
1Document Title

YARN 3.1 and Beyond !
Naganarasimha

ApacheCon

2Document Title

Introduction

Naganarasimha GR
 Apache Hadoop PMC
 Contributing since 5 years
 Senior BigData Architect @ Standard Chartered Bank SG
 Contributed in key YARN features

o Node attributes
o ATS V2

3Document Title

4Document Title

• Introduction

• Present

• Upcoming

5Document Title

Introduction

6Document Title

A brief timeline of Hadoop Releases:

2.9.0: Nov’17

• YARN Federation
• Opportunistic

Container
Backported from 3.0 :
• New YARN UI
• Timeline V2

• Global Scheduling
• Multiple Resource

types
• New YARN UI
• Timeline service V2

• GPU/FPGA
• YARN Native Service
• Placement

Constraints

• Node Attributes
• Multi Node

Scheduling
• Hadoop Submarine

Project
• Support service

upgrade

3.0.0: Dec’17 3.1.0: Apr’18 3.2.0: Sep’18

7Document Title

Community Update: JIRAs in 3.1.0

8Document Title

Community Update: Source code changes

9Document Title

Categorization:

Topics

User Centric

Right Node Selection

Admin Centric

Ease of use

Right resource to select

Faster Allocation

Ease of monitoring

Resource Isolation

Ease of Configuration

10Document Title

YARN Overview :

11Document Title

Apache Hadoop 3.1

12Document Title

Moving towards Global & Fast Scheduling

YARN-5139

• Problems
 Current design of one-node-at-a-time allocation cycle can lead to suboptimal

decisions.
 Several coarse grained locks.

• With this, we improved to
 Look at several nodes at a time
 Fine grained locks
 Multiple allocator threads
 YARN scheduler can allocate 3k+ containers per second ≈ 10 mil allocations / hour!
 10X throughput gains
 Much better placement decisions

Admin Centric

13Document Title

Traditional scheduling

Root

(memory=60G, vcores=40, gpu=10)

Compliance

(min=10%, max =30%)

Retail

(min=40%, max =50%)

Engineering

(min=50%, max =100%)

Compliance1

(min=50%, max =50%)

Compliance2

(min=50%, max =50%)

Retail1

(min=50%, max =50%)

Retail2

(min=50%, max =50%)

Engineering1

(min=50%, max =50%)

Enginering2

(min=50%, max =50%)

14Document Title

Global Scheduling explained

15Document Title

Better placement strategies (YARN-6592)

• Past
 Supported constraints in form of Node Locality.

• Now YARN can support a lot more use cases
 Co-locate the allocations of a job on the same rack (affinity)
 Spread allocations across machines (anti-affinity) to minimize resource

interference
 Allow up to a specific number of allocations in a node group (cardinality)

User Centric

16Document Title

Better placement strategies (YARN-6592)

• Affinity

• Anti-affinity

17Document Title

Absolute Resources Configuration in CS – YARN-5881

• Gives ability to configure Queue resources as below
<memory=24GB, vcores=20, yarn.io/gpu=2>

• Enables admins to assign different quotas of different resource-types

• No more “Single percentage value limitation for all resource-types”

Root

(memory=60G, vcores=40, gpu=10)

Compliance

(memory=60G, vcores=40, gpu=10)

Retail

(memory=60G, vcores=40, gpu=0)

Engineering

(memory=20G, vcores=40, gpu=10)

Admin Centric

18Document Title

Auto Creation of Leaf Queues - YARN-7117

• Easily map a queue explicitly to user or group with out additional configs
• For e.g, User X comes in, automatically create a queue for user X

with a templated capacity requirements

• Auto created Queues will be
• created runtime based on user mapping
• cleaned up after use
• adhering to ACLs

Admin Centric

19Document Title

Usability : UI 1/2 Admin Centric

20Document Title

Usability : UI 2/2

21Document Title

Timeline Service 2.0 Improvements

Understanding and Monitoring a Hadoop cluster
itself is a BigData problem

• Using HBase as backend for better
scalability for read/write

• More robust storage fault tolerance
• Migration and compatibility with v.1.5

User Centric Admin Centric

22Document Title

Resource profiles and custom resource types

• YARN supported only Memory and CPU

• Now
• A generalized vector for all resources
• Admin could add arbitrary resource

types!

Ease of resource requesting model
using profiles for apps

User Centric Admin Centric

23Document Title

GPU support on YARN

• Why?

 No need to setup separate clusters
 Leverage shared compute!

• Why need isolation?
 Multiple processes use the single GPU will be:

 Serialized.
 Cause OOM easily.

 GPU isolation on YARN:
 Granularity is for per-GPU device.
 Use cgroups / docker to enforce isolation.

