
Apache stack based
Infrastructure monitoring and analytics
in Big Telco

JongHyok Lee
SK Telecom

About Me

! Architect at SK Telecom SW R&D Center
! Leading development of T-CORE, SK Telecom’s datacenter and mobile network

monitoring and analytics platform

! Previously worked as a Senior Architect at IBM Korea Lab
! Mainly focusing on data processing and management related solution implementation

Agenda

! Telco infra monitoring & analytics
! Real-time processing of monitoring data
! Storing & querying time-series data
! Analytics and real-time inferencing
! Lessons Learned

Telco infra monitoring & analytics

SK Telecom and Big data

! SK Telecom
○ South Korea’s largest telecommunications company
○ More than 30 million subscribers
○ Business Areas

■ Mobile network operation
■ Internet of Things
■ Automotive
■ Media

! Big data in SK Telecom
○ 1000+ nodes hadoop clusters
○ 100+ nodes kafka clusters
○ Data Pipelines with Hadoop, Hive, Flume, Kafka, HBase, Spark, Druid, Ignite,

ElasticSearch, etc.

Telco infra - in 1 minute

User
Equipment eNB

S-GW P-GW PDN

MME

Telco World IT
World

Operation Support System

Business Support System

5G is Coming

! Virtualization…
! Virtualization…
! Virtualization...

Telco infra monitoring & analytics

Monitoring
! Virtualized Network Functions and it’s

Element Management Systems
! Network Function Virtualization

Infrastructures (Hypervisors)
! Several data centers and it’s facilities
! Network status between data centers

and/or regional hubs
! All IT infras including OSSs and BSSs

Analytics
! IT and Network resource failure
! Network anomaly detection
! Resource engineering
! Automated dynamic resource allocation
! Network bandwidth management

Architecture - simplified

AgentsAgents message queue

Real-time data processing

metric
sinker

log
sinker

Time Series
DB

Log
Datastore

coordinator

API Server

in-memory datastore

Alarm and event
handling

repository
DB

Analytics
Platform

Software stack

AgentsAgents message queue

Real-time data processing

metric
sinker

log
sinker

Time Series
DB

Log
Datastore

coordinator

API Server

in-memory datastore

Alarm and event
handling

repository
DB

Analytics
Platform

Real-time processing of
monitoring data

input process
stream

input process
stream

Real-time data processing flow

map to internal
object

filter by config

enrich attributes

sink

kafka

receive message

kafka

filter alarm related
message

union streams

group by key

check alarm
condition

check count

send alarm info

Real-time Processing Framework considered

Spark Streaming

Architectural issues faced

! Kafka integration with Direct Approach and too many number of partitions
! Integration with multiple kafka sources
! Passing changes to running spark streaming application
! Alarm condition check with Spark’s micro-batch

Kafka Direct Approach and too many number of partitions

Spark streaming’s 2 different approaches with Kafka : Receiver-based v.s. Direct approach

from https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html

Kafka Direct Approach and too many number of partitions

! Direct Approach : 1 kafka partition = 1 RDD partition = 1 task = 1 cpu core
! Environment

○ Cluster : Standalone mode
○ 2 Worker nodes with SPARK_WORKER_CORES = 18 (36 cores total)
○ Data Source

■ ‘metrics’ topic partition # = 64, ‘logs’ topic partition # = 90 (means 154 tasks)
■ partition # not adjustable due to support agreement

○ Streaming application configuration
■ spark.executor.cores = 4
■ spark.cores.max = 20 (means spark can run 20 tasks simultaneously)

○ other spark applications are running on the cluster

Kafka Direct Approach and too many number of partitions

Sample case
! 100 topic partition
! cluster setting

○ 4 worker, 4 core for 1 worker
! application setting

○ 1 core for 1 executor
○ max 8 core

= 8 executors
= 8 tasks simultaneously

! Not always bad, but…
! Coalesce or Repartition

Integration with Multiple Kafka Sources - what to consider

! Single application or dedicated applications?
○ Single application consumes every messages from across all of sources

