
Securing Communications with
your Apache HTTP Server

Lars Eilebrecht
Lars@apache.org

Securing Communications with your Apache HTTP Server

About MeAbout Me

● Lars Eilebrecht

● Independent IT Consultant – based in London, UK

● Contributor to the Apache HTTP Server project since 1996

● Co-founder and member of The Apache Software

Foundation

● Member of the ASF Security Team

● www.eilebrecht.net

Securing Communications with your Apache HTTP Server

AgendaAgenda

● Overview

● X.509, Keys and Certificates

● SSL/TLS protocol

● Apache HTTP Server configuration
● Basic configuration details
● Virtual Hosting and ACME Protocol Module
● Cipher and Protocol configuration
● Session Caching and TLS Session Tickets
● Advanced Features

Securing Communications with your Apache HTTP Server

Why HTTPS and TLS?Why HTTPS and TLS?

● Confidentiality and Data Privacy
● protects data from eavesdropping
● only the intended recipient can read the data

● Authentication
● allows for identification of server and optionally, the client

● Data Integrity
● ensures that nobody can tamper with the data that is
being transmitted

Securing Communications with your Apache HTTP Server

Keys and CertificatesKeys and Certificates

● X.509: ITU-T standard (1988) for PKIs

● PKI: Public-Key Infrastructure

● CA: Certification Authority

● CSR: Certificate Signing Request

● CRL: Certificate Revocation List

Securing Communications with your Apache HTTP Server

Common X.509 File Types and ExtensionsCommon X.509 File Types and Extensions

● PEM: base64-encoded DER certificate(s) or private key(s)
● DER: binary format based on Distinguished Encoding
Rules (encoded ASN.1 values)

● p12: PKCS#12 format, certificate(s) and/or private key(s)
● key: commonly used for a PEM-encoded private key
● crt/cer: commonly used for a PEM-encoded certificate
● csr: commonly used for a PEM-encoded certificate
signing request

Securing Communications with your Apache HTTP Server

PEM-encoded Certificate ExamplePEM-encoded Certificate Example

BEGIN CERTIFICATE
MIIC2zCCAkSgAwIBAgIJANWZuQf40KViMA0GCSqGSIb3DQEBBQUAMFMxCzAJBgNV
BAYTAlhYMQwwCgYDVQQIEwNYWFgxDDAKBgNVBAcTA1hYWDEMMAoGA1UEChMDWFhY
MQwwCgYDVQQLEwM2NjYxDDAKBgNVBAMTAzY2NjAeFw0wODEwMDEyMzU1MDlaFw0w
[...]
BgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBQUAA4GBAFlaHQEXQdMVfvTay5x6fECa
QiefllN/69931EFmNX0mlpV8pFZ448PtoGlXiNd+rnfe2ttjPfmh4CXDN9q7NPUO
qntygrcWsGJxmVlu5s2q6KumrysEdqr+Da70zyed3Tfj/QYJfG1HAzfLCVZRKFQE
EuxxMbZd6XBXcXenuZzn
END CERTIFICATE

Securing Communications with your Apache HTTP Server

Certificate StructureCertificate Structure

● Certificate
● Version
● Serial Number
● Signature Algorithm
● Issuer
● Validity Period
● Subject
● Subject Public Key Info
● Issuer Unique Identifier (optional)
● Subject Unique Identifier (optional)
● Extensions (optional)

● Certificate Signature Algorithm
● Certificate Signature

Securing Communications with your Apache HTTP Server

Certificate Subject DNCertificate Subject DN

● DN: Distinguished Name
● a sequence of identifiers in X.500 notation

● Common DN Keys:
● CN: Common Name (e.g., first/last name or hostname)
● C: Country (2-letter code)
● S: State or province
● L: Locality (e.g, City)
● O: Organization
● OU: Organizational Unit

● Example DN: C=DE, L=Berlin, O=Example Inc.,
 CN=www.example.com

Securing Communications with your Apache HTTP Server

Common Name for Server CertificatesCommon Name for Server Certificates

● Fully-qualified domain name (FQDN)
● e.g., www.example.com
● does not match example.com

● Wildcard domain
● e.g., *.example.com
● matches example.com and hosts such as foo.example.com
● does not match www.foo.example.com or example.com.foo

Securing Communications with your Apache HTTP Server

Certificate TypesCertificate Types

● Single-domain certificates

● Wildcard certificates

● Multi-domain (SAN) certificates
● uses SubjectAlternativeName X.509 extension

● Extended validation (EV) certificates
● available since 2007 and supported by Firefox 3+, IE 7+, Edge

