests, the
book focusses on design patterns for asynchronous messaging systems. The book discusses 65
patterns. Each pattern is given a textual name and most are also given a graphical symbol. The
graphical symbols are intended to be used in architectural diagrams.

THE CAMEL PROJECT

Camel (http://activemq.apache.org/camel/) is an open-source, Java-based project that is a part of
the Apache ActiveMQ project. Camel provides a class library that, according to its
documentation, can be used to implement 31 design patterns in the EIP book. I am not sure
why the Camel documentation discusses only 31 of the 65 EIP design patterns. Perhaps this is
due to incomplete documentation. Or perhaps it means that the Camel project, which is less
than 1 year old at the time of writing, is not yet as feature rich as the EIP book.
Because Camel implements many of the design patterns in the EIP book, it would be a good
idea for people who work with Camel to read the EIP book.

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 2

http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://activemq.apache.org/camel/
http://activemq.apache.org/camel/
http://www.amazon.co.uk/Design-patterns-elements-reusable-object-oriented/dp/0201633612/ref=pd_bowtega_2/026-7569372-5501207?ie=UTF8&s=books&qid=1182245640&sr=1-2
http://www.amazon.co.uk/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/ref=pd_bowtega_1/026-7569372-5501207?ie=UTF8&s=books&qid=1182252002&sr=1-1
http://activemq.apache.org/camel/

ONLINE DOCUMENTATION FOR CAMEL

The Camel project was started in early 2007. At the time of writing, the Camel project is too
young for there to be published books available on how to use Camel. Instead, the only source
of documentation seems to the documentation page on the Apache Camel website.

Problems with Camel's online documentation

Currently, the online documentation for the Apache Camel project suffers from two problems.
First, the documentation is incomplete. Second, there is no clearly specified reading order to
the documentation. For example, there is no table of contents. Instead, documentation is
fragmented over a collection of 60+ web pages, and hypertext links haphazardly tie these web
pages to each other. This documentation might suffice as reference material for people already
familiar with Camel but it does not qualify as a tutorial for beginners.
The problems with the documentation are unlikely to be due to, say, its author(s) lacking
writing ability. Rather, it is more likely that the problems are due to the author(s) lack of time. I
expect Camel's documentation will improve over time. I am writing this overview of Camel to
partially counter some of the problems that currently afflict the Camel documentation. In
particular, this document aims to serve as a (so far, incomplete) "beginner's guide to Camel". As
such, this document tries to complement, rather than compete with, the online Camel
documentation.

A useful tip for navigating the online documentation

There is one useful hint I can provide for reading the online Camel documentation. Each
documentation page has a logo at the top, and immediately underneath this is a think reddish
bar that contains some hypertext links. The Hypertext links on left side of this reddish bar
indicate your position in documentation. For example, If you are on the "Languages"
documentation page then the left-hand side of the reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the
Apache Camel project, and clicking on "Documentation" takes you to the main documentation
page. You can interpret the "Architeture" and "Languages" buttons as indicating you are in the
"Languages" section of the "Architecture" chapter. Doing this gives you at least some sense of
where you are within the documentation. If you are patient then you can spend a few hours
clicking on all the hypertext links you can find in the documentation pages, bookmark each page
with a hierarchical name (for example, you might bookmark the above page with the name
"Camel Ð Arch Ð Languages") and then you can use your bookmarks to serve as a primitive
table of contents for the online Camel documentation.

3 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

http://activemq.apache.org/camel/documentation.html
http://activemq.apache.org/camel/documentation.html
http://activemq.apache.org/camel/documentation.html

ONLINE JAVADOC DOCUMENTATION

The Apache Camel website provides Javadoc documentation. It is important to note that the
Javadoc documentation is spread over several independent Javadoc hierarchies rather than being
all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the
core APIs of Camel, and a separate Javadoc hierarchy for each communications technology
supported by Camel. For example, if you will be using Camel with ActiveMQ and FTP then you
need to look at the Javadoc hierarchies for the core API, ActiveMQ API and FTP API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL

I said in Section 3.1 ("Problems with Camel's online documentation") that the online Camel
documentation does not provide a tutorial for beginners. Because of this, in this section I try to
explain some of the concepts and terminology that are fundamental to Camel. This section is
not a complete Camel tutorial, but it is a first step in that direction.

Endpoint

The term endpoint is often used when talking about inter-process communication. For example,
in client-server communication, the client is one endpoint and the server is the other endpoint.
Depending on the context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is contactable at that
address. For example, if somebody uses "www.example.com:80" as an example of an endpoint,
they might be referring to the actual port at that host name (that is, an address), or they might
be referring to the web server (that is, software contactable at that address). Often, the
distinction between the address and software contactable at that address is not an important
one.
Some middleware technologies make it possible for several software entities to be contactable
at the same physical address. For example, CORBA is an object-oriented,
remote-procedure-call (RPC) middleware standard. If a CORBA server process contains
several objects then a client can communicate with any of these objects at the same physical
address (host:port), but a client communicates with a particular object via that object's logical
address (called an IOR in CORBA terminology), which consists of the physical address
(host:port) plus an id that uniquely identifies the object within its server process. (An IOR
contains some additional information that is not relevant to this present discussion.) When
talking about CORBA, some people may use the term "endpoint" to refer to a CORBA server's
physical address, while other people may use the term to refer to the logical address of a single
CORBA object, and other people still might use the term to refer to any of the following:

• The physical address (host:port) of the CORBA server process
• The logical address (host:port plus id) of a CORBA object.
• The CORBA server process (a relatively heavyweight software entity)
• A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least two ways.

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 4

http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/javadoc.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/

First, it is ambiguous because it might refer to an address or to a software entity
contactable at that address. Second, it is ambiguous in the granularity of what it refers
to: a heavyweight versus lightweight software entity, or physical address versus logical
address. It is useful to understand that different people use the term endpoint in
slightly different (and hence ambiguous) ways because Camel's usage of this term
might be different to whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the
Camel-supported endpoint technologies.

• A JMS queue.
• A web service.
• A file. A file may sound like an unlikely type of endpoint, until you realize that in some

systems one application might write information to a file and, later, another
application might read that file.

• An FTP server.
• An email address. A client can send a message to an email address, and a server can

read an incoming message from a mail server.
• A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints
and connect these endpoints with routes, which I will discuss later in Section 4.8
("Routes, RouteBuilders and Java DSL"). Camel defines a Java interface called
Endpoint. Each Camel-supported endpoint has a class that implements this
Endpoint interface. As I discussed in Section 3.3 ("Online Javadoc documentation"),
Camel provides a separate Javadoc hierarchy for each communications technology
supported by Camel. Because of this, you will find documentation on, say, the
JmsEndpoint class in the JMS Javadoc hierarchy, while documentation for, say, the
FtpEndpoint class is in the FTP Javadoc hierarchy.

CamelContext

A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following steps.

1. Create a CamelContext object.
2. Add endpoints Ð and possibly Components, which are discussed in Section 4.5

("Components") Ð to the CamelContext object.
3. Add routes to the CamelContext object to connect the endpoints.
4. Invoke the start() operation on the CamelContext object. This starts

Camel-internal threads that are used to process the sending, receiving and processing
of messages in the endpoints.

5. Eventually invoke the stop() operation on the CamelContext object. Doing this
gracefully stops all the endpoints and Camel-internal threads.
Note that the CamelContext.start() operation does not block indefinitely.

5 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/
http://activemq.apache.org/camel/maven/camel-jms/apidocs/
http://activemq.apache.org/camel/maven/camel-ftp/apidocs/

Rather, it starts threads internal to each Component and Endpoint and then
start() returns. Conversely, CamelContext.stop() waits for all the threads
internal to each Endpoint and Component to terminate and then stop()
returns.
If you neglect to call CamelContext.start() in your application then messages
will not be processed because internal threads will not have been created.
If you neglect to call CamelContext.stop() before terminating your application
then the application may terminate in an inconsistent state. If you neglect to call
CamelContext.stop() in a JUnit test then the test may fail due to messages not
having had a chance to be fully processed.

CamelTemplate

Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as the TransactionTemplate and JmsTemplate classes in Spring.
The CamelTemplate class is a thin wrapper around the CamelContext class. It has
methods that send a Message or Exchange Ð both discussed in Section 4.6 ("Message and
Exchange")) Ð to an Endpoint Ð discussed in Section 4.1 ("Endpoint"). This provides a way to
enter messages into source endpoints, so that the messages will move along routes Ð discussed
in Section 4.8 ("Routes, RouteBuilders and Java DSL") Ð to destination endpoints.

The Meaning of URL, URI, URN and IRI

Some Camel methods take a parameter that is a URI string. Many people know that a URI is
"something like a URL" but do not properly understand the relationship between URI and URL,
or indeed its relationship with other acronyms such as IRI and URN.
Most people are familiar with URLs (uniform resource locators), such as "http://...", "ftp://...",
"mailto:...". Put simply, a URL specifies the location of a resource.
A URI (uniform resource identifier) is a URL or a URN. So, to fully understand what URI means,
you need to first understand what is a URN.
URN is an acronym for uniform resource name. There are may "unique identifier" schemes in the
world, for example, ISBNs (globally unique for books), social security numbers (unique within a
country), customer numbers (unique within a company's customers database) and telephone
numbers. Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is
"urn:<scheme-name>:<unique-identifier>". A URN uniquely identifies a resource, such as a book,
person or piece of equipment. By itself, a URN does not specify the location of the resource.
Instead, it is assumed that a registry provides a mapping from a resource's URN to its location.
The URN specification does not state what form a registry takes, but it might be a database, a
server application, a wall chart or anything else that is convenient. Some hypothetical examples
of URNs are "urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee", "customer" and "foo"

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 6

http://www.springframework.org/
http://www.springframework.org/
http://www.springframework.org/

in these examples) part of a URN implicitly defines how to parse and interpret the
<unique-identifier> that follows it. An arbitrary URN is meaningless unless: (1) you know the
semantics implied by the <scheme-name>, and (2) you have access to the registry appropriate
for the <scheme-name>. A registry does not have to be public or globally accessible. For
example, "urn:employee:08765245" might be meaningful only within a specific company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely misused as a
synonym for URL.
IRI is an acronym for internationalized resource identifier. An IRI is simply an internationalized
version of a URI. In particular, a URI can contain letters and digits in the US-ASCII character
set, while a IRI can contain those same letters and digits, and also European accented characters,
Greek letters, Chinese ideograms and so on.

Components

Component is confusing terminology; EndpointFactory would have been more appropriate because
a Component is a factory for creating Endpoint instances. For example, if a Camel-based
application uses several JMS queues then the application will create one instance of the
JmsComponent class (which implements the Component interface), and then the application
invokes the createEndpoint() operation on this JmsComponent object several times.
Each invocation of JmsComponent.createEndpoint() creates an instance of the
JmsEndpoint class (which implements the Endpoint interface). Actually, application-level
code does not invoke Component.createEndpoint() directly. Instead, application-level
code normally invokes CamelContext.getEndpoint(); internally, the CamelContext
object finds the desired Component object (as I will discuss shortly) and then invokes
createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

The parameter to getEndpoint() is a URI. The URI prefix (that is, the part before ":")
specifies the name of a component. Internally, the CamelContext object maintains a mapping
from names of components to Component objects. For the URI given in the above example,
the CamelContext object would probably map the pop3 prefix to an instance of the
MailComponent class. Then the CamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")
on that MailComponent object. The createEndpoint() operation splits the URI into its
component parts and uses these parts to create and configure an Endpoint object.
In the previous paragraph, I mentioned that a CamelContext object maintains a mapping
from component names to Component objects. This raises the question of how this map is
populated with named Component objects. There are two ways of populating the map. The
first way is for application-level code to invoke CamelContext.addComponent(String

7 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

componentName, Component component). The example below shows a single
MailComponent object being registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named Component objects in the
CamelContext object is to let the CamelContext object perform lazy initialization. This
approach relies on developers following a convention when they write a class that implements
the Component interface. I illustrate the convention by an example. Let's assume you write a
class called com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write a properties file
called "META-INF/services/org/apache/camel/component/foo" (without a ".properties" file
extension) that has a single entry in it called class, the value of which is the fully-scoped name
of your class. This is shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo
class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you have
written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you add
this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint("foo:...") on a CamelContext object, Camel will find the "foo""
properties file on the CLASSPATH, get the value of the class property from that properties
file, and use reflection APIs to create an instance of the specified class.
As I said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support for numerous
communication technologies. The out-of-the-box support consists of classes that implement the
Component interface plus properties files that enable a CamelContext object to populate
its map of named Component objects.
Earlier in this section I gave the following example of calling
CamelContext.getEndpoint().

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to getEndpoint() was a URI.
I said that because the online Camel documentation and the Camel source code both claim the
parameter is a URI. In reality, the parameter is restricted to being a URL. This is because when
Camel extracts the component name from the parameter, it looks for the first ":", which is a
simplistic algorithm. To understand why, recall from Section 4.4 ("The Meaning of URL, URI,

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 8

URN and IRI") that a URI can be a URL or a URN. Now consider the following calls to
getEndpoint.

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It
would be more useful if the latter components were identified as "urn:foo" and "urn:bar" or,
alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you
must identify an endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter to getEndpoint() as being a URL rather than (as
claimed) a URI.

Message and Exchange

The Message interface provides an abstraction for a single message, such as a request, reply
or exception message.
There are concrete classes that implement the Message interface for each Camel-supported
communications technology. For example, the JmsMessage class provides a JMS-specific
implementation of the Message interface. The public API of the Message interface provides
get- and set-style methods to access the message id, body and individual header fields of a
messge.
The Exchange interface provides an abstraction for an exchange of messages, that is, a
request message and its corresponding reply or exception message. In Camel terminology, the
request, reply and exception messages are called in, out and fault messages.
There are concrete classes that implement the Exchange interface for each Camel-supported
communications technology. For example, the JmsExchange class provides a JMS-specific
implementation of the Exchange interface. The public API of the Exchange interface is quite
limited. This is intentional, and it is expected that each class that implements this interface will
provide its own technology-specific operations.
Application-level programmers rarely access the Exchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are instantiated
on (a class that implements) Exchange. Because of this, the Exchange interface appears a
lot in the generic signatures of classes and methods.

