

Apache OpenOffice
Platform Topics

Herbert Dürr

OpenOffice
Much More Than the Apps

● OpenOffice and its Platforms
● Historic Background
● the Current Situation,

Challenges and Opportunities
● Summary

OpenOffice and its Platforms
● as an end-user oriented application

– target for the audience's platforms

– with system integration

– with full localization

● as a productivity suite
– used by knowledge workers

– with tightly coupled productivity programs

➔ we have to fulfill very high expectations

Historic Background

Win16 Win32

Unix32

Mac X11

Unix64

OS/2

Mac Aqua

1995 2000 2005 2010

64bit General Considerations
● more address space

– shared address space between documents

– few 32bit applications remaining for sharing

– better caching

– helps to find wild pointers

– allows better instrumenting

● better performance
– more registers and better calling conventions

– PC indirect addressing benefits ASLR

– SSE floating point math

64bit Platform Specifics
● Linux/FreeBSD

– missing 32bit libraries on distributions

● MacOSX
– 32bit APIs are being deprecated

– debugging on 32bit is more difficult

● Windows
– 32bit Shell Extension are not supported

on a normal 64bit Windows

– 64bit libraries for better AppStore compliance

Platform Processing Power
● Number of Processors grows exponentially
● General Purpose Performance per

Processor flattens out
➢

● Multiple Processes
– per document document processes

– increased reliability and stability

● Multi-Threading

OpenOffice Threading Overview

● It already runs many threads
– main thread (message loop)

– many worker threads
(gdiplus, drag&drop, RPC, OLE, ...)

– UI thread / worker are usually not separated

● But it does not run client threads

OpenOffice Threading Problems
● Does not scale with multiple clients
● A stability problem in a thread

can take down the whole process
● The UNO API has thread safety issues
● Granularity of locks is quite coarse

(global mutex, pool mutex, solar mutex,
refcounters...)

● many more details are available:
http://wiki.openoffice.org/wiki/Analysis/Multi-Threading

http://wiki.openoffice.org/wiki/Analysis/Multi-Threading

General Platform Opportunities
● separate processes per document
● deeper system integration
● improved Update Mechanism
● reduced Barrier of Entry for Development
● allowing the replacement of build oddities

– e.g. the ancient Mozilla 1.7

● improved Graphics
– native renderers

– color depth, color spaces

Opportunities for Better
System Integration on Mac

Opportunities for Better
Deployment on MacOSX

● DiskImage vs. Package installations
● Packaging Java with the Download
● App Store and App Store Updates!
● Code Signing for “Gatekeeper”
● 64bit Porting

Opportunities on Windows

● AppStore: Deployment and Updates
● Improved Accessibility Integration
● The input language as the text language
● Improved OpenType Support
● Windows Address Book Integration
● 64bit Porting

Developer Perspective of the
Situation on Linux/FreeBSD

● Works almost out of the box
● Dependency on GCC (>= 4.2)
● Eventual Alternative is Clang
● Desktop Environments

– Plain X11

– Gnome

– KDE

Challenges for OpenOffice
Developers on Windows
● Build based on Cygwin
● Visual Studio 2008 as the only compiler
● Odd binary artifacts needed for building
● Target baseline is Windows XP
● not yet compliant with the Win8 AppStore

Development Perspective
of the Current Situation on Mac

● target baseline is still OSX 10.4
● dependency on XCode 3

– installing that on a recent OSX is quite hard

● dependency on 32bit only APIs
● based on the Cocoa framework
● graphics based on Quartz, some OpenGL

and ATSUI

Standard Template Library
● AOO as C++ application has to interface

with C++ extensions and system libraries
– stlport was used since the beginning of OOo

– GNU libstdc++

– Clang libc++

– Apache stdcxx

– Boost TR1

– MSVC STL

➔ prefer system template libraries to allow
direct use of system C++ libraries

Mobile Devices
● Better Support for Touch Interface Devices

needed
● Model, View and Controller are not as

cleanly separated as expected in new
applications
– classic VNC-like screen forwarding

– web-based HTML content forwarding

– major refactoring for MVC needed
● work on this MVC refactoring, the new drawing

primitives and their renderers open a whole new
world of opportunities for a better experience

Touch Interfaces

● User Interaction Concepts Need Rethinking
– hit targets need to be bigger

– dialogs become much more rare

– toolbar count has to be reduced

– window menus are almost gone

– context menus become popups

– keyboard accelerators are gone

– scrollbars become mostly obsolete

Touch Gestures
● Already supported

– tap, double tap, scroll, pinch, spread, two
finger right click

● Only partially supported
– long press, page forward/backward, chiral

scrolling

● Not yet supported
– momentum, pan, rotate, flick, back, tap to

zoom, three finger drag

Other Platform Trends

● The Cloud
– for storing

– for sharing

– for live interactions

● GPU computing
– allows faster image/video manipulations

– allows faster solver

Summary

● Platforms are moving faster than ever
– New Platforms are attractive to our Users

– There are many exciting new software features
that we should seamlessly interact with

– Hardware Technologies like multi-core CPUs,
high-resolution displays, powerful GPUs and
new interactions offer plenty of opportunities

➔Be part of it, help out
and join the FUN!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

