
APACHECON North America Sept. 24-27, 2018

Geospatial API for the cloud

Martin Desruisseaux
Geomatys
martin.desruisseaux@geomatys.com

APACHECON North America

Agenda

● Data formats and web services standards
● Need for bringing algorithms to data
● GeoAPI for implementation independence
● Apache Spatial Information System (SIS)

APACHECON North America

Barrier in data exchange
● Incompatible data and systems
● Data fragmentation and redundancy

Need for common language
for geospatial data and services

APACHECON North America

An OGC standards benefit

http://myserver/myservice?REQUEST=GetMap
 &SERVICE=WMS&VERSION=1.3.0
 &LAYERS=myLayer&FORMAT=image/png
 &CRS=EPSG:4326&BBOX=18,-161,23,-154
 &WIDTH=981&HEIGHT=826

APACHECON North America

API popularity

1990 2018

Remote Procedure Call
COM, CORBA, Java RMI

SOAP REST

Scripting languages
JavaScript, Python…

Web API:

Programming language API:

OpenAPI

GeoAPI

APACHECON North America

● May be large fraction of micro-services

● By contrast, API in programming languages
often transfer only 4 or 8 bytes (a pointer)
⇨More suited to fine-grain operations

Load points from CSV file

Mercator projection

Save points to CSV file

Decoding Encoding

Process

Web API implies data encoding

APACHECON North America

Ways to process data
● Transferring data to algorithm

● Transferring algorithm to data

● WPS an an intermediate position
— Transfer parameters for a process pre-existing on the server
— Transfer SQL-like queries

WFS / WCS / …

GeoAPI / OpenEO

APACHECON North America

Ways to bring algorithm to data
System Virtual Machine
● Include an operating system
● Costly to boot

Docker image
● More lightweight than system virtual machine
● Still relatively costly to boot
● Size is many Mb or Gb

Lambda function
● More lightweight than docker image
● Run in Process Virtual Machine (e.g. Java)
● Size can be a few kb

User provides his own
complete environment

APACHECON North America

Google Earth Engine approach
C

om
p

u
te

 n
+1

APACHECON North America

OpenEO approach

● Goal: unified way to connect clients
to Earth observation cloud back-ends

● High-level API (Python, Javascript, R)

● Various backends (Google Earth Engine, …)

● API not yet based on OGC standards

http://openeo.org/openeo/news/2018/03/17/poc.html

http://openeo.org/openeo/news/2018/03/17/poc.html

APACHECON North America

Another OGC standards benefit

A blueprint!A blueprint!

Credit: NASA/JPL/University of Texas

Latitudes and longitudes
without CRS are ambiguous
3 km error in some parts of the world

APACHECON North America

From standards to interfaces

CoordinateSystem cs = crs.getCoordinateSystem();CoordinateSystem cs;
if (crs instanceof GeodeticCRS) {
 GeodeticCRS geodeticCRS = (GeodeticCRS) crs;
 cs = geodeticCRS.getEllipsoidalCS();
 if (cs == null) {
 cs = geodeticCRS.getSphericalCS();
 if (cs == null) {
 cs = geodeticCRS.getCartesianCS();
 }
 }
} else if (crs instanceof VerticalCRS) {
 VerticalCRS verticalCRS = (VerticalCRS) crs;
 cs = verticalCRS.getVerticalCS();
} else if (crs instanceof EngineeringCRS) {
 EngineeringCRS engineeringCRS = (EngineeringCRS) crs;
 cs = engineeringCRS.getEllipsoidalCS();
 if (cs == null) {
 cs = engineeringCRS.getSphericalCS();
 if (cs == null) {
 cs = engineeringCRS.getCartesianCS();
 if (cs == null) {
 cs = engineeringCRS.getPolarCS();
 if (cs == null) {
 cs = engineeringCRS.getCylindricalCS();
 }
 }
 }
 }
} else // etc.

Generated from XSD From abstract model

W*S standards should
not be the primary source

for API in programming languages

“We just need latitude and longitude”
Simple, isn't it?

APACHECON North America

Coordinate Reference Systems

50 ellipsoids

514 geodetic datums

487 two-dimensional geographic
coordinate reference systems

4675 projected
coordinate reference systems

In EPSG dataset 9.5.2:

Latitudes and longitudes
without CRS are ambiguous
3 km error in some parts of the world

1 planet

Images:: NASA/USGS
Hellerick & al. CC BY-SA 3.0

“I don't need all this complexity”
Let just use the WGS84 datum everywhere

WGS84 = World Geodetic System 1984
This is the datum used by Global Positioning Systems (GPS)

APACHECON North America

Earth is changing

WGS 84(Transit)
WGS 84(G730)
WGS 84(G873)
WGS 84(G1150)
WGS 84(G1674)
WGS 84(G1762)

● 30 years ago, NAD83 ≈ WGS84
● Now, differ by about 1.5 metres

NAD83(86)
NAD83(HPGN)
NAD83(CORS96)
NAD83(2007)
NAD83(2011)
NAD83(CSRS)

● NAD83 is tied to North American Plate
● WGS84 is averaged over the world

→ They do not move in the same way
●

● Galileo uses a different reference frame

APACHECON North America

WGS84 not always suited
• Some boundaries in USA are still legally defined in NAD27

• Difference with geoidal height up to ±100 metres

NAD83NAD27

NADCON

River apparently flowing up
(ellipsoidal height increase)

ellipsoid
Recommendation

● Keep data in their original system
and transform only when needed.

