
Scaling The Download Infrastructure With Your Success

Scaling the Download Infrastructure With
Your Success

Dr. Peter Poeml

Novell / SUSE Linux AG
<poeml at suse.de>

ApacheCon Europe 2008, Amsterdam

Scaling The Download Infrastructure With Your Success

Introduction
About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Introduction

About

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Introduction

About

Myself:
I Have been working for SUSE/Novell since 2000
I Working on openSUSE.org download infrastructure
I openSUSE Build service
I Past projects:

I Maintained Apache, OpenSSL, DHCP
I Ported SUSE Linux to IBM iSeries

http://www.opensuse.org/Mirror_Infrastructure
http://www.opensuse.org/Build_Service

Scaling The Download Infrastructure With Your Success

Introduction

About

This Talk:
I Popularity of your software -> downloads -> too much traffic
I Ways to deal with the traffic
I How to make use of mirrors
I Show how openSUSE.org does it

Scaling The Download Infrastructure With Your Success

Introduction

The Problem

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Introduction

The Problem

A Flourishing Open Source Project
I Possibly large files (CD or DVD images)
I Different releases, subprojects, architectures, ...
I More downloads than you could ever handle

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Content Delivery Networks (CDN)
I Standard solution to the problem
I They do wide area load distribution, by adding intelligence

to standard DNS
I They are expensive
I They hardly fit into the tight budget of an open source

project

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Mirrors Come To Help!
I If what you do is popular, then probably somebody is

mirroring you.
I They do it for their own benefit (saves their bandwidth)
I Only some do it to help your project
I You have no real control
I You can only facilitate

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Five Ways To Distribute Traffic To Mirrors

1. Static mirror lists

2. Dynamic mirror lists

3. Dynamic mirror lists, used to redirect transparently

4. Metalinks

5. Metalinks, used transparently

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Method 1: Static Mirror Lists
I Can be hard to maintain
I Often too static
I Can hardly ever be correct
I Low granularity
I Work well for small file trees

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Method 2: Dynamic Mirror Lists
I Mirror monitoring to increase correctness
I Automation allows for finer granularity
I Often combined with geolocation of clients
I User gets a suggestion, or needs to chose interactively
I Works well for downloads of single files
I Can be annoying, or lead to all users picking the same

mirror
I Doesn’t work so well for automated downloads

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Method 3: Dynamic Mirror Lists, Transparent Redirects
I Mirror is selected automatically (server makes the choice)
I Client doesn’t actually get the list
I User doesn’t need to figure out
I More difficult for user to override choice
I Requires intensive mirror monitoring
I Good for machine clients

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Method 4: Metalinks
I Metalink: a mirror list in standardized, machine-readable

format (metalinker.org)
I Needs a metalink-capable download client
I Includes hashes for transfer integrity checking
I The client can do automatic failover if one source doesn’t

work
I This makes downloads robust and fast
I Good for humans and machines

http://metalinker.org

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Method 5: Metalinks, Used Transparently
I Interesting, but no standard yet
I Transparent negotiation would be best
I A client which can accept metalinks would get a metalink
I A normal HTTP client would get a redirect

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

When huge amounts of content change rapidly,
I Mirrors have a hard time catching up
I Thus, you have to deal with partial mirrors

A strong reason for dynamic mirror lists and thourough mirror
surveillance.

Scaling The Download Infrastructure With Your Success

Introduction

Approaches

Now, I will show you an implementation which combines method
2, 3, and 4. It does

I transparent redirection
I dynamic mirror lists
I metalinks

Scaling The Download Infrastructure With Your Success

An Implementation

Building Blocks

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

An Implementation

Building Blocks

The building blocks of the framework are:
I Mirror database
I Mirrorlist generator and redirector
I Monitoring tools

I like to call the whole thing "mirror brain".

Scaling The Download Infrastructure With Your Success

An Implementation

Building Blocks

I Other building blocks are the mirrors – a heterogenous
clique.