User Centric

24Document Title

FPGA on YARN

• FPGA isolation on YARN:
 Granularity is for per-FPGA device
 Use Cgroups to enforce the isolation

• Currently, only Intel OpenCL SDK for FPGA is supported.

• Implementation is extensible to other FPGA SDK.

User Centric

25Document Title

Services support in YARN

• A native YARN services framework (YARN-5079)

 Native Yarn support to Services
 Apache Slider retired from Incubator – lessons and key code carried over to

YARN

• Simplified discovery of services via DNS mechanisms: YARN-4757
 regionserver-0.hbase-app-3.hadoop.yarn.site

 Application & Services upgrades: YARN-4726
 “Do an upgrade of my HBase app with minimal impact to end-users”.

User Centric

26Document Title

Simplified APIs for service definitions

• Applications need simple APIs

• Need to be deployable “easily”

• Simple REST API layer (YARN-4793)

• Spawn services & Manage them

User Centric

27Document Title

How to run a new service in YARN ?

28Document Title

Apache Hadoop 3.2

29Document Title

Node Attributes (YARN-3409)

• “Take me to a node with JDK 10”

• Node Partition vs. Node Attribute
• Node Partition

 One partition for one node
 ACL
 Shares between queues
 Pre emption enforced

• Attribute
 For Container placement
 No ACL’s and Shares
 First come first serve

User Centric

30Document Title

Node Attributes (YARN-3409)

• Distributed Node Attributes
 NM can detect its attributes
 Script based and Config based

detection.
 Attribute prefix : yarn.nm.io

• Centralised Node Attributes
 Configured through CLI and REST
 Admin ACL’s to configure
 Attribute prefix : yarn.rm.io

User Centric

31Document Title

Node Attributes (YARN-3409)

Use cases :
 Hardware Constraints : To identify specific kind of resources like

 GPU, FPGA,
 SSD, # of disks,
 InfiniBand,
 (dual) network cards,

 Task Constraints: Task or container specific constraints like
 To run on specific Operating system versions.

 Processor architecture
 software library versions

 Experimental : Based on dynamic attributes like
 Load average,
 disk usage
 Network

•

User Centric

32Document Title

Container overcommit (YARN-1011)

• Every user says “Give me 16GB for my task”, even though it’s only needed at peak
• Each node has some allocated but unutilized capacity. Use such capacity to run

opportunistic tasks
• Preempt such tasks when needed

Admin Centric

33Document Title

Auto-spawning of system services (YARN-8048)

• “Start this service when YARN starts”

• “initd for YARN”
• Services are started during the yarn
bootstrap

 For example YARN ATSv2 needs Hbase,
so Hbase is system service of YARN.

 Only Admin can configure
 Started along with ResourceManager
 Place spec files under

yarn.service.systemservice.dir FS path

Admin Centric

34Document Title

TensorFlow on YARN (YARN-8220)

• Run deep learning workloads on the same cluster as analytics, stream processing etc!

• Integrated with latest TensorFlow 1.8 and has GPU support
 Use simple command to run TensorFlow app by using Native Service spec file

(Yarnfile)
yarn app -launch distributed-tf <path-to-saved-yarnfile>

 A simple python command line utility also could be used to auto-create Yarnfile
python submit_tf_job.py
--remote_conf_path hdfs:///tf-job-conf
--input_spec example_tf_job_spec.json
--docker_image gpu.cuda_9.0.tf_1.8.0
--job_name distributed-tf-gpu
--user tf-user
--domain tensorflow.site
--distributed --kerberos

35Document Title

TensorFlow on YARN (YARN-8220)

• Run deep learning workloads on the same cluster as analytics, stream processing etc!

• Integrated with latest TensorFlow 1.8 and has GPU support
 Use simple command to run TensorFlow app by using Native Service spec file

(Yarnfile)
yarn app -launch distributed-tf <path-to-saved-yarnfile>

 A simple python command line utility also could be used to auto-create Yarnfile
python submit_tf_job.py
--remote_conf_path hdfs:///tf-job-conf
--input_spec example_tf_job_spec.json
--docker_image gpu.cuda_9.0.tf_1.8.0
--job_name distributed-tf-gpu
--user tf-user
--domain tensorflow.site
--distributed --kerberos

36Document Title

TensorFlow on YARN (YARN-8220)

• Sample Yarnfile for TensorFlow job

User Centric

37Document Title

Other related talks :

• Deep learning on YARN - Running distributed Tensorflow / MXNet / Caffe /
XGBoost on Hadoop clusters

• Speakers : Wangda Tan
• Thursday, 27th Sep, 11:20
• Ballroom

• Running distributed TensorFlow in production: challenges and solutions on
YARN 3.0

• Speakers : Wangda Tan & Yanbo Liang
• Thursday, 27th Sep, 15:40
• Ballroom

38Document Title

Queries ?

	Slide 1
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

