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Introduction

Naganarasimha GR 
 Apache Hadoop PMC
 Contributing since 5 years
 Senior BigData Architect @ Standard Chartered Bank SG
 Contributed in key YARN features

o Node attributes 
o ATS V2
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• Introduction 
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• Upcoming
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A brief timeline of Hadoop Releases:

2.9.0: Nov’17

• YARN Federation
• Opportunistic 

Container
Backported from 3.0 : 
• New YARN UI
• Timeline V2

• Global Scheduling
• Multiple Resource 

types
• New YARN UI
• Timeline service V2

• GPU/FPGA
• YARN Native Service
• Placement 

Constraints

• Node Attributes
• Multi Node 

Scheduling
• Hadoop Submarine 

Project
• Support service 

upgrade

3.0.0: Dec’17 3.1.0: Apr’18 3.2.0: Sep’18
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Community Update: JIRAs in 3.1.0
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Community Update: Source code changes
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Categorization:

Topics

User Centric

Right Node Selection 

Admin Centric

Ease of use

Right resource to select

Faster Allocation

Ease of monitoring

Resource Isolation

Ease of Configuration
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YARN Overview :
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Apache Hadoop 3.1
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Moving towards Global & Fast Scheduling

YARN-5139

• Problems
 Current design of one-node-at-a-time allocation cycle can lead to suboptimal 

decisions.
 Several coarse grained locks.

• With this, we improved to
 Look at several nodes at a time
 Fine grained locks
 Multiple allocator threads
 YARN scheduler can allocate 3k+ containers per second ≈ 10 mil allocations / hour!
 10X throughput gains
 Much better placement decisions

Admin Centric
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Traditional scheduling 

Root

(memory=60G, vcores=40, gpu=10)

Compliance

(min=10%, max =30%)

Retail 

(min=40%, max =50%)

Engineering

(min=50%, max =100%)

Compliance1

(min=50%, max =50%)

Compliance2

(min=50%, max =50%)

Retail1

(min=50%, max =50%)

Retail2

(min=50%, max =50%)

Engineering1

(min=50%, max =50%)

Enginering2

(min=50%, max =50%)
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Global Scheduling explained
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Better placement strategies (YARN-6592)

• Past
 Supported constraints in form of Node Locality.

• Now YARN can support a lot more use cases
 Co-locate the allocations of a job on the same rack (affinity)
 Spread allocations across machines (anti-affinity) to minimize resource 

interference
 Allow up to a specific number of allocations in a node group (cardinality)

User Centric
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Better placement strategies (YARN-6592)

• Affinity

• Anti-affinity
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Absolute Resources Configuration in CS – YARN-5881

• Gives ability to configure Queue resources as below
<memory=24GB, vcores=20, yarn.io/gpu=2>

• Enables admins to assign different quotas of different resource-types

• No more “Single percentage value limitation for all resource-types”

Root

(memory=60G, vcores=40, gpu=10)

Compliance

(memory=60G, vcores=40, gpu=10)

Retail 

(memory=60G, vcores=40, gpu=0)

Engineering

(memory=20G, vcores=40, gpu=10)

Admin Centric
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Auto Creation of Leaf Queues - YARN-7117

• Easily map a queue explicitly to user or group with out additional configs
• For e.g, User X comes in, automatically create a queue for user X 

with a templated capacity requirements

• Auto created Queues will be
• created runtime based on user mapping
• cleaned up after use
• adhering to ACLs

Admin Centric
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Usability : UI 1/2 Admin Centric
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Usability : UI 2/2
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Timeline  Service 2.0 Improvements 

Understanding and Monitoring a Hadoop cluster 
itself is a BigData problem

• Using HBase as backend for better 
scalability for read/write

• More robust storage fault tolerance
• Migration and compatibility with v.1.5

User Centric Admin Centric
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Resource profiles and custom resource types

• YARN supported only Memory and CPU

• Now
•  A generalized vector for all resources
• Admin could add arbitrary resource 

types! 

Ease of resource requesting model
using profiles for apps

User Centric Admin Centric
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GPU support on YARN

• Why?

 No need to setup separate clusters
 Leverage shared compute!

• Why need isolation?
  Multiple processes use the single GPU will be:

  Serialized.
  Cause OOM easily. 

 GPU isolation on YARN:
 Granularity is for per-GPU device.
 Use cgroups / docker to enforce isolation.

User Centric
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FPGA on YARN

• FPGA isolation on YARN: 
 Granularity is for per-FPGA device
 Use Cgroups to enforce the isolation

• Currently, only Intel OpenCL SDK for FPGA is supported. 