● Prefer the reference system defined by
the mapping agency of the country
where the data are located.

“Keep transformation engine simple”
Can we use WGS84 as the pivot system?

APACHECON North America

Pivot system can put errors

World Geodetic
System 1984

North American
Datum 1927

Nouvelle
Triangulation

Française

Réseau
Géodésique

Français 1993

World Geodetic
System 1972

Japanese Geodetic
Datum 2000

Japanese Geodetic
Datum 2011

(85)

North American
Datum 1983

N
A

D
C

O
N (57)

TOWGS84 is removed in WKT version 2

APACHECON North America

Map projections are only part of work

Data structures
Map projection
Other transforms
Operation inference
EPSG dataset
WKT parsing
Other

Proportion of map projection code in Apache SIS referencing module

“I just need a few metadata”
Coordinates and reference system, that’s all

APACHECON North America

Minimal metadata

● Popular library (GDAL) provide:
– Title
– Image size
– Coordinate Reference System
– Geographic or projected bounding box
– Bands

APACHECON North America

ISO 19115: Geographic metadata
Metadata

Data identification

Citation
● Titles
● Authors (creator, contributor…)

Data format

Spatiotemporal extent
● Geographic bounding box
● Vertical and temporal ranges

Resolution

Content information
● Illumination elevation & azimuth angles
● Cloud cover percentage

Attribute (band) group
● Content type (physical measurement, …)

Attribute (band)
● Description (coastal aerosol, …)
● Peak response in nanometres
● Transfer function

More attributes (bands)…

APACHECON North America

ISO 19115: Geographic metadata
Metadata

Spatial representation Lineage
● Processors (organization, …)
● Process steps (inputs, algorithm, …)

Data quality
● Completeness
● Consistency (logical, thematic, …)

Maintenance
● Scope (dataset, software, …)
● Dates & update frequency

Distribution
● Format
● Digital transfer options

Constraints (legal, security, …)

Acquisition
● Platform & instruments
● Operation (status, events, …)

APACHECON North America

GeoAPI
● Initiated in 2002
● Open Geospatial Consortium (OGC) working group
● Java interfaces derived from OGC/ISO conceptual models
● org.opengis.* packages
● Versions:

– Latest release is GeoAPI 3.0.1 (September 2017)
– New working group created at OGC for GeoAPI 3.1 and 4.0

Python API added

http://www.geoapi.org

Apache Spatial Information System (SIS)
● Initiated in 2010
● Top Level Apache project
● Strong focus on OGC/ISO standards (GeoAPI 3.0)
● Versions:

– Latest release is Apache SIS 0.8 (November 2017)
– Current development is Apache SIS 1.0-SNAPSHOT

● Code:
– 227,000 lines of Java code
– 262,000 lines of comments
– Progressive transfer from Geotk project (800,000 lines) to Apache SIS

http://sis.apache.org

http://www.geoapi.org/
http://sis.apache.org/

APACHECON North America

API layers

libpng libtiff …

GDAL

Apache SIS

GeoAPI (temptative)

Applications Applications

Python

APACHECON North America

Demo

#from opengis.wrapper.gdal import DataSet
from apache.sis import DataSet

ds = DataSet("myRaster.tif")
md = ds.metadata()
axis0 = md.spatial_representation_info[0].axis_dimension_properties[0]
axis1 = md.spatial_representation_info[0].axis_dimension_properties[1]

print()
print("Resource title: ", md.identification_info[0].citation.title)
print("Resource scope: ", md.metadata_scope[0].resource_scope)
print("Name of first axis: ", axis0.dimension_name)
print("Size of first axis: ", axis0.dimension_size)
print("Name of second axis: ", axis1.dimension_name)
print("Size of second axis: ", axis1.dimension_size)
print()
print("Complete metadata as formatted by the implementation (non-normative):")
print(md)

ds.close()

APACHECON North America

Bridge between languages

GDAL

UCAR netCDF

Apache SIS

LibrariesLibraries ApplicationsApplications

GeoAPI in Python

GeoAPI in Java

Python

APACHECON North America

Bridge between languages

GDAL

UCAR netCDF

Apache SIS

LibrariesLibraries ApplicationsApplications

GeoAPI in Python

GeoAPI in Java

Java / Python bridge

Python

APACHECON North America

Apache SIS usage example
● Reference system by EPSG code

● Reference System by Well Known Text (WKT)