12+, Opera 9.5+, Safari 3.2+ and Chrome 1+

Securing Communications with your Apache HTTP Server

Extended Validation CertificatesExtended Validation Certificates

Securing Communications with your Apache HTTP Server

Obtaining a CertificateObtaining a Certificate

● create your own
● self-signed certificate
● signed by your own CA

● get a free certificate
● free certificates from “Let's Encrypt” CA
● trial or free certificates from commercial CAs

● buy a certificate from a CA
● domain-only, organization or extended validation

(6€ up to 1000€ per year)

Securing Communications with your Apache HTTP Server

Let's Encrypt CALet's Encrypt CA

● https://letsencrypt.org
● Certificates are free of charge
● Fully automated validation
● Standard domain-validation certificates
● Multi-domain/SAN certificates
● Certificates are valid for 90 days
● Not valid as client certificate
● Supported by all modern Web clients
● Service provided by Internet Security Research Group
(ISRG) since April 2016 (non-profit organisation)

Securing Communications with your Apache HTTP Server

Browser SSL WarningsBrowser SSL Warnings

If the browser
doesn't know the
issuing CA or if the
server hostname
does not match
the certificate it
displays a warning
to the user.

Securing Communications with your Apache HTTP Server

Certificate ChainCertificate Chain

➔ Root Certificate

➔ Intermediate Certificate 1

➔ Intermediate Certificate n

➔ End-Entity (Leaf) Certificate

 (Server/Client Certificate)

Securing Communications with your Apache HTTP Server

SSL vs. TLSSSL vs. TLS

● SSL: Secure Sockets Layer
● originally developed by Netscape (1994)
● SSL 2.0 and 3.0 deprecated and insecure

● TLS: Transport Layer Security
● IETF standard (1999)
● TLS 1.0, 1.1, 1.2, and 1.3
● TLS 1.0, 1.1 should no longer be used

● When people talk about SSL these days they actually mean TLS.
● An “SSL certificate” is an X.509 certificate for use with TLS.

Securing Communications with your Apache HTTP Server

Apache SSL/TLS Module - mod_sslApache SSL/TLS Module - mod_ssl

● Included as default module since Apache HTTP Server
version 2.0

● Uses OpenSSL library
● Supports TLS 1.0, 1.1, 1.2 protocols

● TLS 1.3 supported in Apache 2.5-dev (with OpenSSL 1.1+)
● SSL 3.0 is still supported, but SSL 2.0 support was
removed in Apache HTTP Server version 2.4

● (Apache HTTP Server 2.0 and 2.2 are end of life!)

Securing Communications with your Apache HTTP Server

Module ConfigurationModule Configuration

● Required modules:
● LoadModule ssl_module modules/mod_ssl.so
● LoadModule socache_shmcb_module \
 modules/mod_socache_shmcb.so

● SSL configuration file:
● Include conf/extra/httpdssl.conf

Securing Communications with your Apache HTTP Server

Basic ConfigurationBasic Configuration

● Certificate and private key (PEM format):
● SSLCertificateFile \
 /usr/local/apache2/conf/ssl/server.crt

● SSLCertificateKeyFile \
 /usr/local/apache2/conf/ssl/server.key
● Ensure the key file is only readable by root

● Enable SSL (per virtual host):
● SSLEngine On
● Listen 443

Securing Communications with your Apache HTTP Server

Intermediate CA CertificatesIntermediate CA Certificates

● Add server and all intermediate certificates to a single file
and use SSLCertificateFile
● Sort multiple certificates from leaf to root certificate!

● Multiple server certificates can be added to support
(different authentication algorithms (ECC, RSA, DSA, etc.)

● SSLCertificateChainFile became obsolete with version
2.4.8

Securing Communications with your Apache HTTP Server

TLS Virtual HostingTLS Virtual Hosting

● TLS can be enabled for any virtual host
● Name-based virtual hosts with SSL/TLS only possible with
SNI support available in Apache 2.4

● SNI: TLS Server Name Indication
● Clients must support SNI as well
● Clients without SNI support get either the first virtual host
or a “403 Forbidden” response if SSLStrictSNIVHostCheck
is enabled

Securing Communications with your Apache HTTP Server

ACME Protocol (Let's Encrypt) ModuleACME Protocol (Let's Encrypt) Module

● mod_md (Managing Domains)
● Available since 2.4.30, but still experimental!
● Enable certificate management for a virtual host:

● MDomain example.com www.example.com
● MDCertificateAgreement
 https://letsencrypt.org/documents/LESAv1.2November152017.pdf

● ServerAdmin webmaster@example.com

Securing Communications with your Apache HTTP Server

Ciphers and Protocols (default) Ciphers and Protocols (default)

● Define ciphers and protocol:
● SSLCipherSuite HIGH:MEDIUM:!MD5:!RC4:!3DES
● SSLHonorCipherOrder On
● SSLProtocol All SSLv3

● Cipher string format (SSLCipherSuite):
● prefix with “!” to permanently remove ciphers
● prefix with “” to remove ciphers
● prefix with “+” to add ciphers (unless they have been removed

with “!”)

Securing Communications with your Apache HTTP Server

Ciphers and Protocols (recommendation)Ciphers and Protocols (recommendation)

● Only use TLS 1.2 (or higher) with strong ciphers supporting
forward secrecy:
● SSLCipherSuite HIGH:!MD5:!RC4:!3DES:!CAMELLIA:!kRSA
● SSLProtocol All SSLv3 TLSv1 TLSv1.1

● Check which ciphers are enabled:
● openssl ciphers v 'HIGH:MEDIUM:!MD5:!RC4:!3DES'

● Apache and OpenSSL force-disable certain ciphers

● Check “ciphers” man page for meanings of the various
cipher strings such as “HIGH”, “MEDIUM”, “ECDH”, etc.

Securing Communications with your Apache HTTP Server

Random Seeds Random Seeds

● Define random seeds:
● SSLRandomSeed startup file:/dev/urandom 2048
● SSLRandomSeed connect file:/dev/urandom 2048

● multiple sources can be defined
● Apache's built-in default is not very secure
(provides very little entropy)

Securing Communications with your Apache HTTP Server

TLS Session CacheTLS Session Cache

● Using SHM session cache is recommended
● SSLSessionCache shmcb:/var/run/ssl_cache(1024000)
● SSLSessionCacheTimeout 600

● avoid DBM session cache, it's slow and unstable under load
● each TLS session is about 150 bytes
● Using a very large session cache and/or long timeout
compromises forward secrecy!

Securing Communications with your Apache HTTP Server

TLS Session TicketsTLS Session Tickets

● Session tickets are enabled by default:
● SSLSessionTickets On

● Disabling session tickets decreases performance!
● Recommendation when using TLS 1.2:

● Disable session tickets if forward secrecy is a required.
● If enabled, restart Apache at least once a day to reduce the
impact on forward secrecy (this rotates the encryption key).

● Recommendation when using TLS 1.3:
● Enable session tickets

Securing Communications with your Apache HTTP Server

OCSP StaplingOCSP Stapling

● OCSP: Online Certificate Status Protocol
● OCSP Stapling is known as the
“TLS Certificate Status Request Extension”

● SSLUseStapling on
● SSLStaplingReturnResponderErrors off
● SSLStaplingCache shmcb:/var/run/ocsp(128000)

Securing Communications with your Apache HTTP Server

Client Certificate AuthenticationClient Certificate Authentication

● SSLVerifyClient require

● Using SSLVerifyClient in a per-directory context triggers
renegotiation and should be avoided if possible.

Securing Communications with your Apache HTTP Server

Defining allowed Client CertificatesDefining allowed Client Certificates

● Path to “bundle” file with one or more PEM-encoded CA
certificates:
● SSLCACertificateFile

● Path to CRL file:
● SSLCARevocationFile

● Use CRL if possible, but OCSP can be used as an alternative:
● SSLOCSPEnable On

Securing Communications with your Apache HTTP Server

Apache as an TLS Reverse ProxyApache as an TLS Reverse Proxy

● SSLProxyEngine
● SSLProxyCipherSuite
● SSLProxyProtocol
● SSLProxyCACertificateFile
● SSLProxyCACertificatePath
● SSLProxyCARevocationFile
● SSLProxyCARevocationPath
● SSLProxyCheckPeerCN
● SSLProxyCheckPeerExpire
● SSLProxyCheckPeerName
● SSLProxyMachineCertificateFile
● SSLProxyMachineCertificatePath

Securing Communications with your Apache HTTP Server

HTTP Strict Transport SecurityHTTP Strict Transport Security

● Web security policy mechanism to protect against
protocol downgrade. Enforce use of HTTPS.

