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● X.509, Keys and Certificates

● SSL/TLS protocol

● Apache HTTP Server configuration
● Basic configuration details
● Virtual Hosting and ACME Protocol Module
● Cipher and Protocol configuration
● Session Caching and TLS Session Tickets
● Advanced Features
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Why HTTPS and TLS?Why HTTPS and TLS?

● Confidentiality and Data Privacy
● protects data from eavesdropping
● only the intended recipient can read the data
 

● Authentication
● allows for identification of server and optionally, the client

● Data Integrity
● ensures that nobody can tamper with the data that is 
being transmitted
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Keys and CertificatesKeys and Certificates

● X.509: ITU-T standard (1988) for PKIs

● PKI: Public-Key Infrastructure 

● CA: Certification Authority

● CSR: Certificate Signing Request

● CRL: Certificate Revocation List
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Common X.509 File Types and ExtensionsCommon X.509 File Types and Extensions

● PEM: base64-encoded DER certificate(s) or private key(s)
● DER: binary format based on Distinguished Encoding 
Rules (encoded ASN.1 values)

● p12: PKCS#12 format, certificate(s) and/or private key(s)
● key: commonly used for a PEM-encoded private key
● crt/cer: commonly used for a PEM-encoded certificate
● csr: commonly used for a PEM-encoded certificate 
signing request
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PEM-encoded Certificate ExamplePEM-encoded Certificate Example

BEGIN CERTIFICATE
MIIC2zCCAkSgAwIBAgIJANWZuQf40KViMA0GCSqGSIb3DQEBBQUAMFMxCzAJBgNV
BAYTAlhYMQwwCgYDVQQIEwNYWFgxDDAKBgNVBAcTA1hYWDEMMAoGA1UEChMDWFhY
MQwwCgYDVQQLEwM2NjYxDDAKBgNVBAMTAzY2NjAeFw0wODEwMDEyMzU1MDlaFw0w
[...]
BgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBQUAA4GBAFlaHQEXQdMVfvTay5x6fECa
QiefllN/69931EFmNX0mlpV8pFZ448PtoGlXiNd+rnfe2ttjPfmh4CXDN9q7NPUO
qntygrcWsGJxmVlu5s2q6KumrysEdqr+Da70zyed3Tfj/QYJfG1HAzfLCVZRKFQE
EuxxMbZd6XBXcXenuZzn
END CERTIFICATE
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Certificate StructureCertificate Structure

● Certificate
● Version
● Serial Number
● Signature Algorithm
● Issuer
● Validity Period
● Subject
● Subject Public Key Info
● Issuer Unique Identifier (optional)
● Subject Unique Identifier (optional)
● Extensions (optional)

●  Certificate Signature Algorithm
●  Certificate Signature
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Certificate Subject DNCertificate Subject DN

● DN: Distinguished Name
● a sequence of identifiers in X.500 notation

● Common DN Keys:
● CN: Common Name (e.g., first/last name or hostname)
● C: Country (2-letter code)
● S: State or province
● L: Locality (e.g, City)
● O: Organization
● OU: Organizational Unit

● Example DN: C=DE, L=Berlin, O=Example Inc., 
            CN=www.example.com
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Common Name for Server CertificatesCommon Name for Server Certificates

● Fully-qualified domain name (FQDN)
● e.g., www.example.com 
● does not match example.com

● Wildcard domain
● e.g., *.example.com 
● matches example.com and hosts such as foo.example.com
● does not match www.foo.example.com or example.com.foo
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Certificate TypesCertificate Types

● Single-domain certificates

● Wildcard certificates

● Multi-domain (SAN) certificates
● uses SubjectAlternativeName X.509 extension

● Extended validation (EV) certificates
● available since 2007 and supported by Firefox 3+, IE 7+, Edge 

12+, Opera 9.5+, Safari 3.2+ and Chrome 1+
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Extended Validation CertificatesExtended Validation Certificates



Securing Communications with your Apache HTTP Server 

Obtaining a CertificateObtaining a Certificate

● create your own
● self-signed certificate
● signed by your own CA

● get a free certificate
● free certificates from “Let's Encrypt” CA
● trial or free certificates from commercial CAs

● buy a certificate from a CA
● domain-only, organization or extended validation

(6€ up to 1000€ per year)
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Let's Encrypt CALet's Encrypt CA

● https://letsencrypt.org
● Certificates are free of charge
● Fully automated validation
● Standard domain-validation certificates
● Multi-domain/SAN certificates
● Certificates are valid for 90 days
● Not valid as client certificate
● Supported by all modern Web clients
● Service provided by Internet Security Research Group 
(ISRG) since April 2016 (non-profit organisation)
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Browser SSL WarningsBrowser SSL Warnings

If the browser
doesn't know the
issuing CA or if the 
server hostname 
does not match 
the certificate it 
displays a warning
to the user.
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Certificate ChainCertificate Chain

➔ Root Certificate

➔ Intermediate Certificate 1

➔ Intermediate Certificate n

➔ End-Entity (Leaf) Certificate

 (Server/Client Certificate)



