
Another

10 Common Misconceptions

about Apache CouchDB

Joan Touzet ❦ https://atypical.net/ ❦ wohali

Just like last time…
This presentation is a bit dry.

But these problems keep coming up on
mailing lists, IRC, and in discussion with
developers & operators.

Today, I’d rather inform than entertain.

2

The Platform

3

1. CouchDB = MongoDB

• The “original” NoSQL (…but we were provably first!)

• Document-oriented structure

• Map-Reduce

• Streaming changes feeds

4

CouchDB ≠ MongoDB

“My party line on Mongo vs. Couch is that on the surface they
might look similar (database, documents, JSON-ish), but when you
look at implementation, at every of the 100,000 decisions you have
to make when building such a thing, Mongo went one way, and we
went another.”

– Jan Lehnardt, VP Apache CouchDB

5

CouchDB ≠ MongoDB
MongoDB

• Binary protocol

• BSON (binary)

• Speed

• Features

CouchDB

• HTTP API

• JSON

• Durability (append only)

• Scalability

6

CouchDB ≠ Couchbase
Couchbase

• No longer compatible with
CouchDB or PouchDB!

• Frankenproduct of Membase
+ CouchDB fork

• Commercial product

CouchDB

• Replication is our killer
feature!

• Does one thing well. Plays
great with Redis, Apache
Spark, etc.

• Apache-licensed OSS
7

2. Installing CouchDB?

“CouchDB is hard to install.”

“Erlang? Ancient JavaScript? Feh.”

8

Installing CouchDB!

Packages from Apache repositories now available! (See docs.couchdb.org)
– apt install couchdb
– yum install couchdb

64-bit Windows installer also available (for development)
– Please don't run CouchDB on Windows in production!

macOS installer available (for development)
FreeBSD ports tree now has CouchDB 2.2.0, too.

Docker image available as apache/couchdb or couchdb
9

Replication

10https://imgur.com/gallery/RdzjQWe

3. Scaling via replication

Yes … but not in the way you think!

11
CouchDB 1.x CouchDB 2.x

HTTP 1 2
3Erlang

What does this mean?

CouchDB 2.x has native clustering functionality

“Internal replication” is optimized for this process

CouchDB 2.x shards the database for optimization

CouchDB has no leader election or “global coordinator”!
12

Database / View Sharding

13

q = # of shards
(default: 8)

(4 here for a small picture)

n = number of replicas
(default: 3)

Deployment Recommendations

1. Keep all nodes in the same AZ / data centre / rack

2. Stick with the defaults (q=8, n=3) unless you’re really
small (1 node) or really big (>50GB JSON DB)

3. Use HAProxy for your load balancer, it’s the best!

14

Document Indexes & Views

Graffiti, as captured by Google Earth, Tokyo, Japan
15

4. MapReduce is (still) hard.

16

&$@!

4. MapReduce is (still) hard.

Now, you have three easier, fantastic options!

1. Mango

2. Full-text Search† (Apache Lucene powered)

3. Geospatial Search†

†Provided by 3rd-party add-ons, requires recompile.

17

What is Mango?

Declarative, JSON-based query language

Designed to meet ≥75% of all your querying needs

Inspired by a well-known NoSQL competitor's query…

Actually the same Map-Reduce implementation underneath!

18

Introduction to Mango

A. Prototype your query.

B. Make an index to speed it up.

C. Check & use your index in your query.

19

Mango selectors are powerful.

{ "zagat.rating": { "$gt": 18 } }

{ "michelin.stars": { "$exists": true } }

{"cuisine": { "$all": ["Malaysian","Singaporean"] }}

…and everything is specified in the selector at query time!
20

In JavaScript…

{ "zagat.rating": { "$gt": 18 } }

if (doc.zagat &&

doc.zagat.rating &&

doc.zagat.rating === int(doc.zagat.rating)) {

if (doc.zagat.rating > 18) {

return(doc._id, null);

}

}
21

A. Prototype your query.

$ curl –H "Content-type: application/json" –X POST \
http://localhost:5984/mydb/_find \
-d '{"selector": { "food": "chili" }}' | jq .

{
"docs": [
{
"_id": "b",
"_rev": "1-0f07c7dbc9a29f0d0c2729f9c61f5411",
"name": "Chris",
"food": "chili"

}
],
"bookmark": "g1AAAAAyeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYozJoEkOGASEKEsAE8ZDXs",
"warning": "no matching index found, create an index to optimize query time"

}

22

B. Make an index.

$ curl

–H "Content-type: application/json" \

–X POST \
http://localhost:5984/mydb/_index \

-d '{"index": { "fields": ["food"] }, "ddoc": "food", "type": "json"}'

{

"result": "created",

"id": "_design/food",

"name": "f9aed20d8e363a7066bfd32ee016b6280163b99a"

}

23

C. Check & use your index.

$ curl –H "Content-type: application/json" –X POST \
http://localhost:5984/mydb/_explain \
-d '{"selector": { "food": "chili" }, "use_index": "food"}' | jq .