● Example header:
● StrictTransportSecurity: maxage=31536000

● Once the browser has cached the header, using plain
HTTP or untrusted certificates is no longer possible.

● Can be configured with mod_md (incl. redirect to HTTPS):
MDRequireHttps permanent

Securing Communications with your Apache HTTP Server

Any Questions?Any Questions?

Securing Communications with
your Apache HTTP Server

Lars Eilebrecht
Lars@apache.org

Securing Communications with your Apache HTTP Server

Useful OpenSSL CommandsUseful OpenSSL Commands

● Create self-signed certificate
● openssl req x509 nodes days 3650 newkey rsa:2048 \
subj '/C=XX/L=Foo/CN=www.example.com' \
keyout server.key out server.crt

● Remove passphrase from private key:
● openssl rsa in server.key out servernopass.key

● List available ciphers
● openssl ciphers v
openssl ciphers v 'HIGH:MEDIUM:!MD5:!RC4'

Securing Communications with your Apache HTTP Server

Useful OpenSSL CommandsUseful OpenSSL Commands

● Display certificate contents
● openssl x509 text in server.crt

● Verify if a private key matches a certificate
● openssl x509 noout modulus in server.crt | md5sum
● openssl rsa noout modulus in server.key | md5sum

● Connect to a Web server using HTTPS
● openssl s_client connect www.example.com:443

Securing Communications with your Apache HTTP Server

Useful OpenSSL CommandsUseful OpenSSL Commands

● Check if OCSP response or client certificate authentication
request is sent by server:
● openssl s_client connect www.example.com:443 status

● Connect and define SNI server name:
● openssl s_client connect www.example.com:443 \
 servername www.example.com

● Show description of error code:
● openssl errstr <ERRORNUMBER>

Securing Communications with your Apache HTTP Server

Cryptography EssentialsCryptography Essentials

● Public-Key (asymmetric) Cryptography (e.g., RSA, DSA, ECC)
● Data encrypted with the public key can only be decrypted with the

corresponding private key
● Data signed with the private key can be verified by anyone using

the public key

● Symmetric-Key Cryptography (e.g., AES, Twofish)
● Hash Function (e.g., SHA-2, SHA-3)
● Message Authentication Code (e.g., HMAC)

Securing Communications with your Apache HTTP Server

 TLS ProtocolTLS Protocol

IP

Network

TCP

...

TLS Record Layer

HTTP

...HTTP
TLS

Alert
Proto

TLS
CCS
Proto

TLS
Handshake

ProtoApplication
Layer

Transport
Layer

Internet
Layer

Network
Layer

Securing Communications with your Apache HTTP Server

TLS HandshakeTLS Handshake

● Perform server and optionally client
authentication

● Select cryptographic algorithms
(ciphers) supported by client and server

● Generate and exchange session key
● Establish an encrypted connection

Securing Communications with your Apache HTTP Server

 TLS Handshake ProtocolTLS Handshake Protocol

C
L
I
E
N
T

Start Request

Client Hello

Server Hello
Server Certificate

Server Hello Done

Client Certificate

Change Cipher Spec
Finished

Change Cipher Spec
Finished

S
E
R
V
E
R

SSL
Handshake

Securing Communications with your Apache HTTP Server

TLS and SSL VersionsTLS and SSL Versions

● SSL 2.0: original Netscape standard (no longer secure)
● SSL 3.0: revised version to fix various security vulnerabilities
(no longer secure)

● TLS 1.0: first IETF standard
● TLS 1.1: protection against CBC attacks
● TLS 1.2: SSL 2.0 and MD5 no longer supported
● TLS 1.3: draft (as of July 2016)

Securing Communications with your Apache HTTP Server

 XCA ToolXCA Tool

● Open Source
● Graphical user
interface for
OpenSSL

● https://hohnstaedt.de/xca

Securing Communications with your Apache HTTP Server

Restricting Client Certificates Restricting Client Certificates

● Restrict access based on client certificate details or any
other SSL environment variable
● Require expr "<expression>"

● Example: accept only certificate with specific common
name
● Require expr "{SSL_CLIENT_S_DN_CN} \

in {'client.example.com', 'other.example.org'}"

Securing Communications with your Apache HTTP Server

Online Certificate Status ProtocolOnline Certificate Status Protocol

● OCSP issues:
● End-user privacy
● Efficiency
● Does not mitigate against MITM attacks after server
key compromise

● “OCSP Stapling” exists as an alternative to OCSP and
should be enabled

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