I If the mirroring machines are owned and controlled by
yourself, all the better.

Scaling The Download Infrastructure With Your Success

An Implementation

Building Blocks

Technology
I Apache HTTP server 2.2
I DBD framework
I libGeoIP
I libapr_memcache (from APR trunk)
I MySQL server
I Mirror monitoring tools in Python and Perl

Scaling The Download Infrastructure With Your Success

An Implementation

Mirror Database

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

An Implementation

Mirror Database

The mirror database keeps an inventory of the mirrors, on
file-level.

I It is acquired and updated by crawling the mirror via rsync,
FTP or HTTP

I Mirrors are frequently probed for availability
I For large files, functional tests are useful (e.g., whether the

mirror correctly sends files > 2GB and handles byte ranges)
I A "strength index" is assigned to each mirror, according to

its capabilities
I Database design is such that a single SQL query is enough

to retrieve the list of mirrors for a file

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Mirrorlist Generator / Redirector
I mod_zrkadlo (zrkadlo = Slovakian for mirror)
I implemented as an Apache module in C
I hooks in as handler into the request processing phase
I thus fully integratable into other "jobs" of the webserver
I relies on the awesome, new DBD framework for database

access
I (and thus needs Apache HTTP server 2.2.x)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

The Apache module proceeds like this:
I check if the requested file qualifies for redirection
I if not, the handler quits and lets the file be served directly
I canonicalize filename
I geolocate the client through its IP address
I search for possible mirrors in the database
I if no mirror was found, quit and let the file be served directly

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I sort mirrors by closeness, strength and randomize a bit
I return one of the following:

I a redirect (HTTP status code 302 Found and a
Location: header)

I sorted mirror list (if requested)
I metalink (if requested)

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

Example request:
GET /dist/openSUSE-10.3.iso HTTP/1.1
Host: download.opensuse.org

The Server Replies With A Redirect:
HTTP/1.1 302 Found
Date: Sun, 02 Mar 2008 10:14:58 GMT
Server: Apache/2.2.8 (Linux/SUSE)
Location: http://ftp5.gwdg.de/opensuse/dist/openSUSE10.3.iso

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

Example metalink reply (shortened):
<?xml version="1.0" encoding="UTF-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/"
origin="http://download.opensuse.org/dist/openSUSE-
10.3.iso">
<files>
<file name="openSUSE-10.3.iso">
<resources>
<url location="de" preference="100"> http://... </url>
<url location="de" preference="100"> http://... </url>
<url location="us" preference="99"> http://... </url>
[...]

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

Log Example Of A Redirect:
85.84.25.24 - - [07/Feb/2008:15:30:24 +0200] "GET
/update/10.3/repodata/patch-kernel-4943.xml HTTP/1.1" 302
356 "-" "Novell ZYPP Installer" uminho.pt 137 741 EU:ES
size:51940

302
uminho.pt
EU:ES

HTTP status code
mirror identifier
continent:country

Scaling The Download Infrastructure With Your Success

An Implementation

The Mirrorlist Generator / Redirector

I Now I’ll talk about experiences with the deployment.

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

download.opensuse.org – Download Server For:
I An operating system, and thousands of components that

ship with it
I Different releases, architectures, ...
I Ongoing stream of security updates and bugfixes
I Ongoing "Check for updates" by clients (majority of

requests)

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

I Number of files: > 700.000
I Size: 864 GB
I High turnover rate

Quote of a mirror:
That sounds onerous - a full ubuntu mirror (including
ISO’s) is 260GB, debian without ISO’s is 320GB

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Human users
I Download mostly large files (CD/DVD images)
I 0.5 to 35 req/s

Machine clients
I Variety of "installer tools"
I Smaller files
I 200 to 400 req/s

Altogether, 15,000,000 to 40,000,000 requests per day

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

The Hardware Is Mediocre:
I Web server:

I P4 2x 3.4GHz, 4GB RAM, SLE10
I SAN with 1.4TB XFS filesystem
I is stage.opensuse.org (rsync server) at the same time

I Database Server:
I Xeon 4x 3.4GHz, 4GB RAM, SLE10
I also serves as "scan host"

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

But The Numbers Are Good!
openSUSE 10.3 release, October 2007:

I Peak bandwidth "served": 13 GB/s, i.e. 100 TB in a day.
I Memory usage of httpd: 50-200 MB (sum of RSS minus

SHARED of all processes)
I Insignificant load (about 1)

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

On The Shoulders Of Giants

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

Result: The described approach works well for us.
I Lots of headroom
I Rock-solid

Scaling The Download Infrastructure With Your Success

Case Study

download.opensuse.org

The Apache HTTP server and the APR are really an excellent
infrastructure to build upon!

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

The main optimization work was:
I Database tuning
I Improvement of the rsync modules for mirror feeding
I Enable mirrors to mirror the most popular 10% of the

content
I Cache control headers (needed regardless of mirrors)
I Figure out the critical files not to redirect

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Mirror selection was refined:
I Integration with "real" CDN (catch-all mirror with

country=’**’)
I Send "weak" mirrors only regional requests (critical feature

for them)
I Permit a "fragile" mirror in a remote region – if it is the only

one
I Respect special network topology of countries and their

connectivity (e.g. New Zealand).
I Circadian variation of selection probability for certain

mirrors

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Mirror selection was refined:
I Integration with "real" CDN (catch-all mirror with

country=’**’)
I Send "weak" mirrors only regional requests (critical feature

for them)
I Permit a "fragile" mirror in a remote region – if it is the only

one
I Respect special network topology of countries and their

connectivity (e.g. New Zealand).
I Circadian variation of selection probability for certain

mirrors

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Mirror selection was refined:
I Integration with "real" CDN (catch-all mirror with

country=’**’)
I Send "weak" mirrors only regional requests (critical feature

for them)
I Permit a "fragile" mirror in a remote region – if it is the only

one
I Respect special network topology of countries and their

connectivity (e.g. New Zealand).
I Circadian variation of selection probability for certain

mirrors

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Mirror selection was refined:
I Integration with "real" CDN (catch-all mirror with

country=’**’)
I Send "weak" mirrors only regional requests (critical feature

for them)
I Permit a "fragile" mirror in a remote region – if it is the only

one
I Respect special network topology of countries and their

connectivity (e.g. New Zealand).
I Circadian variation of selection probability for certain

mirrors

Scaling The Download Infrastructure With Your Success

Case Study

Optimizations

Mirror selection was refined:
I Integration with "real" CDN (catch-all mirror with

country=’**’)
I Send "weak" mirrors only regional requests (critical feature

for them)
I Permit a "fragile" mirror in a remote region – if it is the only

one
I Respect special network topology of countries and their

connectivity (e.g. New Zealand).
I Circadian variation of selection probability for certain

mirrors

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Outline
Introduction

About
The Problem
Approaches

An Implementation
Building Blocks
Mirror Database
The Mirrorlist Generator / Redirector

Case Study
download.opensuse.org
What We Optimized
Pros, Cons, Ideas

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Good:
I Open Source
I The implementation is not tied to openSUSE
I You can use it!

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

File-Level Granularity, Rather Than Directory-Level
I Makes download statistics possible
I Makes small & partial mirrors useful
I Maximum control over how content is served. (Mirrors don’t

care about cache control headers, but you might depend on
them)

I If a "broken file" is identified, you can stop redirecting for it,
instead of waiting for mirror synchronisation

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

General Disadvantage Of Mirrors That You Don’t Control:
I Mirrors die all the time, and don’t hardly ever give you

notice about it
I There is a time window of some minutes between the

failure, and detecting it and automatically disabling the
mirror

I Some failures very hard to detect (just think sporadic
firewall quirks)

Client-side failover can help a lot here.