{

"dbname": "abc",

"index": { "ddoc": "_design/food", ... },

"selector": { "food": { "$eq": "chili" } },

"opts": { "use_index": ["food"], ... },

"limit": 25, "skip": 0, "fields": "all_fields", ... }

}

24

C. Check & use your index.

$ curl –H "Content-type: application/json" –X POST \
http://localhost:5984/mydb/_find \
-d '{"selector": { "food": "chili" }, "use_index": "food"}' | jq .

{
"docs": [

{
"_id": "b",
"_rev": "1-0f07c7dbc9a29f0d0c2729f9c61f5411",
"name": "Chris",
"food": "chili"

}
],
"bookmark": "..."

}

25

Mango Pro Tips

1. Index on all the fields you use in your selector.

2. Index use is automatic, but double-check /{db}/_explain before going into
production!

3. Avoid $in and $regex unless absolutely necessary.
– These operators are always a full db/index scan! That means they're slow!
– If you really need this, look into the Lucene-powered full-text search add-on.

4. Mango indexes still use design documents.
– check out _design/food after trying this example!

5. Use selectors for replication instead of JavaScript filters - way faster!

26

4. MapReduce is still hard.

4. Mango is easy.

27

5. “Cool, attachments!”

Large attachments can create performance issues, especially for
replication.

– Replication of entire database will be held up by big attachments
• This is also true for node-to-node internal cluster replication!

– Large files can rapidly eat available disk space
– >1GB attachments are not a first-order design scenario.

Attachments are not available to views or Mango.

You wouldn’t store video files as BLOBs in Oracle, would you?
28

Repeat!

New Recommendations
• Use Couch doc _id or GUIDs to tag large assets

• Stash them in S3, B2, Dropbox, NextCloud, etc.

• If you must use them: ≤16 MB total per Couch doc.

• Upgrade to CouchDB ≥2.2.0 (see bug #745)

29

DB & Document Design

30
Toronto City Hall

6. (Ab)using the primary index

CouchDB 1.x:

“I put my document type in the document's _id.

“Then I just use sub-range queries on /{db}/_all_docs…”

GET /{db}/_all_docs?startkey=type_###&endkey=type_###

31

New Recommendation
2.x: Use Mango partial indexes!

• Index only contains matching docs

• Can further narrow scope at query time
meaningfully

• You must add the use_index
parameter at query time

Example /{db}/_index :

{
"index": {

"partial_filter_selector": {
"type": "account",
"status": {

"$ne": "archived"
}

}
},
"fields": […]

}

32

7. Deleting Documents

“I upload sensor data,
process it, then delete it.”

In other words, CouchDB
as ersatz message queue

33

mydoc

Doc Deletion Options
1. Rolling Databases:

– Write/read only from the database you need
– When done, archive or delete as necessary
– Pick your own appropriate time interval

34

June 2018 July 2018 August 2018

Doc Deletion Options
2. Replicate-to-remove:

– Filter out deleted documents during replication
– Swap DB when done. Opportunity to re-shard if desired!

– Do this with a single command using:
https://github.com/neighbourhoodie/couchdb-continuum

35

Original DB Cleaned DB
Filtered

Replication

Doc Deletion Options

3. Maybe CouchDB isn't right for you…

– Consider a time-series database (like OpenTSDB)

– Consider a true message queue (like RabbitMQ)

4. Clustered purge (CouchDB ≥2.3.0) may help
(but is not a panacea, read the docs on release)

36

8. “Conflicts? What are those?”

“I write a document. I
never check for conflicts.”

“I write a document, if I get
a conflict, I just write it
again.”

37

mydoc
_rev 7

How conflicts happen

38

bob

v1

bob

v1

bob

v1

bob

v1

bob

v2a

bob

v2a

bob

v2b

bob

v2b

bob

v2a

v2b

bob

v2a

v2b

bob

v2a

v2b

bob

v2a

v2b

How conflicts also happen

39

bob v1 bob v1
bob v1

00:00.000

How conflicts also happen

40

bob v2a bob v1
bob v2b

00:01.000

How conflicts also happen

41

bob v2a bob bob bob bob v2bv2bv2bv2b
bob v2b

00:01.001

How conflicts also happen

42

bob v2a bob bob bob bob v2bv2bv2bv2b
bob v2b

✕

00:01.002

How conflicts also happen

43

bob v2a bob bob bob bob v2bv2bv2bv2b
bob v2b

✕

✕

00:01.003

How conflicts also happen

44

bob v2a bob bob bob bob v2bv2bv2bv2b
bob v2b

copies = 2

n = 3

Quorum OK

copies = 1

n = 3

Quorum NG

00:01.004

Quorum:

�
���

�
copies

How conflicts also happen

45

bob v2a bob bob bob bob v2bv2bv2bv2b
bob v2b

copies = 2

n = 3

Quorum OK

copies = 1

n = 3

Quorum NG

201 Created

00:01.009

202 Accepted

How conflicts also happen

46

bob v2abob v2b
bob v2abob v2b
bob v2abob v2b

00:01.010

bob v2a

“arbitrarily”

wins!

How to detect & resolve conflicts

#1 Best option:

• Listen for 201 Created vs. 202 Accepted
– Check your library code: many libraries don't differentiate!!

• Whoever receives a 202 must decide what to do!

• Best if automatic winner selection is NOT OK.
47

How to detect & resolve conflicts

Second best option:

• Look for conflicts in a system cleanup script
– Use Mango with selector {"conflicts": true} (CouchDB ≥2.2.0)

• Cleanup script must decide what to do!

• Best if merging the documents can be done later.
48

How to detect & resolve conflicts

Third best option:

• Look for conflicts in a system cleanup script
– Use Mango with selector {"conflicts": true} (CouchDB ≥2.2.0)

• Cleanup script just deletes losing document

• Best if automatic winner selection is OK.
49

10. Counting with _rev / seq
CouchDB 1.x:

“_rev always increments by
1, right?”

“DB sequence numbers
give me absolute document
ordering!”

50

w3resource.com (CC BY-NC-SA 3.0)

You didn't even realize

that I completely skipped

#9!

51

9. Counting with _rev / seq

CouchDB 2.x clustering
means developers must think
more about the implications
of distributed systems.

_rev / seq now include
information about the cluster
state at the time of
generation.

52

w3resource.com (CC BY-NC-SA 3.0)

9. Counting with _rev / seq

53

GET /db/_changes

[{node1, 00-79, 0}, {node2, 80-FF, 1}]

[{node1, 80-FF, 1}, {node2, 00-79, 0}]bob v2zim v1 bob v1zim v2
00:07.00

Decoded for

explanation

q = 2

Either response is OK – and intuitive!

9. Counting with _rev / seq

54

bob v2zim v2 bob v2zim v2
00:07.20

9. Counting with _rev / seq

55

GET /db/_changes

[{node1, 00-79, 1}, {node1, 80-FF, 1}]

[{node1, 00-79, 1}, {node2, 80-FF, 1}]

[{node2, 00-79, 1}, {node1, 80-FF, 1}]

[{node2, 00-79, 1}, {node2, 80-FF, 1}]bob v2zim v2 bob v2zim v2
00:07.30

Any one of these 4

responses is

possible & correct!

9. Responsibly using seq values

1. GET /{db}/_changes one line at a time

2. Process each row idempotently.

– That means apply the change independent of other
rows, or their ordering

3. Periodically store the seq/last_seq value of
the last row you processed

4. If you crash, restart: GET /{db}/_changes?seq={value}
56

9. Responsibly using _rev values

CouchDB is eventually consistent.

Absolute document ordering is not a guarantee.

Remember: Compaction, and internal or external replication,
can and will remove intermediate document revs!

Last ditch option: q=1, n=1 (no clustering, not scaleable)

57

What about SQL SEQUENCE?

Again, CouchDB is eventually consistent.

CouchDB does not provide a guaranteed, globally unique,
monotonically increasing sequence number.

Use UUIDs instead.
GET /_uuids is convenient!

58

Operations

59
Toronto Highway RESCU Operations

10. “Monitoring? CouchDB?”

“I monitor the host, but not CouchDB itself.

“It is self-healing, right?”

60

Easy option: NetData

Per-node web service, fixed RAM & CPU usage

Can feed into most back-ends

61http://my-netdata.io/

Datadog has native CouchDB integration:

https://docs.datadoghq.com/integrations/couch/

Easy option: Datadog

62

Easy option: AWS CloudWatch

Neighbourhoodie releases AWS CloudWatch:

https://github.com/neighbourhoodie/aws-couchwatch

ALv2 of course!

63

Monitoring CouchDB

Per-node endpoints you should track & graph:

GET /_node/_local/_stats

– CouchDB specific data

GET /_node/_local/_system

– Erlang and OS-level data

64

See Inside the Couch

65
…more to come soon from Neighbourhoodie!

Thank you for listening!

66
Joan Touzet ❦ https://atypical.net/ ❦ wohali