Securing Communications with your Apache HTTP Server 

SSL vs. TLSSSL vs. TLS

● SSL: Secure Sockets Layer
● originally developed by Netscape (1994) 
● SSL 2.0 and 3.0 deprecated and insecure

● TLS: Transport Layer Security
● IETF standard (1999)
● TLS 1.0, 1.1, 1.2, and 1.3
● TLS 1.0, 1.1 should no longer be used 

● When people talk about SSL these days they actually mean TLS.
● An “SSL certificate” is an X.509 certificate for use with TLS.
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Apache SSL/TLS Module - mod_sslApache SSL/TLS Module - mod_ssl

● Included as default module since Apache HTTP Server 
version 2.0

● Uses OpenSSL library
● Supports TLS 1.0, 1.1, 1.2 protocols

● TLS 1.3 supported in Apache 2.5-dev (with OpenSSL 1.1+) 
● SSL 3.0 is still supported, but SSL 2.0 support was 
removed in Apache HTTP Server version 2.4

● (Apache HTTP Server 2.0 and 2.2 are end of life!)
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Module ConfigurationModule Configuration

● Required modules:
● LoadModule ssl_module modules/mod_ssl.so
● LoadModule socache_shmcb_module \ 
            modules/mod_socache_shmcb.so

● SSL configuration file:
● Include conf/extra/httpdssl.conf
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Basic ConfigurationBasic Configuration

● Certificate and private key (PEM format):
● SSLCertificateFile \
  /usr/local/apache2/conf/ssl/server.crt

● SSLCertificateKeyFile \
  /usr/local/apache2/conf/ssl/server.key
● Ensure the key file is only readable by root

● Enable SSL (per virtual host):
● SSLEngine On
● Listen 443
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Intermediate CA CertificatesIntermediate CA Certificates

● Add server and all intermediate certificates to a single file 
and use SSLCertificateFile
● Sort multiple certificates from leaf to root certificate!

● Multiple server certificates can be added to support 
(different authentication algorithms (ECC, RSA, DSA, etc.)

● SSLCertificateChainFile became obsolete with version 
2.4.8
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TLS Virtual HostingTLS Virtual Hosting

● TLS can be enabled for any virtual host
● Name-based virtual hosts with SSL/TLS only possible with
SNI support available in Apache 2.4

● SNI: TLS Server Name Indication
● Clients must support SNI as well
● Clients without SNI support get either the first virtual host 
or a “403 Forbidden” response if SSLStrictSNIVHostCheck 
is enabled 
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ACME Protocol (Let's Encrypt) ModuleACME Protocol (Let's Encrypt) Module

● mod_md (Managing Domains)
● Available since 2.4.30, but still experimental!
● Enable certificate management for a virtual host:

● MDomain example.com www.example.com
● MDCertificateAgreement 
 https://letsencrypt.org/documents/LESAv1.2November152017.pdf 

● ServerAdmin webmaster@example.com
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Ciphers and Protocols (default) Ciphers and Protocols (default) 

● Define ciphers and protocol:
● SSLCipherSuite HIGH:MEDIUM:!MD5:!RC4:!3DES
● SSLHonorCipherOrder On
● SSLProtocol All SSLv3

● Cipher string format (SSLCipherSuite):
● prefix with “!” to permanently remove ciphers
● prefix with “” to remove ciphers
● prefix with “+” to add ciphers (unless they have been removed 

with “!”)
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Ciphers and Protocols (recommendation)Ciphers and Protocols (recommendation)

● Only use TLS 1.2 (or higher) with strong ciphers supporting 
forward secrecy:
● SSLCipherSuite HIGH:!MD5:!RC4:!3DES:!CAMELLIA:!kRSA
● SSLProtocol All SSLv3 TLSv1 TLSv1.1

● Check which ciphers are enabled:
● openssl ciphers v 'HIGH:MEDIUM:!MD5:!RC4:!3DES'

● Apache and OpenSSL force-disable certain ciphers

● Check “ciphers” man page for meanings of the various 
cipher strings such as “HIGH”, “MEDIUM”, “ECDH”, etc.
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Random Seeds Random Seeds 

● Define random seeds:
● SSLRandomSeed startup file:/dev/urandom 2048
● SSLRandomSeed connect file:/dev/urandom 2048

● multiple sources can be defined
● Apache's built-in default is not very secure
(provides very little entropy) 
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TLS Session CacheTLS Session Cache

● Using SHM session cache is recommended
● SSLSessionCache shmcb:/var/run/ssl_cache(1024000)
● SSLSessionCacheTimeout 600

● avoid DBM session cache, it's slow and unstable under load
● each TLS session is about 150 bytes
● Using a very large session cache and/or long timeout 
compromises forward secrecy!
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TLS Session TicketsTLS Session Tickets

● Session tickets are enabled by default:
● SSLSessionTickets On

● Disabling session tickets decreases performance!
● Recommendation when using TLS 1.2:

● Disable session tickets if forward secrecy is a required.
● If enabled, restart Apache at least once a day to reduce the 
impact on forward secrecy (this rotates the encryption key).

