
UNIVERSAL METRICS WITH BEAM

APACHECON North America Sept. 24-27, 2018

Etienne CHAUCHOT

Apache Beam Committer

@echauchot, echauchot@apache.org

1

Who am I?

2

@echauchot

Software Engineer
Apache Beam Committer

Integration Software
Big Data
Open Source

Talend: data integration software

3

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they extracted ?
6. Between the runners: what are portable metrics ?
7. Example Use case
8. Current state and future work

Agenda

4

5

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

(2008) FlumeJava

High-level API (2016)
Apache Beam

Open,
Community-driven,

Vendor-independent

(2004) MapReduce

SELECT + GROUPBY

(2014) Dataflow

Unified,
Multiple languages,

Multiple runners(2013) Millwheel

Deterministic
streaming

6

Batch / streaming? Never heard of either.
— Beam

(Batch is nearly always part of higher-level streaming)

7

User code

Libraries of PTransforms, IO

Language SDK

Runner

Beam Model representation

8

Beam PTransforms

ParDo
(good old FlatMap)

GroupByKey Composite

DoFn

9

Read text files

Split into
words

Count

Format

Write text files

10

Pipeline p = Pipeline.create(options);

PCollection<String> lines = p.apply(

 TextIO.read().from("gs://.../*"));

PCollection<KV<String, Long>> wordCounts = lines

 .apply(FlatMapElements.via(word->word.split("\\W+")))

 .apply(Count.perElement());

wordCounts

 .apply(MapElements.via(count->count.getKey() + ": " + count.getValue())

 .apply(TextIO.write().to("gs://.../..."));

p.run();

Languages and runners are independent

11

12

How do Java-based runners work today?

SDK

app

runner
libs

Master

Cluster

Runner

Worker

Worker

Worker

Pipeline

UDF

12

Goal of portability

Without portability framework

A pipeline written with a given language SDK must be run
in a runner written with the same language (e.g. no Python
to Java or Java to Python)

Runner
Harness

SDK
Harness

Worker

UDF

13

Runner

Worker

UDF

docker?

docker?

Fn APIWith portability framework
Execute user code from 'any' language in every runner.

Portability framework Design

14

Python Fn

Python Fn

gRPC in

gRPC out

Portable
Pipeline
Definition

15

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

What are the Beam metrics ?
● The pipeline authors can specify metrics to be collected by the

execution engine in any transform of their pipeline

● Declared at pipeline construction time

● 3 kind of user metrics (similar to dropwizard):
○ Counter: single long value that can be incremented or decremented

○ Gauge: reports the latest value out of reported values

○ Distribution: reports sum, count, min and max, mean values out of reported

values (similar to histograms)

16

Beam metrics properties

● Accessible during execution of the pipeline or after it (depends on the

runner)

● Metrics properties:
○ They are named : actual name + namespace (to differentiate and query by namespace)

○ They are scoped to the transform (pipeline step)

○ They are dynamically created: created during runtime (when your transform code

runs), no pre-declaration in the runners/engines

○ They degrade gracefully: if a runner does not support it, it does not report it, no failure

17

Error handling: bundling
● The elements in a PCollection are processed in bundles
● bundles are the commit unit of the runner (persisting results, retry when

failure) and allows parallelism between workers
● Division of the PCollection into bundles is an arbitrary choice by the runner

(size might depend on runner streaming or batch orientation)
● If a transform fails all the bundle is retried

Pardo: the processing of an
element within bundle B fails,
and another worker retries
the entire bundle

18

Error handling: committed/attempted metrics
● Attempted metrics = Metric includes values from all attempts
● Committed metrics = Metric includes values from successful attempts only
● If the parDo increments a counter with each element processed

● Most of the runners do not support committed metrics (only dataflow in batch
mode)

committed counter = 9
attempted counter = 11

19

Querying metrics
● Through PipelineResult
● Supports filters:

○ names
○ step (transforms)

public interface PipelineResult {

 MetricResults metrics();
}

public abstract class MetricResults {

 public abstract MetricQueryResults queryMetrics(@Nullable MetricsFilter filter);
}

public interface MetricQueryResults {

 Iterable<MetricResult<Long>> getCounters();

 Iterable<MetricResult<DistributionResult>> getDistributions();

 Iterable<MetricResult<GaugeResult>> getGauges();
}

public interface MetricResult<T> {

 MetricName getName();

 String getStep();

 T getCommitted();

 T getAttempted();
} 20

21

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

Usage: Pipeline and counter metric

pipeline
 .apply(...)
 .apply(ParDo.of(new CountingDoFn()));
pipelineResult = pipeline.run();
pipelineResult.waitUntilFinish(...);

MetricQueryResults metrics =
 pipelineResult
 .metrics()
 .queryMetrics(
 MetricsFilter.builder()
 .addNameFilter(MetricNameFilter.named(

"namespace", "counter1"))
 .build());

public class CountingDoFn extends DoFn<Integer, Integer> {

 private final Counter counter = Metrics.counter("namespace",
"counter1");

 @ProcessElement
 public void processElement(ProcessContext context) {
 // count the elements
 counter.inc();
 context.output(context.element());
 }
}

22

Usage: Distribution metric

public class CountingDoFn extends DoFn<Integer, Integer> {

 private final Distribution
 distribution = Metrics.distribution("namespace", "distribution1");

 @ProcessElement
 public void processElement(ProcessContext context) {
 Integer element = context.element();
 // create a distribution (histogram) of the values
 distribution.update(element);
 context.output(context.element());
 }
}

23

Usage: Gauge metric

public class CountingDoFn extends DoFn<Integer, Integer> {

 private final Gauge
 gauge = Metrics.gauge("namespace", "gauge1");

 @ProcessElement
 public void processElement(ProcessContext context) {
 Integer element = context.element();
 // create a gauge (latest value received) of the values
 gauge.set(element);
 context.output(context.element());
 }
}

24

25

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java)?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

26

27

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

Why metrics extraction should be independent from
the chosen engine?
● Not all engines ship a way to push the metrics to external sinks (own

monitoring)
● Consistency:

○ No common set of monitoring backend support among execution
egines (Ganglia, graphite, ...)

○ Difference of availability moment when the pipeline runs
○ Beam needs to have a common metrics flow no matter the runners

for pipelines to be portable
○ What if you need to have the metrics in your own application UI ?

Request metrics backend (heterogeneous between the engines) ?
28

How metrics are extracted: design principles
● no client polling (e.g. JMX)

○ infrastructure changes (cluster managers, ...) and must not need to be known of the
users

○ would be non-aggregated metrics, that users would need to aggregate
○ timing issues (e.g. small batches)

● pushed from the runner and not pulled from the sdk
○ runners needs to decide when to push (e.g. committed metrics)
○ system runner metrics in the future

● periodic aggregation and not event based:
○ use aggregated metrics to avoid metrics backend need to merge
○ runners know how to merge metrics

● Beam managed sinks IOs
○ for coherence (avoid heterogeneous engines support)

29

30

How metrics are extracted: special case of cloud
hosted engines

● runner = empty shell that translates the pipeline and submits the job and
forwards user metric requests through REST calls. But it does not run it

● => the pusher needs to be instantiated in the cloud engine, close to the
pipeline execution

● Solutions
○ When the job starts, the engine receives the serialized PipelineOptions and can trigger the

creation of a MetricsPusher-like service
○ Pipeline pre-processing: DAG modification to include DoFn with native Metrics API calls

● Need to take care of possible network issues to push metrics to the outside
world: open routes or compliant output sinks. (try to avoid pulling metrics from
sdk cf before)

31

32

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Use case
8. Current state and future work

Portable metrics (metrics over the Fn API)

● Metrics definition is part of the protobuf definition of the pipeline
● The SDK harness sends regular updates to the runner harness during the

execution of user defined functions (if they contain metrics) through the FnAPI
(GRPC calls).