● Reference System by Geographic Markup Language (GML)

CoordinateReferenceSystem myDataCRS = CRS.forCode(“EPSG:3395”);

CoordinateReferenceSystem myDataCRS = CRS.fromWKT(“PROJCRS[…]”);

CoordinateReferenceSystem myDataCRS = CRS.fromXML(“<gml:ProjectedCRS>…”);

Apache SIS uses the complete EPSG geodetic dataset

Apache SIS recognizes automatically both WKT 1 (OGC 01-009) and WKT 2

APACHECON North America

Let user know about issues!

CRS.forCode(“EPSG:26747”); // NAD27 / California zone VII

WARNING: Code "EPSG:26747" is deprecated and superseded by 26799.
Reason is: Error in dependent projection record.

CRS.fromWKT(“GEOGCS[…definition with (lon,lat) axes…, AUTHORITY["EPSG", "4326"]]”);

Log non-conform axis order:

WARNING: The coordinate system axes in the given “WGS 84” description do not
conform to the expected axes according “EPSG:4326” authoritative description.

CRS.fromWKT(“…, PRIMEM[…value in deg], …, AUTHORITY["EPSG", "4807"]]”);

WARNING: The given “NTF (Paris)” description does not conform to the “EPSG:4807”
authoritative description. Differences are found in prime meridian.

Log if prime meridian probably in wrong units (or other mismatches):

Log usage of deprecated EPSG code, with replacement proposal:

APACHECON North America

Find coordinate operation

import org.opengis.referencing.operation.CoordinateOperation;

// Class declaration omitted for brevety

CoordinateReferenceSystem sourceCRS = // any method shown in previous slides
CoordinateReferenceSystem targetCRS = // any method shown in previous slides
CoordinateOperation op = CRS.findOperation(sourceCRS, targetCRS, region);

// Verify domain of valididty and accuracy
System.out.println("Valid in " + CRS.getGeographicBoundingBox(op));
System.out.println("Accuracy " + CRS.getLinearAccuracy(op) + " m");

1) Get two CRS (source and target)
2) Get a coordinate operation from source to target
3) Verify domain of validity and positional accuracy

APACHECON North America

Apply coordinate operation

mt.transform(φ, λ) : x
y

∂x/∂φ ∂x/∂λ
∂y/∂φ ∂y/∂λ

mt.derivative(φ, λ) :

Example for a two-dimensional map projection:Example for a two-dimensional map projection:
(number of rows or columns depend on the number of dimensions)

MathTransform mt = op.getMathTransform();

APACHECON North America

Reproject bounding boxes

Source Target

Envelope transformed = Envelopes.transform(op, envelope);

∂ y 2

∂ x2

Also have special handling
for envelopes over a pole

y = c0+ c1x + c2x² + c3x³
approximation extremum

∂ y1

∂ x1

4 corners transformation

Not sufficient

Better

APACHECON North America

Current state
ISO OGC Topic GeoAPI Apache SIS

ISO 19103 Conceptual schema language 3.0.0 0.3

ISO 19115 Metadata (including imagery and gridded data extension) 3.0.0 0.3 (updated in 0.5)

ISO 19139 Metadata — XML schema 0.3, 1.0-SNAPSHOT

JSR-363 Units of Measurement API 3.0.1 0.8

ISO 19111 08-015 Spatial referencing by coordinates 3.0.0 0.4, 0.5, 0.6, 0.7, 0.8

ISO 19162 12-063 Well Known Text (WKT) representation of reference systems 0.6 (updated in 0.7)

ISO 19136 07-036 Geographic Markup Language (GML) 0.6 (updated in 0.7)

ISO 19109 Rules for application schema (Features) 3.1-SNAPSHOT 0.5

14-084 Moving Features CSV encoding (read only) 0.7, 0.8

16-114 Moving Features NetCDF encoding 0.8, 1.0-SNAPSHOT

ISO 19107 Feature geometry (1 to 3 dimensional) pending

ISO 19123 07-011 Coverage geometry and functions pending
Pending port from
the Geotk project.

ISO 19156 10-004 Observation and measurement pending

ISO 13249 SQL spatial

12-168 Catalog Services (CSW) Google Summer of Code

ISO 19128 06-042 Web Map Service (WMS) Pending port from the
Examind-community

project.ISO 19142 09-025 Web Feature Service (WFS)

APACHECON North America

The network is the computer

Remote Method Invocation (RMI) where
introduced in Java 1.1, released in 1997.

OGC standards published in 2001
were RMI and CORBA ready.

THANK YOU

Martin Desruisseaux
martin.desruisseaux@geomatys.com