Processor

The Processor interface represents a class that processes a message. The signature of this
interface is shown below.

9 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

Listing 2. Processor
package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the process() method is an Exchange rather than a
Message. This provides flexibility. For example, an implementation of this method initially
might call exchange.getIn() to get the input message and process it. If an error occurs
during processing then the method can call exchange.setException().
An application-level developer might implement the Processor interface with a class that
executes some business logic. However, there are many classes in the Camel library that
implement the Processor interface in a way that provides support for a design pattern in the
EIP book. For example, ChoiceProcessor implements the message router pattern, that is, it
uses a cascading if-then-else statement to route a message from an input queue to one of
several output queues. Another example is the FilterProcessor class which discards
messages that do not satisfy a stated predicate (that is, condition).

Routes, RouteBuilders and Java DSL

A route is the step-by-step movement of a Message from an input queue, through arbitrary
types of decision making (such as filters and routers) to a destination queue (if any). Camel
provides two ways for an application developer to specify routes. One way is to specify route
information in an XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific language).

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can
process an input file containing keywords and syntax specific to a particular domain. This is not
the approach taken by Camel. Camel documentation consistently uses the term "Java DSL"
instead of "DSL", but this does not entirely avoid potential confusion. The Camel "Java DSL" is a
class library that can be used in a way that looks almost like a DSL, except that it has a bit of
Java syntactic baggage. You can see this in the example below. Comments afterwards explain
some of the constructs used in the example.

Listing 3. Example of Camel's "Java DSL"
RouteBuilder builder = new RouteBuilder() {

public void configure() {
from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL 10

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of an anonymous
subclass of RouteBuilder with the specified configure() method.
The CamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) Ð so the RouteBuilder object knows which
CamelContext object it is associated with Ð and then invokes builder.configure().
The body of configure() invokes methods such as from(), filter(), choice(),
when(), isEqualTo(), otherwise() and to().
The RouteBuilder.from(String uri) method invokes getEndpoint(uri) on the
CamelContext associated with the RouteBuilder object to get the specified Endpoint
and then puts a FromBuilder "wrapper" around this Endpoint. The
FromBuilder.filter(Predicate predicate) method creates a
FilterProcessor object for the Predicate (that is, condition) object built from the
header("foo").isEqualTo("bar") expression. In this way, these operations
incrementally build up a Route object (with a RouteBuilder wrapper around it) and add it
to the CamelContext object associated with the RouteBuilder.

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of
configuring routes and endpoints in a XML-based Spring configuration file. In particular, Java
DSL is less verbose than its XML counterpart. In addition, many integrated development
environments (IDEs) provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of
writing a parser that can process DSL stored in, say, an external file. Currently, Camel does not
provide such a DSL parser, and I do not know if it is on the "to do" list of the Camel
maintainers. I think that a DSL parser would offer a significant benefit over the current Java
DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by
reading this BNF would almost certainly be significantly less than the effort currently required
to study the API of the RouterBuilder classes.

11 CHAPTER 2 - GETTING STARTED WITH APACHE CAMEL

C H A P T E R 3

° ° ° °

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml Configuration to
configure routing and mediation rules which are added to a CamelContext to implement the
various Enterprise Integration Patterns.
At a high level Camel consists of a CamelContext which contains a collection of Component
instances. A Component is essentially a factory of Endpoint instances. You can explicitly
configure Component instances in Java code or an IoC container like Spring or Guice, or they
can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS
system; you can communicate with an endpoint; either sending messages to it or consuming
messages from it. You can then create a Producer or Consumer on an Endpoint to exchange
messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to
make a truly powerful DSL which is extensible to the most suitable language depending on your
needs. The following languages are supported

• Bean Language
• the unified EL from JSP and JSF
• JXPath
• OGNL
• Scripting Languages such as

• BeanShell
• JavaScript
• Groovy
• Python
• PHP
• Ruby

• Simple
• SQL
• XPath
• XQuery

CHAPTER 3 - ARCHITECTURE 12

http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Languages
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Language
http://cwiki.apache.org/confluence/display/CAMEL/EL
http://cwiki.apache.org/confluence/display/CAMEL/JXPath
http://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://cwiki.apache.org/confluence/display/CAMEL/Python
http://cwiki.apache.org/confluence/display/CAMEL/PHP
http://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://cwiki.apache.org/confluence/display/CAMEL/Simple
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Producer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Consumer.html

URIS

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created
by a Component if you refer to them within Routes

Current Supported URIs

Component / URI Description

ActiveMQ

activemq:[topic:]destinationName For JMS Messaging with Apache ActiveMQ

ActiveMQ Journal

activemq.journal:directory-on-filesystem

Uses ActiveMQ's fast disk journaling
implementation to store message bodies
in a rolling log file

AMQP

amqp:[topic:]destinationName For Messaging with AMQP protocol

Bean

bean:beanName[?methodName=someMethod]
Uses the Bean Binding to bind message
exchanges to beans in the Registry

CXF

cxf:serviceName
Working with Apache CXF for web
services integration

DataSet

dataset:name

For load & soak testing the DataSet
provides a way to create huge numbers of
messages for sending to Components or
asserting that they are consumed correctly

Direct

direct:name

Direct invocation of the consumer from
the producer so that single threaded
(non-SEDA) in VM invocation is
performed

Esper

esper:name
Working with the Esper Library for Event
Stream Processing

13 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ+Journal
http://cwiki.apache.org/confluence/display/CAMEL/AMQP
http://www.amqp.org/
http://www.amqp.org/
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Direct
http://cwiki.apache.org/confluence/display/CAMEL/Esper
http://esper.codehaus.org
http://esper.codehaus.org
http://activemq.apache.org/
http://www.amqp.org/
http://incubator.apache.org/cxf/
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://esper.codehaus.org

Event

event://default Working with Spring ApplicationEvents

File

file://nameOfFileOrDirectory
Sending messages to a file or polling a file
or directory

FIX

fix://configurationResource
Sends or receives messages using the FIX
protocol

FTP

ftp://host[:port]/fileName Sending and receiving files over FTP

HTTP

http://hostname[:port] For calling out to external HTTP servers

iBATIS

ibatis://sqlOperationName

Performs a query, poll, insert, update or
delete in a relational database using
Apache iBATIS

IMap

imap://hostname[:port] Receiving email using IMap

IRC

irc:host[:port]/#room For IRC communication

JDBC

jdbc:dataSourceName?options
For performing JDBC queries and
operations

Jetty

jetty:url For exposing services over HTTP

JBI

jbi:serviceName
For JBI integration such as working with
Apache ServiceMix

CHAPTER 3 - ARCHITECTURE 14

http://cwiki.apache.org/confluence/display/CAMEL/Event
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/FIX
http://en.wikipedia.org/wiki/FIX_protocol
http://en.wikipedia.org/wiki/FIX_protocol
http://en.wikipedia.org/wiki/FIX_protocol
http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/HTTP
http://cwiki.apache.org/confluence/display/CAMEL/iBATIS
http://ibatis.apache.org/
http://ibatis.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/IRC
http://cwiki.apache.org/confluence/display/CAMEL/JDBC
http://cwiki.apache.org/confluence/display/CAMEL/Jetty
http://cwiki.apache.org/confluence/display/CAMEL/JBI
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://en.wikipedia.org/wiki/FIX_protocol
http://ibatis.apache.org/
http://incubator.apache.org/servicemix/

JMS

jms:[topic:]destinationName Working with JMS providers

JPA

jpa://entityName

For using a database as a queue via the JPA
specification for working with OpenJPA,
Hibernate or TopLink

List

list:someName

Provdes a simple BrowsableEndpoint
which can be useful for testing,
visualisation tools or debugging. The
exchanges sent to the endpoint are all
available to be browsed.

Log

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to log the
message exchange to some underlying
logging system like log4j

Mail

mail://user-info@host:port Sending and receiving email

MINA

[tcp|udp|multicast]:host[:port] Working with Apache MINA

Mock

mock:name
For testing routes and mediation rules
using mocks

MSV

msv:someLocalOrRemoteResource
Validates the payload of a message using
the MSV Library

Multicast

multicast://host:port
Working with TCP protocols using
Apache MINA

Pojo

pojo:name Exposing and invoking a POJO

15 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/List
http://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
http://cwiki.apache.org/confluence/display/CAMEL/Log
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/MSV
https://msv.dev.java.net/
https://msv.dev.java.net/
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://mina.apache.org/
https://msv.dev.java.net/
http://mina.apache.org/

POP

pop3://user-info@host:port Receiving email using POP3 and JavaMail

Quartz

quartz://groupName/timerName
Provides a scheduled delivery of messages
using the Quartz scheduler

Queue

queue:name
Deprecated.Ê It is now an alias toÊthe
SEDA component.

RMI

rmi://host[:port] Working with RMI

RNC

rnc:/relativeOrAbsoluteUri
Validates the payload of a message using
RelaxNG Compact Syntax

RNG

rng:/relativeOrAbsoluteUri
Validates the payload of a message using
RelaxNG

SEDA

seda:name

Used to deliver messages to a
java.util.concurrent.BlockingQueue, useful
when creating SEDA style processing
pipelines within the same CamelContext

SFTP

sftp://host[:port]/fileName Sending and receiving files over SFTP

SMTP

smtp://user-info@host[:port] Sending email using SMTP and JavaMail

Stream

stream:[in|out|err|file]
Read or write to an input/output/error/file
stream rather like unix pipes

StringTemplate

string-template:someTemplateResource
Generates a response using a String
Template

CHAPTER 3 - ARCHITECTURE 16

http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/RMI
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/Stream
http://cwiki.apache.org/confluence/display/CAMEL/StringTemplate
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://www.opensymphony.com/quartz/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://www.stringtemplate.org/

Timer

timer://name A timer endpoint

TCP

tcp://host:port
Working with TCP protocols using
Apache MINA

Test

test:expectedMessagesEndpointUri

Creates a Mock endpoint which expects
to receive all the message bodies that
could be polled from the given underlying
endpoint

UDP

udp://host:port
Working with UDP protocols using
Apache MINA

Validation

validation:someLocalOrRemoteResource
Validates the payload of a message using
XML Schema and JAXP Validation

Velocity

velocity:someTemplateResource
Generates a response using an Apache
Velocity template

VM

vm:name

Used to deliver messages to a
java.util.concurrent.BlockingQueue, useful
when creating SEDA style processing
pipelines within the same JVM

XMPP

xmpp://host:port/room Working with XMPP and Jabber

XQuery

xquery:someXQueryResource
Generates a response using an XQuery
template

XSLT

xslt:someTemplateResource
Generates a response using an XSLT
template

17 CHAPTER 3 - ARCHITECTURE

http://cwiki.apache.org/confluence/display/CAMEL/Timer
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Validation
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/VM
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://cwiki.apache.org/confluence/display/CAMEL/XQuery+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/XSLT
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://mina.apache.org/
http://mina.apache.org/
http://www.w3.org/XML/Schema
http://velocity.apache.org/
http://www.w3.org/TR/xslt

WebDAV

webdav://host[:port]/fileName Sending and receiving files over WebDAV

MSMQ

msmq:msmqQueueName
Sending and receiving messages with
Microsoft Message Queuing

For a full details of the individual components see the Component Appendix

CHAPTER 3 - ARCHITECTURE 18

http://cwiki.apache.org/confluence/display/CAMEL/FTP
http://cwiki.apache.org/confluence/display/CAMEL/msmq
http://cwiki.apache.org/confluence/display/CAMEL/Book+Component+Appendix

C H A P T E R 4

° ° ° °

Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book of the
same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly
for users of Camel.

PATTERN INDEX

There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with another using
messaging?

Message
How can two applications connected by a message channel
exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a message while
maintaining independence and flexibility?

Message
Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

Message
Translator

How can systems using different data formats communicate with
each other using messaging?

Message
Endpoint

How does an application connect to a messaging channel to send
and receive messages?

19 CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Message+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
http://cwiki.apache.org/confluence/display/CAMEL/Pipes+and+Filters
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one receiver will receive
the document or perform the call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all interested
receivers?

Dead
Letter
Channel

What will the messaging system do with a message it cannot
deliver?

Guaranteed
Delivery

How can the sender make sure that a message will be delivered,
even if the messaging system fails?

Message
Bus

What is an architecture that enables separate applications to
work together, but in a de-coupled fashion such that applications
can be easily added or removed without affecting the others?

Message Construction

Correlation
Identifier

How does a requestor that has received a reply know which
request this is the reply for?

Message Routing

Content
Based
Router

How do we handle a situation where the
implementation of a single logical function (e.g.,
inventory check) is spread across multiple physical
systems?

Message
Filter

How can a component avoid receiving uninteresting
messages?

Recipient
List

How do we route a message to a list of dynamically
specified recipients?

Splitter
How can we process a message if it contains multiple
elements, each of which may have to be processed in a
different way?

Aggregator
How do we combine the results of individual, but
related messages so that they can be processed as a
whole?

CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS 20

http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Point+to+Point+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Publish+Subscribe+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
http://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
http://cwiki.apache.org/confluence/display/CAMEL/Guaranteed+Delivery
http://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
http://cwiki.apache.org/confluence/display/CAMEL/Message+Bus
http://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://cwiki.apache.org/confluence/display/CAMEL/Correlation+Identifier
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://cwiki.apache.org/confluence/display/CAMEL/Splitter
http://cwiki.apache.org/confluence/display/CAMEL/Aggregator

Resequencer
How can we get a stream of related but
out-of-sequence messages back into the correct
order?

Routing Slip

How do we route a message consecutively through a
series of processing steps when the sequence of steps
is not known at design-time and may vary for each
message?

Unable to render
embedded object:
File (clear.png) not
found.

Throttler
How can I throttle messages to ensure that a specific
endpoint does not get overloaded, or we don't exceed
an agreed SLA with some external service?

Unable to render
embedded object:
File (clear.png) not
found.

Delayer How can I delay the sending of a message?

Unable to render
embedded object:
File (clear.png) not
found.

Load
Balancer

How can I balance load across a number of endpoints?