● Main communication is on a bundle basis
● Runner still differentiate committed/attempted metrics
● Still very early stage (design of the communications and first step in python

SDK)

33

34

Metrics communication over the FnAPI

Portable metrics: new features

● Metrics are extended with custom ones (defined by the user)
● 2 scopes:

○ user metrics
○ system metrics

● 2 kinds of metrics:
○ Regular metrics (counter, distribution, gauge)
○ MonitoredState (customizable more complex data). Might not be supported by some metrics

backends

file name last modification Current size

todo_list 09/26/18 1GB (too big)

35

36

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Example use case
8. Current state and future work

Use case: measure throughput using Beam metrics

37

Use case: Architecture

38

39

1. Introduction to Beam and portability
2. What are beam metrics ?
3. How does a pipeline author use them (java) ?
4. Inside the runner: how does it work ?
5. Outside of the runner: How are they

extracted ?
6. Between the runners : portability
7. Example use case
8. Current state and future work

Current state and future work

● A few runners still need to implement the metrics API

○ Implement it for Apex and Gearpump runners.

● A few runners started to implement portability framework

○ Ongoing work for Dataflow and Flink

○ For the portable metrics

■ sdk/runner communication protocol defined

■ first step on the implementation in python sdk

● Most of the runners support only attempted metrics (except Dataflow)

40

Current state and future work
● System metrics: runner instrumentation (e.g failing elements on PCollections)

● Metrics Pusher is wired up only in Spark and Flink runners

○ Ongoing work for Dataflow

○ Metrics sinks:

■ Metrics Sink API is defined

■ HTTP REST sink available, Graphite sink ongoing

■ Implement sinks for popular backends (Prometheus, Ganglia, …)

■ Contribute new sinks ! (Metrics Sink API and HTTP Metrics Sink)

41

https://github.com/apache/beam/blob/master/sdks/java/core/src/main/java/org/apache/beam/sdk/metrics/MetricsSink.java
https://github.com/apache/beam/blob/master/runners/extensions-java/metrics/src/main/java/org/apache/beam/runners/extensions/metrics/MetricsHttpSink.java

Take away

● Metrics can be defined in user code and collected in the native UI

● Metrics can be extracted to external backends independently of the

chosen execution engine

● Metrics will be portable (whatever sdk to whatever runner)

42

43

References

Metrics

Metrics architecture

User metrics

Portable metrics

Metrics extraction

Apache Beam
 https://beam.apache.org

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://cwiki.apache.org/confluence/display/BEAM/Metrics+architecture+inside+the+runners
https://docs.google.com/document/d/1voyUIQ2DrWkoY-BsJwM8YvF4gGKB76CDG8BYL8XBc7A/edit#heading=h.vv2fbulkp7t
https://docs.google.com/document/d/1MtBZYV7NAcfbwyy9Op8STeFNBxtljxgy69FkHMvhTMA/edit
https://docs.google.com/document/d/1Fl_LM918j7ZxAmCSkm43GBjV8knsZAIA1tRhvJ4DneM/edit
https://beam.apache.org

Thanks !

APACHECON North America Sept. 24-27, 2018

45

Backup slides

APACHECON North America Sept. 24-27, 2018

46

Portability Framework
Architecture

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job
protobuf

Beam
Master

Cluster

Runner
Harness

SDK
Harness

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

docker
Pipeline
protobuf UDF

docker

docker

47

Abstract
Apache Beam provides a unified programming model to execute batch and
streaming pipelines on all the popular big data engines. Lately it has gone beyond
by also providing a unified way to supervise the pipeline execution: universal
metrics. No matter what the chosen execution engine is, Apache Spark, Apache
Flink or others, you specify the metrics to be collected with the same API and you
extract them in a coherent way.

In this talk, you will discover the Beam metrics API, integration with the runners
and finally an end to end example.

48

