
Scalable, Reliable, and Secure 

RESTful services

Stuff you need to know about REST and HTTP



What this talk is NOT

Specific 
Tools

SOAP
WS-*



For that go to:

Navigating WS-(death?)* - 17:30



Today’s talk

Intro to 
REST

Reliability

SecurityLimitations

Scalability



REST

Resources

Universal 
Interface

Cacheable

Stateless
Client/
Server

Linkable

Architec-
tural Style



The Uniform Interface

Uniform

Get(URI)

Put(URI, Resource)

Delete(URI)

Non Uniform

getCustomer()

updateCustomer(Customer)

delete(customerId);



Resources, resources, resources

 Everything is a resource

 Resources are addressable via URIs

 Resources are manipulated via verbs and the 

uniform interface



Hypertext and linkability

 Resources are hypertext

 We don’t want “keys”, we want links!

 Data model refers to other application states via 

links



From here on out…

 We’re talking about HTTP

 REST defines the architectural style of HTTP

 We’ll discuss further RESTful principles in relation 

to HTTP specifically (i.e. caching, statelessness)



Reliability through Idempotency



Our Starting Point

• Cacheable

• SAFE – no side effectsGET

• Unsafe operations, which can’t be repeatedPOST

• IdempotentPUT

• IdempotentDELETE

• SAFE – no side effects

• No message bodyHEAD



Idempotent Operations

Same 
Request

yields

Same 
Result



Some Basic Scenarios:

1. Getting resources

2. Deleting resources

3. Updating a resource

4. Creating a resource



Getting a resource

 GET is SAFE

 If original GET fails, just try, try again



ServerClient

Updating a resource

PUT Foo
Store resource

Send 200 OK
Connection 

error!

PUT Foo
Do nothing or 

store 
Resource

Send 200 OK
Receive 200 

OK

T
im

e



ServerClient

Deleting a resource

DELETE 
Foo

Delete 
resource

Send 200 
OK

Connection 
error!

DELETE 
Foo

Do nothing

Send 404 
Not Found

Already 
deleted…

T
im

e



Client Server

Creating Resources

HTTP/1.1 201 Created

Date: …

Content-Length: 0

Location: 

http://acme.com/entries/1

…

HTTP/1.1 200 OK

…

POST /entries

Host: acme.com

…

PUT /entries/1

Host: acme.com

Content-Type: …

Content-Length: …

Some data…



Creating Resources

 IDs which are not used can be

 Ignored

 Expired

 Another option: have the client generate a unique 

ID and PUT to it straight away

 They’re liable to screw it up though



Problem: Firewalls

 Many firewalls do not allow PUT, DELETE

 You might want to allow other ways of specifying 

a header:

 Google: X-HTTP-Method-Override: PUT

 Ruby: ?method=PUT



Scalability

ETags, Caching, Content-Types, URLs, and more



Statelessness

 All communication is stateless

 Session state is kept on the Client!

 Client is responsible for transitioning to new states

 States are represented by URIs

 Improves:

 Visibility

 Reliability

 Scalability



ETag Header

 Resources may return an ETag header when it is 

accessed

 On subsequent retrieval of the resource, Client 

sends this ETag header back

 If the resource has not changed (i.e. the ETag is 

the same), an empty response with a 304 code is 

returned 



Client Server

ETag Example

HTTP/1.1 200 OK 

Date: …

ETag: "3e86-410-3596fbbc" 

Content-Length: 1040 

Content-Type: text/html

…

HTTP/1.1 304 Not Modified

Date: …

ETag: "3e86-410-3596fbbc" 

Content-Length: 0…

GET /feed.atom

Host: www.acme.com

…

GET /feed.atom

If-None-Match: 

"3e86-410-3596fbbc"

Host: www.acme.com

…



Client Server

LastModified Example

HTTP/1.1 200 OK 

Date: …

Last-Modified: Sat, 29 Oct 

1994 19:43:31 GMT

Content-Length: 1040 

Content-Type: text/html

…

HTTP/1.1 304 Not Modified

Date: …

Last-Modified: Sat, 29 Oct 

1994 19:43:31 GMT

Content-Length: 0

GET /feed.atom

Host: www.acme.com

…

GET /feed.atom

If-Modified-Since: 

Sat, 29 Oct 1994 

19:43:31 GMT

Host: www.acme.com

…



Scalability through Caching

 A.k.a.“cache the hell out of it”

 Reduce latency, network traffic, and server load

 Types of cache:

 Browser

 Proxy

 Gateway



How Caching Works

 A resource is eligible for caching if:

 The response headers don’t say not to cache it

 The response is not authenticated or secure

 No ETag or LastModified header is present

 The cache representation is fresh

 From: http://www.mnot.net/cache_docs/



Is your cache fresh?

 Yes, if:

 The expiry time has not been exceeded

 The representation was LastModified a relatively long 

time ago

 If its stale, the remote server will be asked to 

validate if the representation is still fresh



Scalability through URLs and 

Content-Types

 Information about where the request is destined 

is held outside the message:

 Content-Type

 application/purchase-order+xml

 mage/jpeg

 URL

 Other headers

 Allows easy routing to the appropriate server 

with little overhead



Transactions

 The web is NOT designed for transactions
 Client is responsible for committing/rolling back 

transactions, and client may not fulfill responsibilities

 Transactions can take too long over the web and tie up 
important resources

 Much better IMO to build in 
confirmation/cancellation into your application

 This requires application specific means for 
compensation

 See the paper: Life Beyond Transactions by Pat 
Helland



Security



Question #1

 What are your goals & requirements?