Unable to render
embedded object:
File (clear.png) not
found.

Multicast
How can I route a message to a number of endpoints
at the same time?

Message Transformation

Content
Enricher

How do we communicate with another system if the message
originator does not have all the required data items available?

Content
Filter

How do you simplify dealing with a large message, when you are
interested only in a few data items?

Normalizer
How do you process messages that are semantically equivalent,
but arrive in a different format?

21 CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS

http://cwiki.apache.org/confluence/display/CAMEL/Resequencer
http://cwiki.apache.org/confluence/display/CAMEL/Routing+Slip
http://cwiki.apache.org/confluence/display/CAMEL/Throttler
http://cwiki.apache.org/confluence/display/CAMEL/Delayer
http://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
http://cwiki.apache.org/confluence/display/CAMEL/Load+Balancer
http://cwiki.apache.org/confluence/display/CAMEL/Multicast
http://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Content+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Normalizer

Messaging Endpoints

Unable to render
embedded object: File
(clear.png) not found.

Messaging
Mapper

How do you move data between domain objects
and the messaging infrastructure while keeping the
two independent of each other?

Event Driven
Consumer

How can an application automatically consume
messages as they become available?

Polling
Consumer

How can an application consume a message when
the application is ready?

Competing
Consumers

How can a messaging client process multiple
messages concurrently?

Message
Dispatcher

How can multiple consumers on a single channel
coordinate their message processing?

Selective
Consumer

How can a message consumer select which
messages it wishes to receive?

Durable
Subscriber

How can a subscriber avoid missing messages
while it's not listening for them?

Unable to render
embedded object: File
(clear.png) not found.

Idempotent
Consumer

How can a message receiver deal with duplicate
messages?

Transactional
Client

How can a client control its transactions with the
messaging system?

Messaging
Gateway

How do you encapsulate access to the messaging
system from the rest of the application?

Service
Activator

How can an application design a service to be
invoked both via various messaging technologies
and via non-messaging techniques?

System Management

Wire
Tap

How do you inspect messages that travel on a point-to-point
channel?

For a full breakdown of each pattern see the Book Pattern Appendix

CHAPTER 4 - ENTERPRISE INTEGRATION PATTERNS 22

http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Mapper
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://cwiki.apache.org/confluence/display/CAMEL/Competing+Consumers
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
http://cwiki.apache.org/confluence/display/CAMEL/Durable+Subscriber
http://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
http://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
http://cwiki.apache.org/confluence/display/CAMEL/Messaging+Gateway
http://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
http://cwiki.apache.org/confluence/display/CAMEL/Service+Activator
http://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
http://cwiki.apache.org/confluence/display/CAMEL/Wire+Tap
http://cwiki.apache.org/confluence/display/CAMEL/Book+Pattern+Appendix

C H A P T E R 5

° ° ° °

Pattern Appendix

There now follows a breakdown of the various Enterprise Integration Patterns that Camel
supports

MESSAGING SYSTEMS

Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal
implementation detail of the Endpoint interface and all interactions with the Message Channel
are via the Endpoint interfaces.

For more details see
• Message
• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

23 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html
http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html

To support various message exchange patterns like one way event messages and
request-response messages Camel uses an Exchange interface which is used to handle either
oneway messages with a single inbound Message, or request-reply where there is an inbound
and outbound message.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent Endpoint instances
which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as
follows

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", "mock:result");

In the above example we are routing from a single Endpoint to a list of different endpoints
specified using URIs. If you find the above a bit confusing, try reading about the Architecture or
try the Examples

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 5 - PATTERN APPENDIX 24

http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

The following example shows how to route a request from an input queue:a endpoint to
either queue:b, queue:c or queue:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice().when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c").otherwise().to("seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://activemq.apache.org/
camel/schema/spring">

<route>
<from uri="seda:a"/>
<choice>

<when>
<predicate>

<header name="foo"/>
<isEqualTo value="bar"/>

</predicate>
<to uri="seda:b"/>

</when>
<when>

<predicate>
<header name="foo"/>
<isEqualTo value="cheese"/>

</predicate>
<to uri="seda:c"/>

</when>
<otherwise>

<to uri="seda:d"/>
</otherwise>

</choice>
</route>

</camelContext>

25 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/MessageRouter.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor
in the routing logic or by using a bean in the Bean Integration to perform the transformation.
You can also use a Data Format to marshal and unmarshal messages in different encodings.

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in
your Registry such as your Spring XML configuration file as follows

from("activemq:SomeQueue").
beanRef("myTransformerBean", "myMethodName").
to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc.
You can omit the method name parameter from beanRef() and the Bean Integration will try to
deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").setBody(body().append(" World!")).to("mock:result");

You can also use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

CHAPTER 5 - PATTERN APPENDIX 26

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Data+Format
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

When using the DSL to create Routes you typically refer to Message Endpoints by their
URIs rather than directly using the Endpoint interface. Its then a responsibility of the
CamelContext to create and activate the necessary Endpoint instances using the available
Component implementations.

For more details see
• Message

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

27 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Routes
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/CamelContext.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Component.html

MESSAGING CHANNELS

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following
components

• Queue for in-VM seda based messaging
• JMS for working with JMS Queues for high performance, clustering and load balancing
• JPA for using a database as a simple message queue
• XMPP for point-to-point communication over XMPP (Jabber)

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using the following
components

• JMS for working with JMS Topics for high performance, clustering and load balancing
• XMPP when using rooms for group communication

CHAPTER 5 - PATTERN APPENDIX 28

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this
keeps the producer and consumer decoupled but lets you control the fine grained routing
configuration using the DSL or Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").to("seda:b", "seda:c", "seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="buildStaticRecipientList" xmlns="http://activemq.apache.org/
camel/schema/spring">

<route>
<from uri="seda:a"/>
<to>

<uri>seda:b</uri>
<uri>seda:c</uri>
<uri>seda:d</uri>

</to>
</route>

</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Dead Letter Channel

Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel
processor which is an Error Handler.

29 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Error+Handler
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it will
complete fine. So we typically wish to use some kind of redelivery policy to decide how many
times to try redeliver a message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize
things like

• how many times a message is attempted to be redelivered before it is considered a
failure and sent to the dead letter channel

• the initial redelivery timeout
• whether or not exponential backoff is used (i.e. the time between retries increases

using a backoff multiplier)
• whether to use collision avoidence to add some randomness to the timings

Once all attempts at redelivering the message fails then the message is forwarded to the dead
letter queue.

Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to
the message to indicate how many times its been redelivered. The default value is
org.apache.camel.redeliveryCount.

Configuring via the DSL

The following example shows how to configure the Dead Letter Channel configuration using
the DSL

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

}
};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).useExponentialBackOff());
from("seda:a").to("seda:b");

}
};

CHAPTER 5 - PATTERN APPENDIX 30

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using the following components
• File for using file systems as a persistent store of messages
• JMS when using persistent delivery (the default) for working with JMS Queues and

Topics for high performance, clustering and load balancing
• JPA for using a database as a persistence layer

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message
Bus itself as it allows producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS
component for traditional MOM support.

Also worthy of node is the XMPP component for supporting messaging over XMPP (Jabber)

31 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/XMPP
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE ROUTING

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct
destination based on the contents of the message exchanges.

The following example shows how to route a request from an input queue:a endpoint to
either queue:b, queue:c or queue:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").choice().when(header("foo").isEqualTo("bar")).to("seda:b")

.when(header("foo").isEqualTo("cheese")).to("seda:c").otherwise().to("seda:d");
}

};

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://activemq.apache.org/
camel/schema/spring">

<route>
<from uri="seda:a"/>
<choice>

<when>
<predicate>

<header name="foo"/>
<isEqualTo value="bar"/>

</predicate>
<to uri="seda:b"/>

</when>
<when>

<predicate>
<header name="foo"/>
<isEqualTo value="cheese"/>

CHAPTER 5 - PATTERN APPENDIX 32

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html

</predicate>
<to uri="seda:c"/>

</when>
<otherwise>

<to uri="seda:d"/>
</otherwise>

</choice>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming messages
from an endpoint called queue:a which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");
}

};

You can of course use many different Predicate languages such as XPath, XQuery, SQL or
various Scripting Languages. Here is an XPath example

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

Using the Spring XML Extensions

<camelContext id="buildSimpleRouteWithHeaderPredicate"
xmlns="http://activemq.apache.org/camel/schema/spring">

<route>

33 CHAPTER 5 - PATTERN APPENDIX

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Filter.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Filter.html
http://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java

<from uri="seda:a"/>
<filter>

<predicate>
<header name="foo"/>
<isEqualTo value="bar"/>

</predicate>
</filter>
<to uri="seda:b"/>

</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of
destinations.

Static Recipient List

The following example shows how to route a request from an input queue:a endpoint to a
static list of destinations

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").to("seda:b", "seda:c", "seda:d");
}

};

Using the Spring XML Extensions

CHAPTER 5 - PATTERN APPENDIX 34

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RecipientList.html

<camelContext id="buildStaticRecipientList" xmlns="http://activemq.apache.org/
camel/schema/spring">

<route>
<from uri="seda:a"/>
<to>

<uri>seda:b</uri>
<uri>seda:c</uri>
<uri>seda:d</uri>

</to>
</route>

</camelContext>

Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients
is dynamic and calculated at runtime. The following example demonstrates how to create a
dynamic recipient list using an Expression (which in this case it extracts a named header value
dynamically) to calculate the list of endpoints which are either of type Endpoint or are
converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").recipientList(header("foo"));
}

};

The above assumes that the header contains a list of endpoint URIs. The following takes a single
string header and tokenizes it

from("direct:a").recipientList(
header("recipientListHeader").tokenize(","));

Using the Spring XML Extensions

<camelContext id="buildDynamicRecipientList" xmlns="http://activemq.apache.org/
camel/schema/spring">

<route>
<from uri="seda:a"/>
<recipientList>

<recipients>
<header name="foo"/>

</recipients>
</recipientList>

</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

35 CHAPTER 5 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Splitter

The Splitter from the EIP patterns allows you split a message into a number of pieces and
process them individually

Example

The following example shows how to take a request from the queue:a endpoint the split it
into pieces using an Expression, then forward each piece to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").splitter(bodyAs(String.class).tokenize("\n")).to("seda:b");
}

};

The splitter can use any Expression language so you could use any of the Languages Supported
such as XPath, XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activemq:my.queue").splitter(xpath("//foo/bar")).to("file://some/
directory")

Using the Spring XML Extensions

<camelContext id="buildSplitter" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="seda:a"/>
<splitter>

<recipients>
<bodyAs class="java.lang.String"/>
<tokenize token="

"/>
</recipients>

</splitter>

CHAPTER 5 - PATTERN APPENDIX 36

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Languages+Supported
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/Sequencer.html

<to uri="seda:b"/>
</route>

</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Resequencer

The Resequencer from the EIP patterns allows you to reorganise messages based on some
comparator. By default in Camel we use an Expression to create the comparator; so that you
can compare by a message header or the body or a piece of a message etc.

Camel supports two resequencing algorithms:
• Batch resequencing collects messages into a batch, sorts the messages and sends

them to their output.
• Stream resequencing re-orders (continuous) message streams based on the

detection of gaps between messages.

Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages
are sorted in order of the body() expression. That is messages are collected into a batch
(either by a maximum number of messages per batch or using a timeout) then they are sorted
in order and then sent out to their output.

Using the Fluent Builders

from("direct:start").resequencer(body()).to("mock:result");

This is equvalent to

from("direct:start").resequencer(body()).batch().to("mock:result");

To define a custom configuration for the batch-processing resequencer you should provide a
configuration object.

37 CHAPTER 5 - PATTERN APPENDIX

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Resequencer.html

from("direct:start").resequencer(body()).batch(new BatchResequencerConfig(300,
4000L)).to("mock:result")

This sets the batchSize to 300 and the batchTimeout to 4000 ms (by default, the batch size is
100 and the timeout is 1000 ms).

So the above example will reorder messages from endpoint direct:a in order of their
bodies, to the endpoint mock:result. Typically you'd use a header rather than the body to
order things; or maybe a part of the body. So you could replace this expression with

resequencer(header("JMSPriority"))

for example to reorder messages using their JMS priority.

You can of course use many different Expression languages such as XPath, XQuery, SQL or
various Scripting Languages.

You can also use multiple expressions; so you could for example sort by priority first then
some other custom header

resequencer(header("JMSPriority"), header("MyCustomerRating"))

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start" />
<resequencer>

<simple>body</simple>
<to uri="mock:result" />
<!--

batch-config can be ommitted for default (batch) resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>
</route>

</camelContext>

Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are
re-ordered based on their sequence numbers given by a seqnum header using gap detection
and timeouts on the level of individual messages.

Using the Fluent Builders

from("direct:start").resequencer(header("seqnum")).stream().to("mock:result");

To define a custom configuration for the stream-processing resequencer you should provide a
configuration object.

from("direct:start").resequencer(header("seqnum")).stream(new
StreamResequencerConfig(5000, 4000L)).to("mock:result")

CHAPTER 5 - PATTERN APPENDIX 38

http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the
capacity is 100 and the timeout is 1000 ms).

The stream-processing resequencer algorithm is based on the detection of gaps in a message
stream rather than on a fixed batch size. Gap detection in combination with timeouts removes
the constraint of having to know the number of messages of a sequence (i.e. the batch size) in
advance. Messages must contain a unique sequence number for which a predecessor and a
successor is known. For example a message with the sequence number 3 has a predecessor
message with the sequence number 2 and a successor message with the sequence number 4.
The message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer
therefore has to retain message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship
with respect to the sequence number) in a message stream is known, then the resequencer's
timeout parameter should be set to this value. In this case it is guaranteed that all messages of a
stream are delivered in correct order to the next processor. The lower the timeout value is
compared to the out-of-sequence time difference the higher is the probability for
out-of-sequence messages delivered by this resequencer. Large timeout values should be
supported by sufficiently high capacity values. The capacity parameter is used to prevent the
resequencer from running out of memory.