● Recommendation when using TLS 1.3: 
● Enable session tickets 
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OCSP StaplingOCSP Stapling

● OCSP: Online Certificate Status Protocol
● OCSP Stapling is known as the 
“TLS Certificate Status Request Extension”

● SSLUseStapling on
● SSLStaplingReturnResponderErrors off
● SSLStaplingCache shmcb:/var/run/ocsp(128000)
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Client Certificate AuthenticationClient Certificate Authentication

● SSLVerifyClient require

● Using SSLVerifyClient in a per-directory context triggers 
renegotiation and should be avoided if possible.
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Defining allowed Client CertificatesDefining allowed Client Certificates

● Path to “bundle” file with one or more PEM-encoded CA 
certificates:
● SSLCACertificateFile

● Path to CRL file:
● SSLCARevocationFile

● Use CRL if possible, but OCSP can be used as an alternative:
● SSLOCSPEnable On
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Apache as an TLS Reverse ProxyApache as an TLS Reverse Proxy

● SSLProxyEngine
● SSLProxyCipherSuite
● SSLProxyProtocol
● SSLProxyCACertificateFile
● SSLProxyCACertificatePath
● SSLProxyCARevocationFile
● SSLProxyCARevocationPath
● SSLProxyCheckPeerCN
● SSLProxyCheckPeerExpire
● SSLProxyCheckPeerName
● SSLProxyMachineCertificateFile
● SSLProxyMachineCertificatePath
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HTTP Strict Transport SecurityHTTP Strict Transport Security

● Web security policy mechanism to protect against 
protocol downgrade. Enforce use of HTTPS.

● Example header:
● StrictTransportSecurity: maxage=31536000

● Once the browser has cached the header, using plain 
HTTP or untrusted certificates is no longer possible.

● Can be configured with mod_md (incl. redirect to HTTPS):
MDRequireHttps permanent



Securing Communications with your Apache HTTP Server 

Any Questions?Any Questions?
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Useful OpenSSL CommandsUseful OpenSSL Commands

● Create self-signed certificate
● openssl req x509 nodes days 3650 newkey rsa:2048 \ 
subj '/C=XX/L=Foo/CN=www.example.com' \
keyout server.key out server.crt

● Remove passphrase from private key:
● openssl rsa in server.key out servernopass.key

● List available ciphers
● openssl ciphers v
openssl ciphers v 'HIGH:MEDIUM:!MD5:!RC4'
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Useful OpenSSL CommandsUseful OpenSSL Commands

● Display certificate contents
● openssl x509 text in server.crt

● Verify if a private key matches a certificate
● openssl x509 noout modulus in server.crt | md5sum 
● openssl rsa noout modulus in server.key | md5sum

● Connect to a Web server using HTTPS
● openssl s_client connect www.example.com:443 
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Useful OpenSSL CommandsUseful OpenSSL Commands

● Check if OCSP response or client certificate authentication 
request is sent by server:
● openssl s_client connect www.example.com:443 status

● Connect and define SNI server name:
● openssl s_client connect www.example.com:443 \
              servername www.example.com

● Show description of error code:
● openssl errstr <ERRORNUMBER>
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Cryptography EssentialsCryptography Essentials

● Public-Key (asymmetric) Cryptography (e.g., RSA, DSA, ECC)
● Data encrypted with the public key can only be decrypted with the 

corresponding private key
● Data signed with the private key can be verified by anyone using 

the public key

● Symmetric-Key Cryptography (e.g., AES, Twofish)
● Hash Function (e.g., SHA-2, SHA-3)
● Message Authentication Code (e.g.,  HMAC)
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  TLS ProtocolTLS Protocol
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TLS HandshakeTLS Handshake

● Perform server and optionally client 
authentication

● Select cryptographic algorithms 
(ciphers) supported by client and server

● Generate and exchange session key
● Establish an encrypted connection
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  TLS Handshake ProtocolTLS Handshake Protocol
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TLS and SSL VersionsTLS and SSL Versions

● SSL 2.0: original Netscape standard (no longer secure)
● SSL 3.0: revised version to fix various security vulnerabilities 
(no longer secure)

● TLS 1.0: first IETF standard
● TLS 1.1: protection against CBC attacks
● TLS 1.2: SSL 2.0 and MD5 no longer supported
● TLS 1.3: draft (as of July 2016)
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        XCA ToolXCA Tool

● Open Source
● Graphical user
interface for
OpenSSL

● https://hohnstaedt.de/xca
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Restricting Client Certificates Restricting Client Certificates 

● Restrict access based on client certificate details or any 
other SSL environment variable 
● Require expr "<expression>"

● Example: accept only certificate with specific common 
name
● Require expr "{SSL_CLIENT_S_DN_CN} \

in {'client.example.com', 'other.example.org'}"
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Online Certificate Status ProtocolOnline Certificate Status Protocol

● OCSP issues: 
● End-user privacy
● Efficiency
● Does not mitigate against MITM attacks after server 
key compromise

● “OCSP Stapling” exists as an alternative to OCSP and 
should be enabled
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