 Authentication?

 Authorization?

 Privacy?

 Integrity?

 Openness?

 Eliminate hassles for users?



Tools at our disposal

 HTTP Authentication

 SSL

 XML Signature & Encryption

 Others: 

 SAML, Cardspace, OpenID…



HTTP Authentication Basics

 Basic Authentication

 Username & Password passed in plain text

 Digest

 MD5 has of username & password is created

 Sent with every request

 Remember – statelessness? 



SSL and Public Key Cryptography

 SSL/TLS defines a process to encrypt/secure 

transports

Negotiate an appropriate encryption 
algorithm 

Exchange public keys and certificates

Negotiate a “common secret” which 
allows the connection to use symmetric 
cryptography



How SSL works

Client Server

Sends random number 

encrypted with server’s 

public key.



How SSL works

Client Server

Server sends random 

number to client. 

Can be unencrypted since 

Client may not have public 

key.



How SSL works

Client Server

Server and Client compute 

a shared secret using the 

negotiated hash algorithm.

94AB134… 94AB134…



How SSL works

Client Server

Communication is 

encrypted using the new 

shared secret & symmetric 

cryptography



Client Authentication

 Server can authenticate the Client using it’s public 

key

 Requires key distribution 

 Server side must import every client public key into it’s 

keystore



Limitations of SSL

 Does not work well with intermediaries

 If you have a gateway handling SSL, how do you actually 

get the user information?

 Limited ability for other authentication tokens 

beyond those of HTTP Auth

 i.e. SAML

 Some implementations support NTLM (Commons 

HTTPClient)



XML Signature & Encryption

 Provide message level security when needed

 Limited support across languages

 Mostly Java & .NET

 Allows other types of authentication mechanisms 

beyond just SSL



An XML digital signature
<ds:Signature>

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<ds:SignatureMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<ds:Reference URI="#mySignedElement">

<ds:Transforms>

<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

</ds:Transforms>

<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>EULddytSo1...</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>

BL8jdfToEb1l/vXcMZNNjPOV...

</ds:SignatureValue>

<ds:KeyInfo>

…

</ds:KeyInfo>

</ds:Signature>



Building on the Atom Publishing 

Protocol



What is Atom?

 Atom: a format for syndication 

 Describes “lists of related information” – a.k.a. feeds

 Feeds are composed of entries

 User Extensible

 More generic than just blog stuff



The Bare Minimum
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Example Feed</title>
<link href="http://example.org/"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>

<name>John Doe</name>
</author>
<id>urn:uuid:60a76c80-d399-11d9-b91C-0003939e0af6</id>

<entry>
<title>Atom-Powered Robots Run Amok</title>
<link href="http://example.org/2003/12/13/atom03"/>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-

80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>

</entry>

</feed>



Atom retargeted for employee info
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Employees</title>
<link href="http://acme.com/hr/employees"/>
<updated>2003-12-13T18:30:02Z</updated>
<author>
<name>Acme Inc.</name>

</author>
<id>urn:uuid:60a76c80-d399-11d9-b91C-0003939e0af6</id>

<entry>
<title>John Doe</title>
<link href="http://acme.com/hr/employees/john_doe"/>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
<updated>2003-12-13T18:30:02Z</updated>
<acme:EmployeeInfo>

…
</acme:EmployeeInfo>

</entry>

</feed>



What is the Atom Publishing Protocol?

 Create, edit, delete feeds and entries 

 GET feeds

 Includes paging support

 Properly uses HTTP so can be scalable, reliable 

and secure

 Implemented by a variety of clients and servers

 Abdera, Amplee, blog stuff*, etc



Why you should use APP for our app

 There are many APP implementations and they 

are known to work well together

 Atom format is well understood 

 You can leverage existing solutions for security 

 HTTP Auth, WSSE, Google Login, XML Sig & Enc

 Eliminates the need for you to write a lot of 

server/client code

 ETags, URLs, etc are all handled for you



What other tools are available?

 Java

 Servlets

 Restlets

 Spring MVC

 CXF 

 Axis

 Ruby on Rails

 Python’s Django

 Javascript’s XMLHttpRequest 



Limitations (Constraints) of 

REST & HTTP



Conclusions

 HTTP Provides many tools/properties for us to build 
scalable, reliable, secure systems:
 Idempotent and safe methods

 ETags/LastModified

 Hypertext

 Caching

 URLs & Content Types

 SSL

 Beyond HTTP
 Atom

 XML Signatures & Encryption

 Much more… (Open ID, SAML, RDF, etc)



Limitations

 HTTP is NOT an RPC or message passing system

 Not good for sending event based messages

 May have performance constraints for asynchronous 

messaging that JMS/others may not have

 Security Standards

 Most people will just use SSL, but…

 Exchanging other types of authentication tokens is not 

possible unless they are custom HTTP headers

 No way to establish trust relationships beside 

certificate hierarchies/webs



Questions?

 Blog: http://netzooid.com/blog

 Email: dan@envoisolutions.com