By default, the stream resequencer expects long sequence numbers but other sequence
numbers types can be supported as well by providing custom comparators.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(5000, 4000L,
comparator);
from("direct:start").resequencer(header("seqnum")).stream(config).to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<resequencer>

<simple>in.header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequencer>
</route>

</camelContext>

Further Examples

For further examples of this pattern in use you could look at the batch-processing resequencer
junit test case and the stream-processing resequencer junit test case

39 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE TRANSFORMATION

Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Message Translator or by
using an artibrary Processor in the routing logic to enrich the message.

Using the Fluent Builders

You can use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Here is a simple example using the DSL directly to transform the message body

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor using explicit Java code

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

CHAPTER 5 - PATTERN APPENDIX 40

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://www.enterpriseintegrationpatterns.com/DataEnricher.html

}
}).to("mock:result");

Finally we can use Bean Integration to use any Java method on any bean to act as the
transformer

Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Message Translator or by
using an artibrary Processor in the routing logic to enrich the message.

Using the Fluent Builders

You can use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemq:My.Queue").
beanRef("myBeanName", "myMethodName").
to("activemq:Another.Queue");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Content Filter

Camel supports the Content Filter from the EIP patterns using a Message Translator or by using
an artibrary Processor in the routing logic to filter content from the inbound message.

41 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://cwiki.apache.org/confluence/display/CAMEL/Velocity
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/ContentFilter.html

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or
one of the supported Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Normalizer

Camel supports the Normalizer from the EIP patterns by using a Message Router in front of a
number of Message Translator instances.

CHAPTER 5 - PATTERN APPENDIX 42

http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/SQL
http://cwiki.apache.org/confluence/display/CAMEL/Scripting+Languages
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/DSL
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/Normalizer.html

See Also

• Message Router
• Content Based Router
• Message Translator

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING ENDPOINTS

Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Message Translator
pattern or the Type Converter module.

See also

• Message Translator
• Type Converter
• CXF for JAX-WS support for binding business logic to messaging & web services
• POJO
• Bean

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

43 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Message+Router
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html

Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer
model is event based (i.e. asynchronous) as this means that the Camel container can then
manage pooling, threading and concurrency for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing the Processor
interface which is invoked by the Message Endpoint when a Message is available for processing.

For more details see
• Message
• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Polling Consumer

Camel supports implementing the Polling Consumer from the EIP patterns using the
PollingConsumer interface which can be created via the Endpoint.createPollingConsumer()
method.

So in your Java code you can do

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

There are 3 main polling methods on PollingConsumer

Method
name

Description

receive()
Waits until a message is available and then returns it; potentially blocking
forever

CHAPTER 5 - PATTERN APPENDIX 44

http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Message+Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Processor.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()

receive(long)
Attempts to receive a message exchange, waiting up to the given
timeout and returning null if no message exchange could be received
within the time available

receiveNoWait()
Attempts to receive a message exchange immediately without waiting
and returning null if a message exchange is not available yet

Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and
push them through the Camel processing routes. That is to say externally from the client the
endpoint appears to use an Event Driven Consumer but internally a scheduled poll is used to
monitor some kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this pattern.

There is also the Quartz Component which provides scheduled delivery of messages using
the Quartz enterprise scheduler.

For more details see
• PollingConsumer
• Scheduled Polling Components

• ScheduledPollConsumer
• File
• JPA
• Mail
• Quartz

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Competing Consumers

Camel supports the Competing Consumers from the EIP patterns using a few different
components.

45 CHAPTER 5 - PATTERN APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://cwiki.apache.org/confluence/display/CAMEL/Event+Driven+Consumer
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Mail
http://cwiki.apache.org/confluence/display/CAMEL/Quartz
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html

You can use the following components to implement competing consumers:-
• Queue for SEDA based concurrent processing using a thread pool
• JMS for distributed SEDA based concurrent processing with queues which support

reliable load balancing,ÌÙ failover and clustering.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

CHAPTER 5 - PATTERN APPENDIX 46

http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html

You can use a component like JMS with selectors to implement a Selective Consumer as the
Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Content Based Router as the Message Dispatcher.

See Also

• JMS
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when creating
your consumer. For example when using JMS you can specify a selector parameter so that the
message broker will only deliver messages matching your criteria.

The other approach is to use a Message Filter which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).process(myProcessor);
}

};

Using the Spring XML Extensions

<camelContext id="buildCustomProcessorWithFilter"
xmlns="http://activemq.apache.org/camel/schema/spring">

<route>

47 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/MessageSelector.html

<from uri="seda:a"/>
<filter>

<predicate>
<header name="foo"/>
<isEqualTo value="bar"/>

</predicate>
</filter>
<process ref="#myProcessor"/>

</route>
</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the JMS component which
supports publish & subscribe using Topics with support for non-durable and durable
subscribers.

Another alternative is to combine the Message Dispatcher or Content Based Router with
File or JPA components for durable subscribers then something like Queue for non-durable.

See Also

• JMS
• File
• JPA
• Message Dispatcher
• Selective Consumer
• Content Based Router
• Endpoint

CHAPTER 5 - PATTERN APPENDIX 48

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://cwiki.apache.org/confluence/display/CAMEL/Message+Dispatcher
http://cwiki.apache.org/confluence/display/CAMEL/Selective+Consumer
http://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Idempotent Consumer

The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression
to calculate a unique message ID string for a given message exchange; this ID can then be
looked up in the MessageIdRepository to see if it has been seen before; if it has the message is
consumed; if its not then the message is processed and the ID is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out duplicates.

Using the Fluent Builders

The following example will use the header myMessageId to filter out duplicates

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").idempotentConsumer(header("myMessageId"),
memoryMessageIdRepository(200))

.to("seda:b");
}

};

The above example will use an in-memory based MessageIdRepository which can easily run out
of memory and doesn't work in a clustered environment. So you might prefer to use the JPA
based implementation which uses a database to store the message IDs which have been
processed

return new SpringRouteBuilder() {
public void configure() {

from("direct:start").idempotentConsumer(
header("messageId"),
jpaMessageIdRepository(bean(JpaTemplate.class), PROCESSOR_NAME)

).to("mock:result");
}

};

In the above example we are using the header messageId to filter out duplicates and using
the collection myProcessorName to indicate the Message ID Repository to use. This name
is important as you could process the same message by many different processors; so each may
require its own logical Message ID Repository.

Using the Spring XML Extensions

<camelContext id="buildCustomProcessorWithFilter"
xmlns="http://activemq.apache.org/camel/schema/spring">

<route>

49 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/activemq/camel/trunk/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java

<from uri="seda:a"/>
<filter>

<predicate>
<header name="foo"/>
<isEqualTo value="bar"/>

</predicate>
</filter>
<process ref="#myProcessor"/>

</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using spring
transactions.

Transaction Oriented Endpoints (Camel Toes) like JMS support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate
in the current transaction context that they are called from.

You should use the SpringRouteBuilder to setup the routes since you will need to setup the
spring context with the TransactionTemplates that will define the transaction manager
configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the JMS component, this can be done by looking it
up in the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConnectionFactory"

CHAPTER 5 - PATTERN APPENDIX 50

http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/What+is+a+Camel+TOE
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html

class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>

</bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = (PlatformTransactionManager)
spring.getBean("jmsTransactionManager");

ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");

JmsComponent component =
JmsComponent.jmsComponentTransacted(connectionFactory, transactionManager);

component.getConfiguration().setConcurrentConsumers(1);
ctx.addComponent("activemq", component);

Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you
do not want your outbound endpoint to enlist in the same transaction as your inbound
endpoint? The solution is to add a Transaction Policy to the processing route. You first have to
define transaction policies that you will be using. The policies use a spring TransactionTemplate
to declare the transaction demarcation use. So you will need to add something like the
following to your spring xml:

<bean id="PROPAGATION_REQUIRED"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION_NOT_SUPPORTED"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_NOT_SUPPORTED"/>

</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.springframework.transaction.support.TransactionTemplate">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects
for each of the templates.

public void configure() {
...
Policy requried = new SpringTransactionPolicy(bean(TransactionTemplate.class,

"PROPAGATION_REQUIRED"));
Policy notsupported = new

SpringTransactionPolicy(bean(TransactionTemplate.class,
"PROPAGATION_NOT_SUPPORTED"));

51 CHAPTER 5 - PATTERN APPENDIX

http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://activemq.apache.org/camel/maven/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

Policy requirenew = new
SpringTransactionPolicy(bean(TransactionTemplate.class,
"PROPAGATION_REQUIRES_NEW"));

...
}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("activemq:queue:bar");

See Also

• JMS

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Messaging Gateway

Camel has several endpoint components that support the Messaging Gateway from the EIP
patterns.

Components like Bean, CXF and Pojo provide a a way to bind a Java interface to the
message exchange.

See Also

• Bean
• Pojo
• CXF

CHAPTER 5 - PATTERN APPENDIX 52

http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Service Activator

Camel has several endpoint components that support the Service Activator from the EIP
patterns.

Components like Bean, CXF and Pojo provide a a way to bind the message exchange to a
Java interface/service.

See Also

• Bean
• Pojo
• CXF

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

SYSTEM MANAGEMENT

Wire Tap

The Wire Tap from the EIP patterns allows you to route messages to a separate tap location
before it is forwarded to the ultimate destination.

53 CHAPTER 5 - PATTERN APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Pojo
http://cwiki.apache.org/confluence/display/CAMEL/CXF
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://www.enterpriseintegrationpatterns.com/WireTap.html

The following example shows how to route a request from an input queue:a endpoint to
the wire tap location queue:tap before it is received by queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").to("seda:tap", "seda:b");
}

};

Using the Spring XML Extensions

<camelContext id="buildWireTap" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="seda:a"/>
<to>

<uri>seda:tap</uri>
<uri>seda:b</uri>

</to>
</route>

</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 5 - PATTERN APPENDIX 54

http://cwiki.apache.org/confluence/display/CAMEL/Fluent+Builders
http://cwiki.apache.org/confluence/display/CAMEL/Spring+XML+Extensions
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Architecture
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Examples

C H A P T E R 6

° ° ° °

Component Appendix

There now follows the documentation on each Camel component.

ACTIVEMQ COMPONENT

The ActiveMQ component allows messages to be sent to a JMS Queue or Topic; or messages
to be consumed from a JMS Queue or Topic using Apache ActiveMQ.

This component is based on the JMS Component and uses Spring's JMS support for
declarative transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming.

To use this component make sure you have the activemq.jar or activemq-core.jar on your
classpath along with any Camel dependencies such as camel-core.jar, camel-spring.jar and
camel-jms.jar.

URI format

activemq:[topic:]destinationName

So for example to send to queue FOO.BAR you would use

activemq:FOO.BAR

You can be completely specific if you wish via

activemq:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

activemq:topic:Stocks.Prices

Configuring the Connection Factory

The following test case shows how to add an ActiveMQComponent to the CamelContext using
the activeMQComponent() method while specifying the brokerURL used to connect to
ActiveMQ

55 CHAPTER 6 - COMPONENT APPENDIX

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/JMS
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-activemq/src/test/java/org/apache/camel/component/activemq/ActiveMQRouteTest.java
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-activemq/src/test/java/org/apache/camel/component/activemq/ActiveMQRouteTest.java
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html
http://activemq.apache.org/configuring-transports.html
http://java.sun.com/products/jms/
http://activemq.apache.org/
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-activemq/src/test/java/org/apache/camel/component/activemq/ActiveMQRouteTest.java
http://activemq.apache.org/camel/maven/camel-activemq/apidocs/org/apache/camel/component/activemq/ActiveMQComponent.html#activeMQComponent(java.lang.String)
http://activemq.apache.org/configuring-transports.html

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML

You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="tcp://somehost:61616"/>
</bean>

</beans>

Invoking MessageListener POJOs in a Camel route

The ActiveMQ component also providers a helper Type Converter from a JMS MessageListener
to a Processor. This means that the Bean component is capable of invoking any JMS
MessageListener bean directly inside any route.

So for example you can create a MessageListener in JMS like this....

public class MyListener implements MessageListener {
public void onMessage(Message jmsMessage) {

// ...
}

}

Then use it in your Camel route as follows

from("file://foo/bar").
bean(MyListener.class);

i.e. you can reuse any of the Camel Components and easily integrate them into your JMS
MessageListener POJO!

See Also

• Configuring Camel

CHAPTER 6 - COMPONENT APPENDIX 56

http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel

• Component
• Endpoint
• Getting Started

ACTIVEMQ JOURNAL COMPONENT

The ActiveMQ Journal Component allows messages to be stored in a rolling log file and then
consumed from that log file. The journal aggregates and batches up concurrent writes so that to
overhead of writing and waiting for the disk sync is relatively constant regardless of how many
concurrent writes are being done. Therefore, this component supports and encourages you to
use multiple concurrent producers to the same journal endpoint.

Each journal endpoint uses a different log file and therefore write batching (and the
associated performance boost) does not occur between multiple endpoints.

This component only supports 1 active consumer on the endpoint. After the message is
processed by the consumer's processor, the log file is marked and only subsequent messages in
the log file will get delivered to consumers.

URI format

activemq.journal:directory-name[?options]

So for example to send to the journal located in the /tmp/data directory you would use

activemq.journal:/tmp/data

Options

Name
Default
Value

Description

syncConsume false
If set to true, when the journal is marked after a message is
consumed, wait till the Operating System has verified the mark
update is safely stored on disk

syncProduce true
If set to true, wait till the Operating System has verified the
message is safely stored on disk

Expected Exchange Data Types

The consumer of a Journal endpoint generates DefaultExchange objects with the in message :
• header "journal" : set to the endpoint uri of the journal the message came from
• header "location" : set to a Location which identifies where the recored was stored

on disk

57 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html

• body : set to ByteSequence which contains the byte array data of the stored message
The producer to a Journal endpoint expects an Exchange with an In message where the body
can be converted to a ByteSequence or a byte[].

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

AMQP

The AMQP component supports the AMQP protocol via the Qpid project.

URI format

amqp:[queue:][topic:]destinationName[?option1=value[&option2=value2]]

You can specify all of the various configuration options of the JMS component after the
destination name.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

BEAN COMPONENT

The bean: component binds beans to Camel message exchanges.

URI format

bean:someName[?methodName=someMethod]

Where someName can be any string which is used to lookup the bean in the Registry and
someMethod defines the name of the method to invoke.