■ options for limited resource situation but could be slowed down on many-partitioned topics
■ single interval for all sources
■ whole streaming job could be broken by partial failure

○ Dedicated application consumes messages from one source
■ each application can be optimized for the source,
■ resources can be configurable per application
■ less effective for identical batches on separated streaming applications

Integration with Multiple Kafka Sources - what to consider

! Dynamic source change
○ Source change includes adding new topics/brokers, address change of existing source, removal

of consuming source, interval of microbatch of source, etc.
○ Required to meet SLA on production environment (no downtime, etc)
○ What really required is high availability and low latency

Integration with Multiple Kafka Sources - our approach

! Multiple kafka source consumption feature implementation
! Assigned each of the application handle multiple topics of single kafka broker
! Another options

○ structured streaming
○ vertically separated application

Integration with Multiple Kafka Sources
try {
 List<JavaPairDStream<String, DataEntity>> streamList = new ArrayList<>(collectEntityList.size());
 JavaPairDStream<String, DataEntity> resultStream = null;

 for (CollectEntity collectEntity : collectEntityList) {
 ...

 String brokers = parseBrokerList(collectEntity.getKafkaBrokerList());
 kafkaParams.put("metadata.broker.list", brokers);
 ...

 JavaPairDStream<String, String> directKafkaStream = KafkaUtils.createDirectStream(ssc, String.class, String.class,
 StringDecoder.class, StringDecoder.class, kafkaParams, topics);

 dataStream = directKafkaStream.transformToPair(rdd -> {
 ...

 return rdd.mapPartitionsToPair(new FunctionData(context, collectEntity, mappingTemplateFactory));
 });

 streamList.add(dataStream);
 }

 …
 resultStream = ssc.union(streamList.get(0), streamList.subList(1, streamList.size()));

 ...

Passing configurations to running spark streaming application

We have many changes to apply during datacenter monitoring operation

! resource information : servers, switches, devices, parts, settings
! monitoring information : metrics, agent configurations, mapping with collecting items
! alarm rule : conditions, targets, checking intervals
! processing rule : mapping and filtering rule
! anomaly detection rule : data and feature generation rule, models
! real-time data supply rule

Passing configurations to running spark streaming application

How we did before

! Zookeeper for sharing data, mysql for storing data
! All applications, including spark streaming application, are subscribed to zookeeper to

receive data change notification signal
! Read all of changed information directly from zookeeper
! Worked well for a while. But...

ZooKeeperAPI Server

Spark
Streaming App

.../alarm-1231
 node-001
 node-002
 ...

1. watch on alarm change

2. change notification

3. load changed alarm
data

Passing configurations to running spark streaming application

2nd step

! Notifier only role for Zookeeper
! Directly load changed data from mysql when notified
! Once per microbatch (when change detected) not once per config change

ZooKeeperAPI Server

Spark
Streaming App

mysql

1. watch on alarm change

2. change notification

3. load whole alarm data

Passing configurations to running spark streaming application

Now with Structured Streaming
! Redis for data sharing. Redis pub/sub for change notification
! 3 types of approach tested

a. Access redis data directly when needed
b. Access redis data on change -> store data in broadcast variable -> use UDF for data match/filter
c. Access redis data on change -> store in DataFrame -> use join for data match/filter

! Load all or update changes?
! “Always best” approach doesn’t exist

500k rules total
30k tps input data
5k rule changes (every 10s)

Average time to update changes to spark
executor

Average delay to detect 0.9M alarms on
30k tps incoming data

a. Access redis directly N/A 59.8sec

b. use broadcast variable & filter 7.8s 0.5s

c. use DataFrame & join 16.3s, 3.0s when update changes only 1.5s, 1.2s

Event detection

What to consider

! What type of event patterns will be supported?
! How to organize collected data?
! Which tool is best for checking event conditions?
! How to express checking condition for storing and sharing?

