

Apache OpenOffice
Automated Testing

by Liu Zhe
(presented by Herbert Dürr)

Agenda

● Brief Introduction
● Background
● New Solution
● Next Plan

Brief Introduction
● Test automation saves a lot of human effort

and provides faster feedback, especially in
regression testing

● Test automation is very appropriate for
OpenOffice
– Has a long maintenance life

– Core function and UI don't change frequently

– Heavy regression testing requirement

● OpenOffice had built-in test automation for
a long time already, but it needed to evolve

Background
● OpenOffice has a lot of testing code
● Testing code can be categorized to 3 levels

Module Description

testgraphical Test tool to test documents by it's graphical representation

testautomation All test scripts for the old VCL Testtool. Nobody maintains it now

smoketestdoc It's used to generate the test documents required by smoke test

test Includes reusable code for UNO API test

smoketestoo_native A small test suite to verify the working of basic functionality

qadevOOo UNO API test, application wide complex tests

{Module}/qa UNO API test, module-specific complex tests

Low Level - Unit Testing for Code

● Verify the correctness of functions,
methods and interfaces

● White box testing
● Executed during the build process
● Test failure leads to build break

Middle Level - UNO API Testing

● Verify the correct behavior of the product
Application Programming Interface (API)

● Gray box testing
● Requires a running OpenOffice instance
● e.g. qadevooo, smoketestoo_native

High Level - GUI Testing

● Simulates a real user to perform testing
● Generates keyboard/mouse events to GUI

actions and get information from the GUI to
validate the product

● Requires a running OpenOffice instance
● e.g. vcltesttool, testautomation

Evolving Test Framework

● Complex

● Too many frameworks

● Unreliable

● Lack of maintenance

● Simple

● Unified with standard JUnit

● Reliable

● Maintainable

Legacy New

(Only covering UNO API testing and GUI testing here)

New Testing Framework

● Test code is separated from product code
– SVN Repository: https://svn.apache.org/repos/asf/incubator/ooo/trunk/test/

● Test projects
– testcommon: Reusable code for both GUI test and API test

– testuno: UNO API test cases

– testgui: GUI test cases

● Pure Java projects which can be imported,
edited, debugged and run in Eclipse

● All test cases are implemented with JUnit

https://svn.apache.org/repos/asf/incubator/ooo/trunk/test/

New Testing Framework

● The testing framework can automatically
install builds
– from the local build environment

– from the internet, e.g. public buildbots

● Command line to start the tests
● Nice HTML/XML test report
● Uploads test report to testdashboard

Run Test in Build Environment

● Tests can be started easily with the

following commands
build OpenOffice

cd main/instsetoo_native

build –all

cd ../../test

run build verification test (BVT)

ant

run functional verification test (FVT)

ant "-Dtest.args=-tp fvt"

run both

ant "-Dtest.args=-tp bvt -tp fvt"

Testcase Terminology

● BVT: Build Verification Testing

● FVT: Functional Verification Testing

● PVT: Performance Verification Testing

● SVT: System Verification Testing

Building the Test Code
as Standalone Package

● Prerequisites to build
JDK 1.5 or above.

Apache Ant 1.8.2 or above.

Apache OpenOffice 3.4.1 or above.

JUnit 4.10 or above (automatically downloaded if needed)

● Commands to build
cd test

Generate aoo_test_*.zip to dest.dir

ant "-Ddest.dir={Any Directory}" "-Dopenoffice.home={OpenOffice Directory}" dist

Running the Test Code
as Standalone Package
● To run test with standalone package, only

JRE 1.5 or above is required
● Extract aoo_test.zip to testing machine,

then use the script "run" to start tests
cd aoo_test
Run build verification test on one pre-installed openoffice
./run -Dopenoffice.home="/Applications/OpenOffice.org.app/Contents" -tp bvt
Automatically download and install a build, then run functional verification test
./run -Dopenoffice.pack=
http://somehost/Apache_OpenOffice_3.5.0_Linux_x86-64_install-arc_en-US.tar.gz -tp fvt

http://somehost/Apache_OpenOffice_3.5.0_Linux_x86-64_install-arc_en-US.tar.gz

Test Result Output
● Test output is stored in "testspace/output.*"
● Open "result.html" in browser to view the

test report

Develop Tests

● It is easy to get the testing framework
started in Eclipse with just two steps:
– Import all projects into Eclipse

– Set one classpath variable "openoffice.home"
to the openoffice directory

● Write, debug and run tests all in Eclipse
● Detail reference

– http://wiki.openoffice.org/wiki/QA/test_automation_guide

http://wiki.openoffice.org/wiki/QA/test_automation_guide

Test Dashboard

● A web app to view and track test result
● Compare performance data between builds
● Anyone can upload test results to it
● Demo address

– http://people.apache.org/~liuzhe/testdashboard/

http://people.apache.org/~liuzhe/testdashboard/

Test Dashboard

Future

● Clean up old test codes
● Improve the test dashboard

– Add SVT result

● Improve test stability
● Promote the new framework in community

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