This will use the Bean Binding to map the message exchange to the bean.

CHAPTER 6 - COMPONENT APPENDIX 58

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.amqp.org/
http://www.amqp.org/
http://cwiki.apache.org/qpid/
http://cwiki.apache.org/qpid/
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Bean+Binding
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://www.amqp.org/
http://cwiki.apache.org/qpid/

Using

The object instance that is used to consume messages must be explicitly registered with the
Registry. For example if you are using Spring you must define the bean in the spring.xml; or if
you don't use Spring then put the bean in JNDI.

// lets populate the context with the services we need
// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();
context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);

Once an endpoint has been registered, you can build Camel routes that use it to process
exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {

public void configure() {
from("direct:hello").to("pojo:bye");

}
});

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it,
you can only route from some inbound message Endpoint to the bean endpoint as output. So
consider using a direct: or queue: endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy that will generate
BeanExchanges and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

Bean binding

The binding of a Camel Message to a bean method call can occur in different ways
• if the bean can be converted to a Processor using the Type Converter mechanism

then this is used to process the message. This mechanism is used by the ActiveMQ
component to allow any MessageListener to be invoked by the Bean component

• if the body of the message can be converted to a BeanInvocation (the default payload
used by the ProxyHelper) - then that its used to invoke the method and pass the
arguments

• if the message contains the header org.apache.camel.MethodName then that
method is invoked, converting the body to whatever the argument is to the method

• otherwise the type of the method body is used to try find a method which matches;
an error is thrown if a single method cannot be chosen unambiguously.

By default the return value is set on the outbound message body.

59 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://cwiki.apache.org/confluence/display/CAMEL/Message
http://cwiki.apache.org/confluence/display/CAMEL/Processor
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

For example you could write a method like this

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(String body) {

// process the inbound message here
}

}

Here Camel with subscribe to an ActiveMQ queue, then convert the message payload to a
String (so dealing with TextMessage, ObjectMessage and BytesMessage in JMS), then process
this method.

Using Annotations to bind parameters to the Exchange

You can also use the following annotations to bind parameters to different kinds of Expression

Annotation Meaning

@Body To bind to an inbound message body

@Header To bind to an inbound message header

@Headers To bind to the Map of the inbound message headers

@OutHeader To bind to an outbound message header

@OutHeaders To bind to the Map of the outbound message headers

@Property To bind to a named property on the exchange

@Properties To bind to the property map on the exchange

For example

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Header('JMSCorrelationID') String correlationID,

@Body String body) {
// process the inbound message here

}

}

In the above you can now pass the Message.getJMSCorrelationID() as a parameter to the
method (using the Type Converter to adapt the value to the type of the parameter).

Finally you don't need the @MessageDriven annotation; as the Camel route could describe
which method to invoke.

e.g. a route could look like

CHAPTER 6 - COMPONENT APPENDIX 60

http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Header.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Header.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Headers.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Headers.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeader.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeader.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Property.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Property.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Properties.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Properties.html
http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Body.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Header.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Headers.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeader.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Property.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/Properties.html

from("activemq:someQueue").
to("bean:myBean");

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try figure out what
method to call.

If you want to be explicit you can use

from("activemq:someQueue").
to("bean:myBean?methodName=doSomething");

Using Expression Languages

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using bean integration. For example you can use any of these annotations...

Annotation Description

@BeanShell Inject a BeanShell expression

@EL Inject an EL expression

@Groovy Inject a Groovy expression

@JavaScript Inject a JavaScript expression

@OGNL Inject an OGNL expression

@PHP Inject a PHP expression

@Python Inject a Python expression

@Ruby Inject a Ruby expression

@Simple Inject an Simple expression

@XPath Inject an XPath expression

@XQuery Inject an XQuery expression

For example

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Path("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

61 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Languages
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://cwiki.apache.org/confluence/display/CAMEL/BeanShell
http://activemq.apache.org/camel/maven/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://activemq.apache.org/camel/maven/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://cwiki.apache.org/confluence/display/CAMEL/EL
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://cwiki.apache.org/confluence/display/CAMEL/Groovy
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://cwiki.apache.org/confluence/display/CAMEL/JavaScript
http://activemq.apache.org/camel/maven/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://activemq.apache.org/camel/maven/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://cwiki.apache.org/confluence/display/CAMEL/OGNL
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://cwiki.apache.org/confluence/display/CAMEL/PHP
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://cwiki.apache.org/confluence/display/CAMEL/Python
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://cwiki.apache.org/confluence/display/CAMEL/Ruby
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Simple.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Simple.html
http://cwiki.apache.org/confluence/display/CAMEL/Simple
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://activemq.apache.org/camel/maven/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://activemq.apache.org/camel/maven/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://activemq.apache.org/camel/maven/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://activemq.apache.org/camel/maven/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://activemq.apache.org/camel/maven/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/Simple.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/language/XPath.html
http://activemq.apache.org/camel/maven/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CXF COMPONENT

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services
hosted in CXF.

URI format

cxf://address?options

Where address represents the CXF endpoint's address

cxf:bean:cxfEndpoint

Where cxfEndpoint repesents the spring bean's name which presents the CXF endpoint

You could apply the dataFormat options to cxfEndpoint like this

cxf:bean:cxfEndpoint?dataFormat=PAYLOAD

Options

Name Description Example
default
value

wsdlURL The location of the WSDL.
file://local/wsdl/
hello.wsdl or wsdl/
hello.wsdl

Ê

serviceClass
The class name of the SEI(Service
Endpoint Interface) class which could
have JSR181 annotation or not

org.apache.camel.Hello Ê

serviceName
The service name this service is
implementing, it maps to the
wsdl:service@name.

{http://org.apache.camel}
ServiceName

Ê

portName
The port name this service is
implementing, it maps to the
wsdl:port@name.

{http://org.apache.camel}
PortName

Ê

CHAPTER 6 - COMPONENT APPENDIX 62

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
/local/wsdl/hello.wsdl
/local/wsdl/hello.wsdl
/local/wsdl/hello.wsdl
http://org.apache.camel
http://org.apache.camel
http://org.apache.camel
http://org.apache.camel
http://incubator.apache.org/cxf/
/local/wsdl/hello.wsdl
http://org.apache.camel
http://org.apache.camel

dataFormat
Which data type message that CXF
endpoint support

POJO, PAYLOAD,
MESSAGE

POJO

The descriptions of the dataformats

DataFormat Description

POJO
POJOs (Plain old Java objects) are the Java parameters to the method, it is
invoking on the target server.

PAYLOAD
PAYLOAD is the message payload of the message after message
configured in the CXF endpoint is applied.

MESSAGE MESSAGE is the raw message that is received from the transport layer.

Configure the CXF endpoints with spring

You can configure the CXF endpoint with the below spring configuration file , and you can also
embedded the endpoint into the camelContext tags.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://activemq.apache.org/camel/schema/cxfEndpoint"

xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/camel/schema/cxfEndpoint

http://activemq.apache.org/camel/schema/cxf/cxfEndpoint.xsd
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/

camel/schema/spring/camel-spring.xsd
">

<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/
CamelContext/RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>

<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/
SoapContext/SoapPort"

wsdlURL="testutils/hello_world.wsdl"
serviceClass="org.apache.hello_world_soap_http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"

xmlns:s="http://apache.org/hello_world_soap_http" />

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="cxf:bean:routerEndpoint" />

63 CHAPTER 6 - COMPONENT APPENDIX

<to uri="cxf:bean:serviceEndpoint" />
</route>

</camelContext>

</beans>

Be sure to include the JAX-WS schemaLocation attribute specified on the root beans
element. This allows CXF to validate the file and is required. Also note the namespace
declarations at the end of the <cxf:cxfEndpoint/> tag--these are required because the combined
"{namespace}localName" syntax is presently not supported for this tag's attribute values.

The jaxws:endpoint element supports many additional attributes:

Name Value

PortName
The endpoint name this service is implementing, it maps to the
wsdl:port@name. In the format of "ns:PORT_NAME" where ns is a
namespace prefix valid at this scope.

serviceName
The service name this service is implementing, it maps to the
wsdl:service@name. In the format of "ns:SERVICE_NAME" where ns is a
namespace prefix valid at this scope.

wsdlURL
The location of the WSDL. Can be on the classpath, file system, or be
hosted remotely.

bindingId The bindingId for the service model to use

address The service publish address

bus The bus name that will be used in the jaxws endpoint.

serviceClass
The class name of the SEI(Service Endpoint Interface) class which could have
JSR181 annotation or not

It also supports many child elements:

Name Value

cxf:inInterceptors
The incoming interceptors for this endpoint. A list of <bean>s or
<ref>s.

cxf:inFaultInterceptors
The incoming fault interceptors for this endpoint. A list of
<bean>s or <ref>s.

cxf:outInterceptors
The outgoing interceptors for this endpoint. A list of <bean>s or
<ref>s.

cxf:outFaultInterceptors
The outgoing fault interceptors for this endpoint. A list of
<bean>s or <ref>s.

CHAPTER 6 - COMPONENT APPENDIX 64

cxf:properties
A properties map which should be supplied to the JAX-WS
endpoint. See below.

cxf:dataBinding
You can specify the which DataBinding will be use in the endpoint
, This can be supplied using the Spring <bean
class="MyDataBinding"/> syntax.

cxf:binding
You can specify the BindingFactory for this endpoint to use. This
can be supplied using the Spring <bean
class="MyBindingFactory"/> syntax.

cxf:features
The features that hold the interceptors for this endpoint. A list of
<bean>s or <ref>s

cxf:schemaLocations
The schema locations for endpoint to use. A list of
<schemaLocation>s

cxf:serviceFactory
The service factory for this endpoint to use. This can be supplied
using the Spring <bean class="MyServiceFactory"/> syntax

You can find more advanced example which shows how to provide interceptors and properties
here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

DIRECT COMPONENT

The direct: component provides direct, synchronous invocation of any consumers when a
producer sends a message exchange.
This endpoint can be used connect existing routes or if a client in the same JVM as the Camel
router wants to access the routes.

URI format

direct:someName

Where someName can be any string to uniquely identify the endpoint

65 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

Options

Name
Default
Value

Description

allowMultipleConsumers true
If set to false, then when a second
consumer is started on the endpoint, a
IllegalStateException is thrown

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

ESPER

The Esper component supports the Esper Library for Event Stream Processing. The
camel-esper library is provided by the Camel Extra project which hosts all *GPL related
components for Camel.

URI format

esper:name[?option1=value[&option2=value2]]

When consuming from an Esper endpoint you must specify a pattern or eql statement to
query the event stream.

For example

from("esper://cheese?pattern=every event=MyEvent(bar=5)").
to("activemq:Foo");

Options

Name Default Value Description

pattern Ê The Esper Pattern expression as a String to filter events

eql Ê The Esper EQL expression as a String to filter events

CHAPTER 6 - COMPONENT APPENDIX 66

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://esper.codehaus.org
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html

Demo

There is a demo which shows how to work with ActiveMQ, Camel and Esper in the Camel
Extra project

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Esper Camel Demo

EVENT COMPONENT

The event: component provides access to the Spring ApplicationEvent objects. This allows
you to publish ApplicationEvent objects to a Spring ApplicationContext or to consume them.
You can then use Enterprise Integration Patterns to process them such as Message Filter.

URI format

event://default

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

FILE COMPONENT

The File component provides access to file systems; allowing files to be processed by any other
Camel Components or messages from other components can be saved to disk.

URI format

file:fileName

Where fileName represents the underlying file name

67 CHAPTER 6 - COMPONENT APPENDIX

http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/wiki/EsperDemo

URI Options

Name
Default
Value

Description

initialDelay 1000 milliseconds before polling the file/directory starts

delay 500 milliseconds before the next poll of the file/directory

useFixedDelay false if true, poll once after the initial delay

recursive true
if a directory, will look for changes in files in all the sub
directories

lock true if true will lock the file for the duration of the processing

regexPattern null
will only fire a an exchange for a file that matches the regex
pattern

delete false
If delete is true then the file will be deleted when it is
processed (the default is to move it, see below)

noop false
If true then the file is not moved or deleted in any way (see
below). This option is good for read only data, or for ETL
type requirements

moveNamePrefix null
The prefix String perpended to the filename when moving
it. For example to move processed files into the done
directory, set this value to 'done/'

moveNamePostfix null
The postfix String appended to the filename when moving
it. For example to rename processed files from foo to
foo.old set this value to '.old'

append true
When writing do we append to the end of the file, or
replace it?

By default the file is locked for the duration of the processing. Also when files are processed
they are moved into the .camel directory; so that they appear to be deleted.

Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

org.apache.camel.file.name

Specifies the output file name (relative to the endpoint
directory) to be used for the output message when sending to
the endpoint. If this is not present then a generated message ID
is used instead

CHAPTER 6 - COMPONENT APPENDIX 68

http://cwiki.apache.org/confluence/display/CAMEL/ETL

Samples

Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to
the outputdir and delete the file in the inputdir.

Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Object body = exchange.getIn().getBody();
System.out.println(body);

}
});

Body will be File object pointing to the file that was just dropped to the inputdir directory.

Read files from a directory and send the content to a jms queue

from("file://inputdir/").convertBodyTo(String.class).trace("test").to("jms:test.queue")

By default the file endpoint sends a FileMessage which contains a File as body. If you send this
directly to the jms component the jms message will only contain the File object but not the
content. By converting the File to a String the message will contain the file contents what is
probably what you want to do.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

FIX

The FIX component supports the FIX protocol by using the QuickFix/J library.

69 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://en.wikipedia.org/wiki/FIX_protocol
http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/
http://www.quickfixj.org/
http://en.wikipedia.org/wiki/FIX_protocol
http://www.quickfixj.org/

URI format

fix://configurationResource

Where configurationResource points to the QuickFix/J configuration file to define how to
connect to FIX. This could be a resource on the classpath or refer to a full URL using http: or
file: schemes.

Message Formats

By default this component will attempt to use the Type Converter to turn the inbound message
body into a QuickFix Message class and all outputs from FIX will be in the same format.

If you are using the Artix Data Services support then any payload such as files or streams or
byte arrays can be converted nicely into FIX messages.