Our tool

! Spring Expression Language (SpEL)
○ Part of Spring framework
○ Supports evaluation

Event detection

Event patterns (for single target)

! Threshold check
○ cpu.percent > 90%
○ disk.partition.use_percent > 90% more than 10 minutes

! Log text check
○ “System Halted” in tomcat log message
○ “ERROR” in /opt/application/log.txt appears more than 3 times in 10 minutes

! Logical operation of patterns
○ Condition A OR Condition B AND Condition C

Event detection

...
ExpressionParser expressionParser = new SpelExpressionParser();
Expression expression;

for (AlarmRuleTemplate[] templates : alarmRuleEntity.getTemplateList()) {
 ...
 boolean alert = false;
 for(AlarmRuleTemplate template : templates) {
 templateParser = new MetricTemplateParser(template.getTemplate());
 for (AlarmDataEntity entity : alarmDataEntityList) {
 templateParser.setAttribute(entity.getMetric(), entity.getValue());
 }
 ...
 expression = expressionParser.parseExpression(parsedTemplate);
 alert = expression.getValue(Boolean.class);
 ...
 }

 if(alert) {
 alarmCheckData.addAlarmCheck(templates);
 }
}

Event detection

What we’re working on

! correlation support
○ Check series of events

■ “ERROR” appeared in application log followed by “Exception” in 10 minutes
○ Aggregation of status

■ more than 70% of “spark cluster” is satisfying condition of cpu.percent > 90%
■ one instance of “myprocess” is running on one of 3 nodes

! movement check
○ memory.percent keep increasing during last 10 hours with 5 % of exceptions

Event detection

What we’re working on (continued)

! Separating event check stage with alarm check stage
○ Decompose alarm definition to predefined event patterns

ex) Threshould checek pattern : metric comparison_operator value
○ Event check first. Use results on checking alarm
○ Sometimes aggregation and details of event check result needed to check alarm condition

! Temporary internal metric
○ Temporarily calculated by real-time processing engine for internal purpose
○ Mainly used for correlation alarm check

Alarm : more than 80% of nodes in the cluster has cpu usage > 90%

internal metric #1 : total number of nodes in the cluster

internal metric #2 : number of nodes in the cluster satisfying condition

internal metric #3 : rate of nodes in the cluster satisfying condition

Moving to Structured Streaming

! Easier API and SQL support - faster development
! Catalyst optimizer - better than human in most of the cases
! Dynamic query change support - searching for best way

Storing and querying time-series
data

Our Data

! metric data
○ numeric, time-series
○ count, rate (%), time (msec, sec, …), size (byte, mbyte, …), throughput (bps, tps, …), ...

! log data
○ file appended text. 1 line / multi-line text
○ non-periodic metric data parsed from log

! labels and value list
○ non-numeric, time-series
○ process status (dead, alive, ...), network status (listen, time_wait, close_wait, …)

! objects
○ structured objects. mainly JMX objects

! asset information
○ H/W information, periodic update
○ Manufacturer, model, specs, parts, temperature, fan speed, ...

Time-series datastores considered

OpenTSDB

OpenTSDB

Brief introduction

! Time-series datastore for only numeric data
! Started at 2010. Current stable version 2.3.1
! HBase backend (Supports Cassandra backend from 2.3.0)
! Clustering supported by HBase clustering
! Http, telnet API support / Java API
! LGPL v2.1+ (perfectly compatible with Apache license v2) - http://opentsdb.net/faq.html

http://opentsdb.net/faq.html

Data on OpenTSDB

! Data format
○ <metric name> <tag list> <timestamp> <value>
○ Sample

cpu.sys_percent host=server001,ip=192.168.10.11,group=main,role=web 1536576293 12.3
cpu.sys_percent host=server001,ip=192.168.10.11,group=main,role=web 1536576294 13.1
cpu.sys_percent host=server001,ip=192.168.10.11,group=main,role=web 1536576295 13.4

○ Target is specified by tag list
○ Long / many tag means performance downs

! Our tag list
○ id : id of target server
○ host : hostname of target at capture time
○ location : additional information to specify target (interface, partition, device, port, etc)

Issues faced

! Slow operation on data store affects real-time processing
! Strange aggregation result
! Tough maintenance
! New requirements and slowed down developer community activity