• Implementation is extensible to other FPGA SDK.

User Centric
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Services support in YARN

• A native YARN services framework (YARN-5079)

 Native Yarn support to Services
 Apache Slider retired from Incubator – lessons and key code carried over to 

YARN

• Simplified discovery of services via DNS mechanisms: YARN-4757
 regionserver-0.hbase-app-3.hadoop.yarn.site

 Application & Services upgrades:  YARN-4726
 “Do an upgrade of my HBase app with minimal impact to end-users”.

User Centric
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Simplified APIs for service definitions

• Applications need simple APIs

• Need to be deployable “easily”

• Simple REST API layer (YARN-4793)

• Spawn services & Manage them

User Centric
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How to run a new service in YARN ?
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Apache Hadoop 3.2
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Node Attributes (YARN-3409)

• “Take me to a node with JDK 10”

• Node Partition vs. Node Attribute
• Node Partition

 One partition for one node
 ACL
 Shares between queues
 Pre emption enforced

• Attribute
 For Container placement
 No ACL’s and Shares
 First come first serve

User Centric
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Node Attributes (YARN-3409)

• Distributed Node Attributes
 NM can detect its attributes
 Script based and Config based 

detection.
 Attribute prefix : yarn.nm.io

• Centralised Node Attributes
 Configured through CLI and REST
 Admin ACL’s to configure
 Attribute prefix : yarn.rm.io

User Centric
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Node Attributes (YARN-3409)

Use cases :
 Hardware Constraints : To identify specific kind of resources like 

 GPU, FPGA,
  SSD, # of disks, 
 InfiniBand,
 (dual) network cards,

 Task Constraints: Task or container specific constraints like
 To run on specific Operating system versions.

 Processor architecture
 software library versions

 Experimental : Based on dynamic attributes like 
 Load average,
 disk usage 
 Network

•

User Centric
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Container overcommit (YARN-1011) 

• Every user says “Give me 16GB for my task”, even though it’s only needed at peak
• Each node has some allocated but unutilized capacity. Use such capacity to run 

opportunistic tasks
• Preempt such tasks when needed

Admin Centric
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Auto-spawning of system services (YARN-8048)

• “Start this service when YARN starts”

• “initd for YARN”
• Services are started during the yarn 
bootstrap

 For example YARN ATSv2 needs Hbase, 
so Hbase is system service of YARN.

 Only Admin can configure
 Started along with ResourceManager
 Place spec files under 

yarn.service.systemservice.dir FS path

Admin Centric
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TensorFlow on YARN (YARN-8220)

• Run deep learning workloads on the same cluster as analytics, stream processing etc!

• Integrated with latest TensorFlow 1.8 and has GPU support
 Use simple command to run TensorFlow app by using Native Service spec file 

(Yarnfile)
yarn app -launch distributed-tf <path-to-saved-yarnfile>

 A simple python command line utility also could be used to auto-create Yarnfile
python submit_tf_job.py
--remote_conf_path hdfs:///tf-job-conf
--input_spec example_tf_job_spec.json
--docker_image gpu.cuda_9.0.tf_1.8.0
--job_name distributed-tf-gpu
--user tf-user
--domain tensorflow.site
--distributed --kerberos
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TensorFlow on YARN (YARN-8220)

• Run deep learning workloads on the same cluster as analytics, stream processing etc!

• Integrated with latest TensorFlow 1.8 and has GPU support
 Use simple command to run TensorFlow app by using Native Service spec file 

(Yarnfile)
yarn app -launch distributed-tf <path-to-saved-yarnfile>

 A simple python command line utility also could be used to auto-create Yarnfile
python submit_tf_job.py
--remote_conf_path hdfs:///tf-job-conf
--input_spec example_tf_job_spec.json
--docker_image gpu.cuda_9.0.tf_1.8.0
--job_name distributed-tf-gpu
--user tf-user
--domain tensorflow.site
--distributed --kerberos
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TensorFlow on YARN (YARN-8220)

• Sample Yarnfile for TensorFlow job

User Centric
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Other related talks :

• Deep learning on YARN - Running distributed Tensorflow / MXNet / Caffe / 
XGBoost on Hadoop clusters

• Speakers : Wangda Tan
• Thursday, 27th Sep, 11:20
• Ballroom

• Running distributed TensorFlow in production: challenges and solutions on 
YARN 3.0

• Speakers : Wangda Tan & Yanbo Liang
• Thursday, 27th Sep, 15:40
• Ballroom
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Queries ?
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