Using camel-fix

To use this module you need to use the FUSE Mediation Router distribution. Or you could just
add the following to your pom.xml, substituting the version number for the latest & greatest
release.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-parent</artifactId>
<version>1.3.0.1-fuse</version>

</dependency>

And ensure you are pointing at the maven repo

<repository>
<id>open.iona.m2</id>
<name>IONA Open Source Community Release Repository</name>
<url>http://repo.open.iona.com/maven2</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>

<enabled>true</enabled>
</releases>

</repository>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 6 - COMPONENT APPENDIX 70

http://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://cwiki.apache.org/confluence/display/CAMEL/Artix+Data+Services
http://open.iona.com/products/fuse-mediation-router/
http://open.iona.com/products/fuse-mediation-router/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.quickfixj.org/quickfixj/javadoc/quickfix/Message.html
http://open.iona.com/products/fuse-mediation-router/

FTP/SFTP/WEBDAV COMPONENT

This component provides access to remote file systems over the FTP, SFTP and WebDAV
protocols

URI format

ftp://[username@]hostname[:port]/filename[?options]
sftp://[username@]hostname[:port]/filename[?options]
webdav://[username@]hostname[:port]/filename[?options]

Where filename represents the underlying file name or directory. Can contain nested folders.
The username is currently only possible to provide in the hostname parameter.
If no port number is provided. Camel will provide default values according to the protocol. (ftp
= 21, sftp = 22)

Examples

ftp://someone@someftpserver.com/public/upload/images/
holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/
budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download

Options

Name
Default
Value

Description

directory true
indicates whether or not the given file name should be interpreted
by default as a directory or file (as it sometimes hard to be sure
with some FTP servers)

password null specifies the password to use to login to the remote file system

binary false specifies the file transfer mode BINARY or ASCII. Default is ASCII.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

71 CHAPTER 6 - COMPONENT APPENDIX

ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download
ftp://publicftpserver.com/download
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/budget.txt?password=secret&binary=false&directory=false
ftp://publicftpserver.com/download

HTTP COMPONENT

The http: component provides HTTP based endpoints for consuming external HTTP
resources.

URI format

http:hostname[:port][/resourceUri]

Usage

You can only produce to endpoints generated by the HTTP component. Therefore it should
never be used aas input into your camel Routes. To bind/expose an HTTP endpoint via an http
server as input to a camel route, you can use the Jetty Component

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

IBATIS

The ibatis: component allows you to query, poll, insert, update and delete data in a relational
database using Apache iBATIS.

URI format

ibatis:operationName

Where operationName is the name in the iBATIS XML configuration file which maps to the
query, insert, update or delete operation you wish to evaluate.

For example if you wish to poll a database for rows using iBATIS and then send them to a
JMS Queue via ActiveMQ you could do

from("ibatis:selectAllAccounts").
to("activemq:MyQueue");

Or to consume beans from a JMS queue and insert them into a database you could do...

from("activemq:Some.Queue").
to("ibatis:insertAccount");

CHAPTER 6 - COMPONENT APPENDIX 72

http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Jetty
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://ibatis.apache.org/
http://ibatis.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://ibatis.apache.org/

Options

Name
Default
Value

Description

initialDelay 1000
The number of milliseconds until the first poll when polling
(consuming)

delay 500
The number of milliseconds for the subsequent delays after
the intial delay

useFixedDelay false
Whether or not the fixed delay is to be used, to enable a
repeated timer

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

|

IRC COMPONENT

The irc: component implements an IRC (Iternet Relay Chat) transport.

URI format

irc:host[:port]/#room

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JBI COMPONENT

The jbi: component is provided by the ServiceMix Camel module and provides integration with
a JBI Normalized Message Router such as provided by Apache ServiceMix

73 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/
http://incubator.apache.org/servicemix/
http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/

URI format

jbi:service:serviceNamespace[sep]serviceName
jbi:endpoint:serviceNamespace[sep]serviceName[sep]endpointName
jbi:name:endpointName

The separator used will be:
• '/' if the namespace looks like 'http://'
• ':' if the namespace looks like 'urn:foo:bar'

For more details of valid JBI URIs see the ServiceMix URI Guide.

Using the jbi:service: or jbi:endpoint: URI forms will set the service QName on the JBI
endpoint to the exact one you give. Otherwise the default Camel JBI Service QName will be
used which is

{http://activemq.apache.org/camel/schema/jbi}endpoint

Examples

jbi:service:http://foo.bar.org/MyService
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint
jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint
jbi:name:cheese

Creating a JBI Service Unit

If you have some Camel routes you want to deploy inside JBI as a Service Unit you can use the
JBI Service Unit Archetype to create a new project.

If you have an existing maven project which you need to convert into a JBI Service Unit you
may want to refer to the ServiceMix Maven JBI Plugins for further help. Basically you just need
to make sure

• you have a spring XML file at src/main/resources/camel-context.xml which
is used to boot up your routes inside the JBI Service Unit

• you change the pom's packaging to jbi-service-unit
Your pom.xml should look something like this to enable the jbi-service-unit packaging.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>myGroupId</groupId>
<artifactId>myArtifactId</artifactId>
<packaging>jbi-service-unit</packaging>
<version>1.0-SNAPSHOT</version>

<name>A Camel based JBI Service Unit</name>

CHAPTER 6 - COMPONENT APPENDIX 74

http://incubator.apache.org/servicemix/uris.html
http://incubator.apache.org/servicemix/uris.html
http://cwiki.apache.org/confluence/display/CAMEL/JBI+Service+Unit+Archetype
http://incubator.apache.org/servicemix/maven-jbi-plugin.html
http://incubator.apache.org/servicemix/maven-jbi-plugin.html
http://incubator.apache.org/servicemix/uris.html
http://incubator.apache.org/servicemix/maven-jbi-plugin.html

<url>http://www.myorganization.org</url>

<properties>
<camel-version>1.0.0</camel-version>
<servicemix-version>3.2-incubating</servicemix-version>

</properties>

<dependencies>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-jbi</artifactId>
<version>${camel-version}</version>

</dependency>

<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-core</artifactId>
<version>${servicemix-version}</version>
<scope>provided</scope>

</dependency>
</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<!-- creates the JBI deployment unit -->
<plugin>

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

75 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

• ServiceMix Camel module
• Using Camel with ServiceMix

JCR COMPONENT

The jcr: component allows you to add nodes to a JCR (JSR-170) compliant content
repository (e.g. Apache Jackrabbit).

URI format

jcr://user:password@repository/path/to/node

Usage

The repository element of the URI is used to look up the JCR Repository object in the
Camel context registry.

If a message is sent to a producer endpoint created by this component:
• a new node is created in the content repository
• all the message properties of the in message will be transformed to JCR Value

instances and added to the new node
• the node's UUID is returned in the out message

Message properties

All message properties are converted to node properties, except for the
org.apache.camel.component.jcr.node_name (you can refer to
JcrComponent.NODE_NAME in your code), which is used to determine the node name.

Example

The snippet below will create a node named node under the /home/test node in the
content repository. One additional attribute will be added to the node as well:
my.contents.property will contain the body of the message being sent.

from("direct:a").setProperty(JcrComponent.NODE_NAME, constant("node"))
.setProperty("my.contents.property", body()).to("jcr://user:pass@repository/

home/test");

See Also

• Configuring Camel
• Component
• Endpoint

CHAPTER 6 - COMPONENT APPENDIX 76

http://incubator.apache.org/servicemix/servicemix-camel.html
http://incubator.apache.org/servicemix/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://jackrabbit.apache.org/
http://jackrabbit.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://incubator.apache.org/servicemix/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://jackrabbit.apache.org/

• Getting Started

JDBC COMPONENT

The jdbc: component allows you to work with databases using JDBC queries and operations
via QL text as the message payload

URI format

jdbc:dataSourceName?options

Options

Name
Default
Value

Description

readSize 20,000
The default maximum number of rows that can be read by a
polling query

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JETTY COMPONENT

The jetty: component provides HTTP based endpoints for consuming HTTP requests that
arrive at an http endpoint.

URI format

jetty:http:hostname[:port][/resourceUri]

Usage

You can only consume from endpoints generated by the Jetty component. Therefore it should
only be used as input into your camel Routes. To issue HTTP requests against other HTTP
endpoints you can use the HTTP Component

77 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/HTTP

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JING COMPONENT

The Jing component uses the Jing Library to perform XML validation of the message body using
either

• RelaxNG XML Syntax
• RelaxNG Compact Syntax

Note that the MSV component can also support RelaxNG XML syntax.

URI format

rng:someLocalOrRemoteResource
rnc:someLocalOrRemoteResource

Where rng means use the RelaxNG XML Syntax whereas rnc means use RelaxNG Compact
Syntax. The following examples show possible URI values

Example Description

rng:foo/bar.rng Will take the XML file foo/bar.rng on the classpath

rnc:http://foo.com/
bar.rnc

Will use the RelaxNG Compact Syntax file from the URL
http://foo.com/bar.rnc

Example

The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given RelaxNG Compact Syntax schema (which is supplied on the
classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="rnc:org/apache/camel/component/validator/jing/schema.rnc"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

CHAPTER 6 - COMPONENT APPENDIX 78

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://cwiki.apache.org/confluence/display/CAMEL/MSV
http://relaxng.org/
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html

</catch>
</try>

</route>
</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JMS COMPONENT

The JMS component allows messages to be sent to a JMS Queue or Topic; or messages to be
consumed from a JMS Queue or Topic. The implementation of the JMS Component uses
Spring's JMS support for declarative transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming.

URI format

jms:[topic:]destinationName?properties

So for example to send to queue FOO.BAR you would use

jms:FOO.BAR

You can be completely specific if you wish via

jms:queue:FOO.BAR

If you want to send to a topic called Stocks.Prices then you would use

jms:topic:Stocks.Prices

Notes

If you wish to use durable topic subscriptions, you need to specify both clientId and
durableSubscriberName. Note that the value of the clientId must be unique and can only
be used by a single JMS connection instance in your entire network. You may prefer to use
Virtual Topics instead to avoid this limitation. More background on durable messaging here.

79 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://java.sun.com/products/jms/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

If you are using ActiveMQ

Note that the JMS component reuses Spring 2's JmsTemplate for sending messages. This is
not ideal for use in a non-J2EE container and typically requires some caching JMS provider
to avoid performance being lousy.

So if you intent to use Apache ActiveMQ as your Message Broker - which is a good

choice as ActiveMQ rocks , then we recommend that you either
• use the ActiveMQ component which is already configured to use

ActiveMQ efficiently
• use the PoolingConnectionFactory in ActiveMQ

For Consuming Messages cacheLevelName settings are vital!

If you are using Spring before 2.5.1 and Camel before 1.3.0 then you might want to set the
cacheLevelName to be CACHE_CONSUMER for maximum performance.

Due to a bug in earlier Spring versions causing a lack of transactional integrity, previous
versions of Camel and Camel versions from 1.3.0 onwwards when used with earlier Spring
versions than 2.5.1 will default to use CACHE_CONNECTION. See the JIRAs CAMEL-163
and CAMEL-294.

Also if you are using XA or running in a J2EE container then you may want to set the
cacheLevelName to be CACHE_NONE as we have seen using JBoss with TibCo EMS
and JTA/XA you must disable caching.

Properties

You can configure lots of different properties on the JMS endpoint which map to properties on
the JMSConfiguration POJO.

Property Default Value Description

acceptMessagesWhileStopping false
Should the consumer accept
messages while it is stopping

acknowledgementModeName "AUTO_ACKNOWLEDGE"

The JMS acknowledgement
name which is one of:
TRANSACTED,
CLIENT_ACKNOWLEDGE,
AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

CHAPTER 6 - COMPONENT APPENDIX 80

http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
https://issues.apache.org/activemq/browse/CAMEL-294
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
https://issues.apache.org/activemq/browse/CAMEL-163
https://issues.apache.org/activemq/browse/CAMEL-294
http://activemq.apache.org/camel/maven/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html

autoStartup true
Should the consumer
container auto-startup

cacheLevelName

"CACHE_CONNECTION"
but when SPR-3890 is fixed
it will be
"CACHE_CONSUMER"

Sets the cache level name for
the underlying JMS resources

clientId null

Sets the JMS client ID to use.
Note that this value if specified
must be unique and can only
be used by a single JMS
connection instance. Its
typically only required for
durable topic subscriptions.
You may prefer to use Virtual
Topics instead

concurrentConsumers 1
Specifies the default number of
concurrent consumers

connectionFactory null

The default JMS connection
factory to use for the
listenerConnectionFactory and
templateConnectionFactory if
neither are specified

deliveryPersistent true
Is persistent delivery used by
default?

disableReplyTo false

Do you want to ignore the
JMSReplyTo header and so
treat messages as InOnly by
default and not send a reply
back?

durableSubscriptionName null
The durable subscriber name
for specifying durable topic
subscriptions

exceptionListener null
The JMS Exception Listener
used to be notified of any
underlying JMS exceptions

81 CHAPTER 6 - COMPONENT APPENDIX

http://opensource.atlassian.com/projects/spring/browse/SPR-3890
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://opensource.atlassian.com/projects/spring/browse/SPR-3890
http://activemq.apache.org/virtual-destinations.html

explicitQosEnabled false

Set if the deliveryMode,
priority or timeToLive should
be used when sending
messages

exposeListenerSession true
Set if the listener session
should be exposed when
consuming messages

idleTaskExecutionLimit 1

Specify the limit for idle
executions of a receive task,
not having received any
message within its execution. If
this limit is reached, the task
will shut down and leave
receiving to other executing
tasks (in case of dynamic
scheduling; see the
"maxConcurrentConsumers"
setting).

listenerConnectionFactory null
The JMS connection factory
used for consuming messages

maxConcurrentConsumers 1
Specifies the maximum
number of concurrent
consumers

maxMessagesPerTask 1
The number of messages per
task

messageConverter null The Spring Message Converter

messageIdEnabled true
When sending, should message
IDs be added

messageTimestampEnabled true
Should timestamps be enabled
by default on sending messages

priority -1

Values of > 1 specify the
message priority when
sending, if the
explicitQosEnabled property is
specified

CHAPTER 6 - COMPONENT APPENDIX 82

selector null

Sets the JMS Selector which is
an SQL 92 predicate used to
apply to messages to filter
them at the message broker.
You may have to encode
special characters such as = as
%3D

receiveTimeout none
The timeout when receiving
messages

recoveryInterval none The recovery interval

serverSessionFactory null

The JMS ServerSessionFactory
if you wish to use
ServerSessionFactory for
consumption

subscriptionDurable false

Enabled by default if you
specify a
durableSubscriberName and a
clientId

taskExecutor null
Allows you to specify a custom
task executor for consuming
messages

templateConnectionFactory null
The JMS connection factory
used for sending messages

timeToLive null
Is a time to live specified when
sending messages

transacted false
Is transacted mode used for
sending/receiving messages?

transactionManager null
The Spring transaction
manager to use

transactionName null
The name of the transaction to
use

transactionTimeout null
The timeout value of the
transaction if using transacted
mode

useVersion102 false
Should the old JMS API be
used

83 CHAPTER 6 - COMPONENT APPENDIX

Configuring different JMS providers

You can configure your JMS provider inside the Spring XML as follows...