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Ideas
I Transparent metalink support
I Client feedback could trigger reactive mirror probing
I Hack the rsync daemon to directly update the database
I Find automated way to mirror files based on popularity

I ad-hoc rsync modules?
I massive space-savings on mirrors conceivable

I External api for mirror admins, to disable hosts, change
priority or trigger re-scan

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Other Ideas
I Finer geolocation would be good for "Internet countries"

like Germany
I Send mirrors their local clients (by network prefix?)
I Stickyness of (large) files to certain mirrors, to make better

use of buffer caches?

Scaling The Download Infrastructure With Your Success

Case Study

Pros, Cons, Ideas

Your Ideas?

This space intentially left blank

Scaling The Download Infrastructure With Your Success

Summary

Summary
I Mirrors can be used to build a poor man’s CDN (Content

Delivery Network).
I Mirrors out of your control, and partial mirrors can still be

useful.
I The more complex and voluminous the content gets, the

more mirror monitory is needed.

I Outlook
I Transparent integration of metalinks: a great plan.

Scaling The Download Infrastructure With Your Success

Summary

We just love mirrors...

...because they make us visible :-)

Scaling The Download Infrastructure With Your Success

Summary

Thanks!

Scaling The Download Infrastructure With Your Success

Summary

Questions?

poeml at mirrorbrain.org

Scaling The Download Infrastructure With Your Success

Appendix

For Further Reading

For Further Reading

I http://mirrorbrain.org/
I http://www.poeml.de/users/poeml/talks/apachecon08-

mirrors.pdf (this
talk)

I http://www.opensuse.org/Build_Service/Redirector
I https://forgesvn1.novell.com/svn/opensuse/trunk/

tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c

http://mirrorbrain.org/
http://www.poeml.de/users/poeml/talks/apachecon08-mirrors.pdf
http://www.poeml.de/users/poeml/talks/apachecon08-mirrors.pdf
http://www.opensuse.org/Build_Service/Redirector
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c
https://forgesvn1.novell.com/svn/opensuse/trunk/tools/download-redirector-v2/mod_zrkadlo/mod_zrkadlo.c

Scaling The Download Infrastructure With Your Success

Appendix

For Further Reading

Other Existing Approaches
I Bouncer: (Mozilla project) essentially similar approach, but

different implementation (PHP script); (I think) more
specialized to Mozilla software download structure

I Fedora MirrorManager / Yum: principally a very similar
approach, but done differently ;) They evolved from static
lists to dynamic mirror lists. Works with less granularity
(directory-wise).

I geomcfly: on-the-fly generator of metalinks based on
clients’ geographical location. No mirror management (I
think)

I mirmon: more a monitoring framework, but can be used
with a redirector. Implementation is quite different. Doesn’t
keep inventory of mirror, but checks a timestamp.

http://wiki.mozilla.org/Bouncer
http://fedoraproject.org/wiki/Infrastructure/Mirroring
http://docs.fedoraproject.org/yum/
http://sourceforge.net/projects/geomcfly
http://people.cs.uu.nl/henkp/mirmon/

Scaling The Download Infrastructure With Your Success

Appendix

For Further Reading

Other Existing Approaches (continued)
I Web caches (squid): could work fine, but requires people to

set up squids ;)
I Coral CDN, uses standard DNS but is not transparent
I mod_offload: requires script on mirror, which makes it act

as "active" cache. Files are mirrored on demand. Practical
if you control all mirrors

I BitTorrent (and other P2P): requires special client

http://www.squid-cache.org/
http://www.coralcdn.org/
http://icculus.org/mod_offload/

	Introduction
	About
	The Problem
	Approaches

	An Implementation
	Building Blocks
	Mirror Database
	The Mirrorlist Generator / Redirector

	Case Study
	download.opensuse.org
	Optimizations
	Pros, Cons, Ideas

	Summary
	Appendix
	For Further Reading