Slow operation on data store affects real-time processing

Interface options tested : import cli, http api, Java API

import cli Http API Java API

Streaming application sinks to file
per micro-batch. bulk load with
import cli

Streaming application sinks to
http api per micro-batch

Streaming application sinks to
opentsdb using Java API
(net.opentsdb.core.TSDB class)

! tight validation with timestamp
! error handling issue

! slower than Java API ! tight validation with timestamp
! directly affected by status of

backend engine (HBase)

OpenTSDB Java API

! provided by TSDB class
○ OpenTSDB Java API
○ interface with HBase directly

Slow operation on data store affects real-time processing

Calling Java API from spark streaming application

! Spark streaming application interacts with HBase directly
○ Delayed by heavy load on HBase (compaction, GC, etc)
○ OpenTSDB itself performs hourly compaction to rearrange data and it takes some time

! Singleton pattern
○ OpenTSDB connection pool per executor

Slow operation on data store affects real-time processing

Slow operation on data store affects real-time processing

Our solution

! Separation of concerns
○ Requirement #1 : Immediate alert notification without delay

! New approach
○ Spark streaming application -> kafka -> Data sinker process
○ Assign thread per kafka topic partition to consume metric
○ Write queue to sink data to OpenTSDB

! Problem on data store doesn’t cause delay on stream processing anymore

Strange aggregation result

Query result on same data with same time range

! 1st case : raw data plotting
! 2nd case : daily aggregated max

Strange aggregation result

OpenTSDB time bucket setting for downsample aggregation
! timestamp - (timestamp % interval_ms)

Our case
! start = 2017/05/01 (Localtime)

= 1,493,564,400 in epoch timestamp
! sample_interval_ms = 1 day = 86,400,000 ms
! interval_aligned_ts = 1,493,510,400 s = 2017/04/30 09:00 (Localtime)
! Daily aggregation performed for every 24 hours beginning from 09:00

Reason
! OpenTSDB doesn’t consider timezone while calculating start point
! Policy or issue?

Tough maintenance and environment

! Huge gap between solution development and production system maintenance
! Too many layers with OpenTSDB

○ HDFS, HBase, and OpenTSDB with ZooKeeper
○ Maintenance complexity increased exponentially

! Not familiar with operational issues
○ Timeout exception between hdfs datanode
○ Writing performance issue during HBase compaction or GC time
○ Configuration optimization and performance tuning
○ Region down and recovery using WAL (Write Ahead Log)

! Limited resources made things harder
○ All modules installed on 3 nodes with 8~16 cores each

■ OpenTSDB, HBase, Hadoop, Spark, Kafka, Zookeeper, Elasticsearch, Redis, ...

New requirements and slowed down developer community activity

New Requirements with time-series data

! Rollup and pre-aggregation
! Non numeric (label / value list) data type support
! Object data type support

Slow OpenTSDB developer community activity

Analytics and real-time inferencing

What we’re doing

Anomaly detection with

! system metrics
! log clustering

Real-time inferencing

Metric Analysis

! Goals of metric analysis
○ Predictive maintenance and resource engineering
○ Decrease false alarm

! Topics
○ Anomaly detection with multiple system metrics and application metrics
○ Dynamic threshold with each of forecasted system metric

Log Analysis

! Goals of log analysis
○ Anomaly detection with log pattern changes on time

! Our approach
○ Define distance function for calculating distance of logs
○ Distance for cluster member decision and distance function can be configured

Analytics Platform

Real-time data processing

message queue

Time Series
DB

Log
Datastore

API Server

Analytics
Platform

DataStore

Data
Extractor

Analysis &
Training
Backend

Analysis
Interface

Data
Scientists

Model Model
Loader API Server

real-time
inferencing engine

Datacenter
Operators

feature &
internal
metric

generator

Summary & Lessons Learned

! Long time of optimization with real data on production environment is essential especially
with Streaming application

! Technical expert is essential for both development and stable service
! We should check community activity and future roadmap of the software when we decide

our software component. Maturity of software should be considered also.

Thank You!