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost?broker.persistent=false"/>

</bean>
</property>

</bean>

Basically you can configure as many JMS component instances as you wish and give them a
unique name via the id attribute. The above example configures an 'activemq'
component. You could do the same to configure MQSeries, TibCo, BEA, Sonic etc.

Once you have a named JMS component you can then refer to endpoints within that
component using URIs. For example for the component name'activemq' you can then refer to
destinations as activemq:[queue:|topic:]destinationName. So you could use the same
approach for working with all other JMS providers.

This works by the SpringCamelContext lazily fetching components from the spring context
for the scheme name you use for Endpoint URIs and having the Component resolve the
endpoint URIs.

Using JNDI to find the ConnectionFactory

If you are using a J2EE container you might want to lookup in JNDI to find your
ConnectionFactory rather than use the usual <bean> mechanism in spring. You can do this
using Spring's factory bean or the new XML namespace. e.g.

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="myConnectionFactory"/>

</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="java:env/
ConnectionFactory"/>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 6 - COMPONENT APPENDIX 84

http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/URIs
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

JPA COMPONENT

The jpa: component allows you to work with databases using JPA (EJB 3 Persistence) such as
for working with OpenJPA, Hibernate, TopLink to work with relational databases.

Sending to the endpoint

Sending POJOs to the JPA endpoint inserts entities into the database. The body of the message
is assumed to be an entity bean (i.e. a POJO with an @Entity annotation on it).

If the body does not contain an entity bean then use a Message Translator in front of the
endpoint to perform the necessary conversion first.

Consuming from the endpoint

Consuming messages removes (or updates) entities in the database. This allows you to use a
database table as a logical queue, consumerse take messages from the queue and then delete/
update them to logically remove them from the queue.

If you do not wish to delete the entity when it has been processed you can specify
?consumeDelete=false on the URI. This will result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to
exclude it from a future query) then you can annotate a method with @Consumed which will
be invoked on your entity bean when the entity bean is consumed.

URI format

jpa:[entityClassName]

For sending to the endpoint, the entityClassName is optional. If specified it is used to help use
the [Type Conversion] to ensure the body is of the correct type.

For consuming the entityClassName is mandatory.

Options

Name
Default
Value

Description

persistenceUnit camel the JPA persistence unit used by default

consumeDelete true
Enables / disables whether or not the entity is deleted
after it is consumed

See Also

• Configuring Camel

85 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://activemq.apache.org/camel/maven/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html

• Component
• Endpoint
• Getting Started

LIST COMPONENT

The List component provdes a simple BrowsableEndpoint which can be useful for testing,
visualisation tools or debugging. The exchanges sent to the endpoint are all available to be
browsed.

URI format

list:someName

Where someName can be any string to uniquely identify the endpoint

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

LOG COMPONENT

The log: component uses Jakarta Commons Logging to log message exchanges to the
underlying logging system such as log4j.

URI format

log:loggingCategory[?level=loggingLevel]

Where loggingCategory is the name of the logging category to use and loggingLevel is
the logging level such as DEBUG, INFO, WARN, ERROR - the default is INFO

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 6 - COMPONENT APPENDIX 86

http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/BrowsableEndpoint
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

MAIL COMPONENT

The mail: component provides access to Email via Spring's Mail support and the underlying
JavaMail system

URI format

pop://[user-info@]host[:port][?password=somepwd]
imap://[user-info@]host[:port][?password=somepwd]
smtp://[user-info@]host[:port][?password=somepwd]

which supports either POP, IMAP or SMTP underlying protocols.

Property Description

host the host name or IP address to connect to

port the TCP port number to connect on

user-info the user name on the email server

password the users password to use

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

MINA COMPONENT

The mina: component is a transport for working with Apache MINA

URI format

mina:tcp://hostname[:port]
mina:udp://hostname[:port]
mina:multicast://hostname[:port]
mina:vm://hostname[:port}

From Camel 1.3 onwards you can specify a codec in the Registry using the codec option. If you
are using TCP and no codec is specified then the textline flag is used to determine if text line
based codec or object serialization should be used instead.

For UDP/Multicast if no codec is specified the default uses a basic ByteBuffer based codec.

Multicast also has a shorthand notation mcast.

87 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://mina.apache.org/
http://mina.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://mina.apache.org/

The VM protocol is used as a direct forwarding mechanism in the same JVM. See the MINA
VM-Pipe API documentation for details.

A MinaProducer has a default timeout value of 30 seconds, while it waits for a response
from the remote server.

In normal usage Camel-mina only supports marshalling the body content - message headers
and exchange properties will not be sent.
However the option transferExchange does allow to transfer the exchange itself over the
wire. See options below.

Options

Name
Default
Value

Description

codec null

As of 1.3 or later you can refer to a named
ProtocolCodecFactory instance in your Registry such as
your Spring ApplicationContext which is then used for
the marshalling

textline null

Only used for TCP. If no codec is specified then you can
use this flag in 1.3 or later to indicate a text line based
codec; if not specified or the value is false then Object
Serialization is assumed over TCP.

sync false

As of 1.3 or later you can configure the exchange pattern
to be either InOnly (default) or InOut. Setting sync=true
means a synchronous exchange (InOut), where the client
can read the response from MINA (The exchange out
message).

lazySessionCreation false
As of 1.3 or later session can be lazy created to avoid
exceptions if the remote server is not up and running
when the Camel producer is started.

timeout 30000

As of 1.3 or later you can configure the timeout while
waiting for a response from a remote server. The
timeout unit is in millis, so 60000 is 60 seconds. The
timeout is only used for MinaProducer.

encoding
JVM
Default

As of 1.3 or later you can configure the encoding (is a
charset name) to use for the TCP textline codec and the
UDP protocol. If not provided Camel will use the JVM
default Charset.

CHAPTER 6 - COMPONENT APPENDIX 88

http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

transferExchange false

Only used for TCP. As of 1.3 or later you can transfer
the exchange over the wire instead of just the body. The
following fields is transfered: in body, out body, in
headers, out headers, exchange properties, exchange
exception.

minaLogger false
As of 1.3 or later you can enable Apache MINA logging
filter. Apache MINA uses slf4j logging at INFO level to log
all input and output.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

MOCK COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Spring Testing framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Mock and Test testing endpoints.
The Mock component provides a powerful declarative testing mechanism which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is ran which typically fires messages to one or more endpoints and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like
• the correct number of messages are received on each endpoint
• that the correct payloads are received, in the right order
• that messages arrive on an endpoint in order, using some Expression to create an

order testing function
• that messages arrive match some kind of Predicate such as that specific headers have

certain values, or that parts of the messages match some predicate such as by
evaluating an XPath or XQuery Expression

Note that there is also the Test endpoint which is-a Mock endpoint but which also uses a
second endpoint to provide the list of expected message bodies and automatically sets up the
Mock endpoint assertions. i.e. its a Mock endpoint which automatically sets up its assertions
from some sample messages in a File or database for example.

89 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://jmock.org
http://jmock.org
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Predicate
http://cwiki.apache.org/confluence/display/CAMEL/XPath
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/File
http://cwiki.apache.org/confluence/display/CAMEL/JPA
http://jmock.org

URI format

mock:someName

Where someName can be any string to uniquely identify the endpoint

Simple Example

Here's a simple example of MockEndpoint in use. First the endpoint is resolved on the context.
Then we set an expectation, then after the test has run we assert our expectations are met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo",
MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations were met
after running a test.

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods available are as follows

Method Description

expectedMessageCount(int)
to define the expected message count on the
endpoint

expectedMinimumMessageCount(int)
to define the minimum number of expected
messages on the endpoint

expectedBodiesReceived(...)
to define the expected bodies that should be
received (in order)

expectsAscending(Expression)
to add an expectation that messages are received in
order using the given Expression to compare
messages

expectsDescending(Expression)
to add an expectation that messages are received in
order using the given Expression to compare
messages

CHAPTER 6 - COMPONENT APPENDIX 90

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)

expectsNoDuplicates(Expression)

to add an expectation that no duplicate messages
are received; using an Expression to calculate a
unique identifier for each message. This could be
something like the JMSMessageID if using JMS, or
some unique reference number within the message.

Here's another example

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages

In addition you can use the message(int messageIndex) method to add assertions about a
specific message that is received.

For example to add expectations of the headers or body of the first message (using zero
based indexing like java.util.List), you can use this code

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests.

A Spring Example

First here's the spring.xml file

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="file:src/test/data?noop=true"/>
<filter>

<xpath>/person/city = 'London'</xpath>
<to uri="mock:matched"/>

</filter>
</route>

</camelContext>

<bean id="myBean" class="org.apache.camel.spring.mock.MyAssertions"
scope="singleton"/>

As you can see it defines a simple routing rule which consumes messages from the local src/
test/data directory. The noop flag just means not to delete or move the file after its been
processed.

Also note we instantiate a bean called myBean, here is the source of the MyAssertions
bean.

public class MyAssertions implements InitializingBean {
@EndpointInject(uri = "mock:matched")
private MockEndpoint matched;

91 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://cwiki.apache.org/confluence/display/CAMEL/Expression
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/activemq/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/spring.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/data/
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/MyAssertions.java

@EndpointInject(uri = "mock:notMatched")
private MockEndpoint notMatched;

public void afterPropertiesSet() throws Exception {
// lets add some expectations
matched.expectedMessageCount(1);
notMatched.expectedMessageCount(0);

}

public void assertEndpointsValid() throws Exception {
// now lets perform some assertions that the test worked as we expect
Assert.assertNotNull("Should have a matched endpoint", matched);
Assert.assertNotNull("Should have a notMatched endpoint", notMatched);
MockEndpoint.assertIsSatisfied(matched, notMatched);

}
}

The bean is injected with a bunch of Mock endpoints using the @EndpointInject annotation, it
then sets a bunch of expectations on startup (using Spring's InitializingBean interface and
afterPropertiesSet() method) before the CamelContext starts up.

Then in our test case (which could be JUnit or TesNG) we lookup myBean in Spring (or
have it injected into our test) and then invoke the assertEndpointsValid() method on it to
verify that the mock endpoints have their assertions met. You could then inspect the message
exchanges that were delivered to any of the endpoints using the getReceivedExchanges()
method on the Mock endpoint and perform further assertions or debug logging.

Here is the actual JUnit test case we use.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

MSV COMPONENT

The MSV component performs XML validation of the message body using the MSV Library using
any of the XML schema languages supported such as XML Schema or RelaxNG XML Syntax.

Note that the Jing component also supports RelaxNG Compact Syntax

URI format

msv:someLocalOrRemoteResource

CHAPTER 6 - COMPONENT APPENDIX 92

http://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
https://msv.dev.java.net/
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#getReceivedExchanges()
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/BeanMockTest.java
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html

Where someLocalOrRemoteResource is some URL to a local resource on the classpath
or a full URL to a remote resource or resource on the file system. For example

• msv:org/foo/bar.rng
• msv:file:../foo/bar.rng
• msv:http://acme.com/cheese.rng

Example

The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given RelaxNG XML Schema (which is supplied on the classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="msv:org/apache/camel/component/validator/msv/schema.rng"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</catch>
</try>

</route>
</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

POJO COMPONENT

The pojo: component is now just an alias for the Bean component.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

93 CHAPTER 6 - COMPONENT APPENDIX

../foo/bar.rng
../foo/bar.rng
http://acme.com/cheese.rng
http://acme.com/cheese.rng
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Bean
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
../foo/bar.rng
http://acme.com/cheese.rng
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/

QUARTZ COMPONENT

The quartz: component provides a scheduled delivery of messages using the Quartz
scheduler.
Each endpoint represents a different timer (in Quartz terms, a Trigger and JobDetail).

URI format

quartz://timerName?parameters
quartz://groupName/timerName?parameters
quartz://groupName/timerName/cronExpression

You can configure the Trigger and JobDetail using the parameters

Property Description

trigger.repeatCount How many times should the timer repeat for?

trigger.repeatInterval The amount of time in milliseconds between repeated triggers

job.name Sets the name of the job

For example the following routing rule will fire 2 timer events to the endpoint mock:results

from("quartz://myGroup/
myTimerName?trigger.repeatInterval=2&trigger.repeatCount=1").to("mock:result");

Using Cron Triggers

Quartz supports Cron-like expressions for specifying timers in a handy format. You can use
these expressions in the URI; though to preserve valid URI encoding we allow / to be used
instead of spaces and $ to be used instead of ?.

For example the following will fire a message at 12pm (noon) every day

from("quartz://myGroup/myTimerName/0/0/12/*/*/$").to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0 12 * * ?

The following table shows the URI character encodings we use to preserve valid URI syntax

URI Character Cron character

'/' ' '

'$' '?'

CHAPTER 6 - COMPONENT APPENDIX 94

http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

QUEUE COMPONENT

The queue: component provides asynchronous SEDA behaviour so that messages are
exchanged on a BlockingQueue and consumers are invoked in a seperate thread pool to the
producer.

Note that queues are only visible within a single CamelContext. If you want to communicate
across CamelContext instances such as to communicate across web applications, see the VM
component.

Note also that this component has nothing to do with JMS, if you want a distributed SEA
then try using either JMS or ActiveMQ or even MINA

URI format

queue:someName

Where someName can be any string to uniquely identify the endpoint within the current
CamelContext

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

RMI COMPONENT

The rmi: component bind the PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply in regards to what the
methods can be used over it. This component only supports PojoExchanges that carry a
method invocation that is part of an interface that extends the Remote interface. All parameters
in the method should be either Serializable or Remote objects too.

95 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/VM
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/MINA
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

Deprecated

To avoid confusion with JMS queues, this component is now deprecated in 1.1 onwards.
Please use the SEDA component instead

URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path

For example:

rmi://localhost:1099/path/to/service

Using

To call out to an existing RMI service registered in an RMI registry, create a Route similar to:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing camel processor or service in an RMI registry, create a Route like:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Notice that when binding an inbound RMI endpoint, the Remote interfaces exposed must be
specified.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

SEDA COMPONENT

The seda: component provides asynchronous SEDA behaviour so that messages are
exchanged on a BlockingQueue and consumers are invoked in a seperate thread to the
producer. Be aware that adding a thread pool to a seda
endpoint by doing something like: from("seda:stageName").thread(5).process(...) can wind up
with two BlockQueues. One from seda endpoint and one from the workqueue of the thread
pool which may not be what you want. Instead, you might want to consider configuring a direct

CHAPTER 6 - COMPONENT APPENDIX 96

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/SEDA
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html

endpoint with a thread pool which can process messages both synchronously and
asynchronously. For example, from(direct:stageName").thread(5).process(..).

Note that queues are only visible within a single CamelContext. If you want to communicate
across CamelContext instances such as to communicate across web applications, see the VM
component.

This component does not implement any kind of persistence or recovery if the VM
termininates while messages are yet to be processed. If you need persistence, reliability or
distributed SEDA then try using either JMS or ActiveMQ

URI format

seda:someName

Where someName can be any string to uniquely identify the endpoint within the current
CamelContext

URI Options

Name Description

size The maximum size of the SEDA queue

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

STRING TEMPLATE

The string-template: component allows you to process a message using a String Template.
This can be ideal when using Templating to generate respopnses for requests.

URI format

string-template:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template.

For example you could use something like

97 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/VM
http://cwiki.apache.org/confluence/display/CAMEL/JMS
http://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://cwiki.apache.org/confluence/display/CAMEL/CamelContext
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://www.stringtemplate.org/

from("activemq:My.Queue").
to("string-template:com/acme/MyResponse.tm");

To use a string template to forumulate a response for a message

Options

Name Default Value Description

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

|

TEST COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Spring Testing framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Mock and Test testing endpoints.
The Test component extends the Mock component to support pulling messages from another
endpoint on startup to set the expected message bodies on the underlying Mock endpoint.

i.e. you use the test endpoint in a route and messages arriving on it will be implicitly
compared to some expected messages extracted from some other location.

So you can use for example an expected set of message bodies as files. This will then setup a
properly configured Mock endpoint which is only valid if the received messages match the
number of expected messages and their message payloads are equal.

URI format

test:expectedMessagesEndpointUri

Where expectedMessagesEndpointUri refers to some other Component URI where
the expected message bodies are pulled from before starting the test.

Example

For example you could write a test case as follows

CHAPTER 6 - COMPONENT APPENDIX 98

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/DataSet
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://cwiki.apache.org/confluence/display/CAMEL/Enterprise+Integration+Patterns
http://cwiki.apache.org/confluence/display/CAMEL/Components
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Test
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Component

from("seda:someEndpoint").
to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertIsSatisfied(camelContext) method then your
test case will perform the necessary assertions.

Here is a real example test case using Mock and Spring along with its Spring XML.

To see how you can set other expectations on the test endpoint, see the Mock component.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

TIMER COMPONENT

The timer: component is used to generate message exchanges when a timer fires You can
only consume events from this endpoint.

URI format

timer:name?options

Where options is a query string that can specify any of the following parameters:

Name
Default
Value

Description

name null
The name of the Timer object which is created and shared across
endpoints. So if you use the same name for all your timer endpoints
then only one Timer object & thread will be used

time Ê The date/time that the (first) event should be generated.

period -1
If set to greater than 0, then generate periodic events every period
milliseconds

delay -1
The number of milliseconds to wait before the first event is
generated. Should not be used in conjunction with the time
parameter.

fixedRate false
Events take place at approximately regular intervals, separated by
the specified period.

99 CHAPTER 6 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml
http://cwiki.apache.org/confluence/display/CAMEL/Mock
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/Spring+Testing
http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml

daemon true
Should the thread associated with the timer endpoint be run as a
daemon.

Using

To setup a route that generates an event every 60 seconds:

from("timer://foo?fixedRate=true&delay=0&period=60000").to("bean:myBean?methodName=someMethodName");

The above route will generate an event then invoke the someMethodName on the bean called
myBean in the Registry such as JNDI or Spring.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

VALIDATION COMPONENT

The Validation component performs XML validation of the message body using the JAXP
Validation API using any of the supported XML schema languages, which defaults to XML
Schema

Note that the Jing component also supports the following schema languages which are useful
• RelaxNG Compact Syntax
• RelaxNG XML Syntax

The MSV component also supports RelaxNG XML Syntax.

URI format

validate:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on the classpath
or a full URL to a remote resource or resource on the file system which contains the XSD to
validate against. For example

• msv:org/foo/bar.xsd
• msv:file:../foo/bar.xsd
• msv:http://acme.com/cheese.xsd

CHAPTER 6 - COMPONENT APPENDIX 100

http://cwiki.apache.org/confluence/display/CAMEL/Registry
http://cwiki.apache.org/confluence/display/CAMEL/Spring
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://cwiki.apache.org/confluence/display/CAMEL/Jing
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/
http://cwiki.apache.org/confluence/display/CAMEL/MSV
http://relaxng.org/
http://relaxng.org/
../foo/bar.xsd
../foo/bar.xsd
http://acme.com/cheese.xsd
http://acme.com/cheese.xsd
http://www.w3.org/XML/Schema
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://relaxng.org/
../foo/bar.xsd
http://acme.com/cheese.xsd

Example

The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given schema (which is supplied on the classpath).

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:start"/>
<try>

<to uri="validator:org/apache/camel/component/validator/schema.xsd"/>
<to uri="mock:valid"/>

<catch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</catch>
</try>

</route>
</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

VELOCITY

The velocity: component allows you to process a message using an Apache Velocity template.
This can be ideal when using Templating to generate respopnses for requests.

URI format

velocity:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template.

For example you could use something like

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

To use a velocity template to forumulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

101 CHAPTER 6 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://velocity.apache.org/
http://velocity.apache.org/
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml
http://velocity.apache.org/

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

Options

Name Default Value Description

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

|

VM COMPONENT

The vm: component provides asynchronous SEDA behaviour so that messages are exchanged
on a BlockingQueue and consumers are invoked in a seperate thread pool to the producer.

This component differs from the Queue component in that VM supports communcation
across CamelContext instances so you can use this mechanism to communicate across web
applications, provided that the camel-core.jar is on the system/boot classpath

URI format

vm:someName

Where someName can be any string to uniquely identify the endpoint within the JVM (or at
least within the classloader which loaded the camel-core.jar)

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 6 - COMPONENT APPENDIX 102

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html
http://cwiki.apache.org/confluence/display/CAMEL/Queue
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/BlockingQueue.html

XMPP COMPONENT

The xmpp: component implements an XMPP (Jabber) transport.

URI format

xmpp:hostname[:port][/room]

The component supports both room based and private person-person conversations

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

XQUERY

The xquery: component allows you to process a message using an XQuery template. This can
be ideal when using Templating to generate respopnses for requests.

URI format

xquery:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template.

For example you could use something like

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery");

To use a xquery template to forumulate a response for a message for InOut message exchanges
(where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery").
to("activemq:Another.Queue");

103 CHAPTER 6 - COMPONENT APPENDIX

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://cwiki.apache.org/confluence/display/CAMEL/XQuery
http://cwiki.apache.org/confluence/display/CAMEL/Templating

Options

Name Default Value Description

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

|

XSLT

The xslt: component allows you to process a message using an XSLT template. This can be
ideal when using Templating to generate respopnses for requests.

URI format

xslt:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template. Refer to the Spring Documentation for more detail of the URI
syntax

Here are some example URIs

URI Description

xslt:com/acme/mytransform.xsl refers to the file com/acme/mytransform.xsl on the
classpath

xslt:file:///foo/bar.xsl refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/
foo.xsl refers to the remote http resource

Using XSLT endpoints

For example you could use something like

CHAPTER 6 - COMPONENT APPENDIX 104

http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://cwiki.apache.org/confluence/display/CAMEL/Templating
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://www.w3.org/TR/xslt
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl");

To use a xslt template to forumulate a response for a message for InOut message exchanges
(where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl").
to("activemq:Another.Queue");

Spring XML versions

To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:My.Queue"/>
<to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

There is a test case along with its Spring XML if you want a concrete example.

Options

Name Default Value Description

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

|

105 CHAPTER 6 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml
http://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
http://cwiki.apache.org/confluence/display/CAMEL/Component
http://cwiki.apache.org/confluence/display/CAMEL/Endpoint
http://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

	Table of Contents
	Introduction
	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	Problems with Camel's online documentation
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Architecture
	URIs
	Current Supported URIs

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	Pattern Appendix
	Messaging Systems
	Message Channel
	Using This Pattern

	Message
	Using This Pattern

	Pipes and Filters
	Using Routing Logic
	Using This Pattern

	Message Router
	Using This Pattern

	Message Translator
	Using This Pattern

	Message Endpoint
	Using This Pattern

	Messaging Channels
	Point to Point Channel
	Using This Pattern

	Publish Subscribe Channel
	Using Routing Logic
	Using This Pattern

	Dead Letter Channel
	Redelivery
	Redelivery header
	Configuring via the DSL
	Using This Pattern

	Guaranteed Delivery
	Using This Pattern

	Message Bus
	Using This Pattern

	Message Routing
	Content Based Router
	Using This Pattern

	Message Filter
	Using This Pattern

	Recipient List
	Static Recipient List
	Dynamic Recipient List
	Using This Pattern

	Splitter
	Example
	Using This Pattern

	Resequencer
	Batch Resequencing
	Stream Resequencing
	Further Examples
	Using This Pattern

	Message Transformation
	Content Enricher
	Content Enricher
	Using This Pattern

	Content Filter
	Using This Pattern

	Normalizer
	See Also
	Using This Pattern

	Messaging Endpoints
	Messaging Mapper
	See also
	Using This Pattern

	Event Driven Consumer
	Using This Pattern

	Polling Consumer
	Scheduled Poll Components
	Using This Pattern

	Competing Consumers
	Using This Pattern

	Message Dispatcher
	See Also
	Using This Pattern

	Selective Consumer
	Using This Pattern

	Durable Subscriber
	See Also
	Using This Pattern

	Idempotent Consumer
	Using This Pattern

	Transactional Client
	Transaction Policies
	See Also
	Using This Pattern

	Messaging Gateway
	See Also
	Using This Pattern

	Service Activator
	See Also
	Using This Pattern

	System Management
	Wire Tap
	Using This Pattern

	Component Appendix
	ActiveMQ Component
	URI format
	Configuring the Connection Factory
	Configuring the Connection Factory using Spring XML
	Invoking MessageListener POJOs in a Camel route
	See Also

	ActiveMQ Journal Component
	URI format
	Options
	Expected Exchange Data Types
	See Also

	AMQP
	URI format
	See Also

	Bean Component
	URI format
	Using
	Bean binding
	Using Annotations to bind parameters to the Exchange
	Using Expression Languages
	See Also

	CXF Component
	URI format
	Options
	The descriptions of the dataformats

	Configure the CXF endpoints with spring
	See Also

	Direct Component
	URI format
	Options
	See Also

	Esper
	URI format
	Options
	Demo
	See Also

	Event Component
	URI format
	See Also

	File Component
	URI format
	URI Options
	Message Headers
	Samples
	Read from a directory and write to another directory
	Read from a directory and process the message in java
	Read files from a directory and send the content to a jms queue

	See Also

	FIX
	URI format
	Message Formats
	Using camel-fix
	See Also

	FTP/SFTP/WebDAV Component
	URI format
	Examples
	Options
	See Also

	HTTP Component
	URI format
	Usage
	See Also

	iBATIS
	URI format
	Options
	See Also

	IRC Component
	URI format
	See Also

	JBI Component
	URI format
	Examples
	Creating a JBI Service Unit
	See Also

	JCR Component
	URI format
	Usage
	Message properties
	Example
	See Also

	JDBC Component
	URI format
	Options
	See Also

	Jetty Component
	URI format
	Usage
	See Also

	Jing Component
	URI format
	Example
	See Also

	JMS Component
	URI format
	Notes
	Properties
	Configuring different JMS providers
	Using JNDI to find the ConnectionFactory

	See Also

	JPA Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	List Component
	URI format
	See Also

	Log Component
	URI format
	See Also

	Mail Component
	URI format
	See Also

	MINA Component
	URI format
	Options
	See Also

	Mock Component
	URI format
	Simple Example
	Setting expectations
	Adding expectations to specific messages

	A Spring Example
	See Also

	MSV Component
	URI format
	Example
	See Also

	Pojo Component
	See Also

	Quartz Component
	URI format
	Using Cron Triggers
	See Also

	Queue Component
	URI format
	See Also

	RMI Component
	URI format
	Using
	See Also

	SEDA Component
	URI format
	URI Options
	See Also

	String Template
	URI format
	Options
	See Also

	Test Component
	URI format
	Example
	See Also

	Timer Component
	URI format
	Using
	See Also

	Validation Component
	URI format
	Example
	See Also

	Velocity
	URI format
	Options
	See Also

	VM Component
	URI format
	See Also

	XMPP Component
	URI format
	See Also

	XQuery
	URI format
	Options
	See Also

	XSLT
	URI format
	Using XSLT endpoints
	Spring XML versions
	Options
	See Also

